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ABSTRACT

Deep neural networks have gained tremendous success in a broad range of ma-
chine learning tasks due to its remarkable capability to learn semantic-rich features
from high-dimensional data. However, they often require large-scale labelled data
to successfully learn such features, which significantly hinders their adaption into
unsupervised learning tasks, such as anomaly detection and clustering, and limits
their applications into critical domains where obtaining massive labelled data is
prohibitively expensive. To enable downstream unsupervised learning on those
domains, in this work we propose to learn features without using any labelled
data by training neural networks to predict data distances in a randomly projected
space. Random mapping is a theoretical proven approach to obtain approximately
preserved distances. To well predict these random distances, the representation
learner is optimised to learn genuine class structures that are implicitly embedded
in the randomly projected space. Experimental results on 19 real-world datasets
show our learned representations substantially outperform state-of-the-art com-
peting methods in both anomaly detection and clustering tasks.

1 INTRODUCTION

Unsupervised representation learning aims at automatically extracting expressive feature represen-
tations from data without any manually labelled data. Due to the remarkable capability to learn
semantic-rich features, deep neural networks have been becoming one widely-used technique to em-
power a broad range of machine learning tasks. One main issue with these deep learning techniques
is that a massive amount of labelled data is typically required to successfully learn these expressive
features. As a result, their transformation power is largely reduced for tasks that are unsupervised
in nature, such as anomaly detection and clustering. This is also true to critical domains, such as
healthcare and fintech, where collecting massive labelled data is prohibitively expensive and/or is
impossible to scale. To bridge this gap, in this work we explore fully unsupervised representation
learning techniques to enable downstream unsupervised learning methods on those critical domains.

In recent years, many unsupervised representation learning methods (Mikolov et al., 2013a; Le &
Mikolov, 2014; Misra et al., 2016; Lee et al., 2017; Gidaris et al., 2018) have been introduced, of
which most are self-supervised approaches that formulate the problem as an annotation free pretext
task. These methods explore easily accessible information, such as temporal or spatial neighbour-
hood, to design a surrogate supervisory signal to empower the feature learning. These methods have
achieved significantly improved feature representations of text/image/video data, but they are often
inapplicable to tabular data since it does not contain the required temporal or spatial supervisory in-
formation. We therefore focus on unsupervised representation learning of high-dimensional tabular
data. Although many traditional approaches, such as random projection (Li et al., 2006), principal
component analysis (PCA) (Rahmani & Atia, 2017), manifold learning (Donoho & Grimes, 2003;
Hinton & Roweis, 2003) and autoencoder (Vincent et al., 2010), are readily available for handling
those data, many of them (Donoho & Grimes, 2003; Hinton & Roweis, 2003; Rahmani & Atia, 2017)
are often too computationally costly to scale up to large or high-dimensional data. Approaches like
random projection and autoencoder are very efficient but they often fail to capture complex class
structures due to its underlying data assumption or weak supervisory signal.

In this paper, we introduce a Random Distance Prediction (RDP) model which trains neural networks
to predict data distances in a randomly projected space. When the distance information captures in-
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trinsic class structure in the data, the representation learner is optimised to learn the class structure
to minimise the prediction error. Since distances are concentrated and become meaningless in high
dimensional spaces (Beyer et al., 1999), we seek to obtain distances preserved in a projected space
to be the supervisory signal. Random mapping is a highly efficient yet theoretical proven approach
to obtain such approximately preserved distances. Therefore, we leverage the distances in the ran-
domly projected space to learn the desired features. Intuitively, random mapping preserves rich local
proximity information but may also keep misleading proximity when its underlying data distribu-
tion assumption is inexact; by minimising the random distance prediction error, RDP essentially
leverages the preserved data proximity and the power of neural networks to learn globally consis-
tent proximity and rectify the inconsistent proximity information, resulting in a substantially better
representation space than the original space. We show this simple random distance prediction en-
ables us to achieve expressive representations with no manually labelled data. In addition, some
task-dependent auxiliary losses can be optionally added as a complementary supervisory source to
the random distance prediction, so as to learn the feature representations that are more tailored for a
specific downstream task. In summary, this paper makes the following three main contributions.

• We propose a random distance prediction formulation, which is very simple yet offers
a highly effective supervisory signal for learning expressive feature representations that
optimise the distance preserving in random projection. The learned features are sufficiently
generic and work well in enabling different downstream learning tasks.

• Our formulation is flexible to incorporate task-dependent auxiliary losses that are comple-
mentary to random distance prediction to further enhance the learned features, i.e., features
that are specifically optimised for a downstream task while at the same time preserving the
generic proximity as much as possible.

• As a result, we show that our instantiated model termed RDP enables substantially bet-
ter performance than state-of-the-art competing methods in two key unsupervised tasks,
anomaly detection and clustering, on 19 real-world high-dimensional tabular datasets.

2 RANDOM DISTANCE PREDICTION MODEL

2.1 THE PROPOSED FORMULATION AND THE INSTANTIATED MODEL

We propose to learn representations by training neural networks to predict distances in a randomly
projected space without manually labelled data. The key intuition is that, given some distance
information that faithfully encapsulates the underlying class structure in the data, the representation
learner is forced to learn the class structure in order to yield distances that are as close as the given
distances. Our proposed framework is illustrated in Figure 1. Specifically, given data points xi,xj ∈
RD, we first feed them into a weight-shared Siamese-style neural network φ(x; Θ). φ : RD 7→ RM
is a representation learner with the parameters Θ to map the data onto a M -dimensional new space.
Then we formulate the subsequent step as a distance prediction task and define a loss function as:

Lrdp(xi,xj) = l(〈φ(xi; Θ), φ(xj ; Θ)〉 , 〈η(xi), η(xj)〉), (1)

where η is an existing projection method and l is a function of the difference between its two inputs.

Here one key ingredient is how to obtain trustworthy distances via η. Also, to efficiently optimise the
model, the distance derivation needs to be computationally efficient. In this work, we use the inner
products in a randomly projected space as the source of distance/similarity since it is very efficient
and there is strong theoretical support of its capacity in preserving the genuine distance information.
Thus, our instantiated model RDP specifies Lrdp(xi,xj) as follows1:

Lrdp(xi,xj) = (φ(xi; Θ) · φ(xj ; Θ)− η(xi) · η(xj))
2
, (2)

where φ is implemented by multilayer perceptron for dealing with tabular data and η : RD 7→ RK is
an off-the-shelf random data mapping function (see Sections 3.1 and 3.2 for detail). Despite its sim-
plicity, this loss offers a powerful supervisory signal to learn semantic-rich feature representations
that substantially optimise the underlying distance preserving in η (see Section 3.3 for detail).

1Since we operate on real-valued vector space, the inner product is implemented by the dot product. The
dot product is used hereafter to simplify the notation.
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Figure 1: The proposed random distance prediction (RDP) framework. Specifically, a weight-shared
two-branch neural network φ first projects xi and xj onto a new space, in which we aim to min-
imise the random distance prediction loss Lrdp , i.e., the difference between the learned distance
〈φ(xi; Θ), φ(xj ; Θ)〉 and a predefined distance 〈η(xi), η(xj)〉 (η denotes an existing random map-
ping). Laux is an auxiliary loss that is optionally applied to one network branch to learn comple-
mentary information w.r.t. Lrdp . The lower right figure presents a 2-D t-SNE (Hinton & Roweis,
2003) visualisation of the features learned by RDP on a small toy dataset optdigits with 10 classes.

2.2 FLEXIBILITY TO INCORPORATE TASK-DEPENDENT COMPLEMENTARY AUXILIARY LOSS

Minimising Lrdp learns to preserve pairwise distances that are critical to different learning tasks.
Moreover, our formulation is flexible to incorporate a task-dependent auxiliary loss Laux , such as
reconstruction loss (Hinton & Salakhutdinov, 2006) for clustering or novelty loss (Burda et al., 2019)
for anomaly detection, to complement the proximity information and enhance the feature learning.

For clustering, an auxiliary reconstruction loss is defined as:

Lclu
aux (x) = (x− φ′(φ(x; Θ); Θ′))

2
, (3)

where φ is an encoder and φ′ : RM 7→ RD is a decoder. This loss may be optionally added into
RDP to better capture global feature representations.

Similarly, in anomaly detection a novelty loss may be optionally added, which is defined as:

Lad
aux (x) = (φ(x; Θ)− η(x))

2
. (4)

By using a fixed η, minimising Lad
aux helps learn the frequency of underlying patterns in the data

(Burda et al., 2019), which is an important complementary supervisory source for the sake of
anomaly detection. As a result, anomalies or novel points are expected to have substantially larger
(φ(x; Θ?)− η(x))

2 than normal points, so this value can be directly leveraged to detect anomalies.

Note since Lad
aux involves a mean squared error between two vectors, the dimension of the projected

space resulted by φ and η is required to be equal in this case. Therefore, when this loss is added into
RDP, the M in φ and K in η need to be the same. We do not have this constraint in other cases.

3 THEORETICAL ANALYSIS OF RDP

This section shows the proximity information can be well approximated using inner products in two
types of random projection spaces. This is a key theoretical foundation to RDP. Also, to accurately
predict these distances, RDP is forced to learn the genuine class structure in the data.

3.1 WHEN LINEAR PROJECTION IS USED

Random projection is a simple yet very effective linear feature mapping technique which has proven
the capability of distance preservation. LetX ⊂ RN×D be a set ofN data points, random projection
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uses a random matrix A ⊂ RK×D to project the data onto a lower K-dimensional space by X ′ =
AX ᵀ. The Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss, 1984) guarantees the data
points can be mapped to a randomly selected space of suitably lower dimension with the distances
between the points are approximately preserved. More specifically, let ε ∈ (0, 1

2 ) and K = 20 logn
ε2 .

There exists a linear mapping f : RD 7→ RK such that for all xi,xj ∈ X :
(1− ε)||xi − xj ||2 ≤ ||f(xi)− f(xj)||2 ≤ (1 + ε)||xi − xj ||2. (5)

Furthermore, assume the entries of the matrix A are sampled independently from a Gaussian distri-
bution N (0, 1). Then, the norm of x ∈ RD can be preserved as:

Pr
(

(1− ε)||x||2 ≤ || 1√
K

Ax||2 ≤ (1 + ε)||x||2
)
≥ 1− 2e

−(ε2−ε3)K
4 . (6)

Under such random projections, the norm preservation helps well preserve the inner products:

Pr (|x̂i · x̂j − f(x̂i) · f(x̂j)| ≥ ε) ≤ 4e
−(ε2−ε3)K

4 , (7)
where x̂ is a normalised x such that ||x̂|| ≤ 1.

The proofs of Eqns. (5), (6) and (7) can be found in (Vempala, 1998).

Eqn. (7) states that the inner products in the randomly projected space can largely preserve the inner
products in the original space, particularly when the projected dimension K is large.

3.2 WHEN NON-LINEAR PROJECTION IS USED

Here we show that some non-linear random mapping methods are approximate to kernel functions
which are a well-established approach to obtain reliable distance/similarity information. The key to
this approach is the kernel function k : X×X 7→ R, which is defined as k(xi,xj) = 〈ψ(xi), ψ(xj)〉,
where ψ is a feature mapping function but needs not to be explicitly defined and 〈·, ·〉 denotes a
suitable inner product. A non-linear kernel function such as polynomial or radial basis function
(RBF) kernel is typically used to project linear-inseparable data onto a linear-separable space.

The relation between non-linear random mapping and kernel methods is justified in (Rahimi &
Recht, 2008), which shows that an explicit randomised mapping function g : RD 7→ RK can be
defined to project the data points onto a low-dimensional Euclidean inner product space such that
the inner products in the projected space approximate the kernel evaluation:

k(xi,xj) = 〈ψ(xi), ψ(xj)〉 ≈ g(xi) · g(xj). (8)

Let A be the mapping matrix. Then to achieve the above approximation, A is required to be drawn
from Fourier transform and shift-invariant functions such as cosine function are finally applied to
Ax to yield a real-valued output. By transforming the two data points xi and xj in this manner,
their inner product g(xi) · g(xj) is an unbiased estimator of k(xi,xj).

3.3 LEARNING CLASS STRUCTURE BY RANDOM DISTANCE PREDICTION

Our model using only the random distances as the supervisory signal can be formulated as:

arg min
Θ

∑
xi,xj∈X

(φ(xi; Θ) · φ(xj ; Θ)− yij)2
, (9)

where yij = η(xi) · η(xj). Let Yη ∈ RN×N be the distance/similarity matrix of the N data
points resulted by η. Then to minimise the prediction error in Eqn. (9), φ is optimised to learn the
underlying class structure embedded in Y. As shown in the properties in Eqns. (7) and (8), Yη can
effectively preserve local proximity information when η is set to be either the random projection-
based f function or the kernel method-based g function. However, those proven η is often built
upon some underlying data distribution assumption, e.g., Gaussian distribution in random projection
or Gaussian RBF kernel, so the η-projected features can preserve misleading proximity when the
distribution assumption is inexact. In this case, Yη is equivalent to the imperfect ground truth with
partial noise. Then optimisation with Eqn. (9) is to leverage the power of neural networks to learn
consistent local proximity information and rectify inconsistent proximity, resulting in a significantly
optimised distance preserving space. The resulting space conveys substantially richer semantics
than the η projected space when Yη contains sufficient genuine supervision information.
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4 EXPERIMENTS

This section evaluates the learned representations through two typical unsupervised tasks: anomaly
detection and clustering. Some preliminary results of classification can be found in Appendix H.

4.1 PERFORMANCE EVALUATION IN ANOMALY DETECTION

4.1.1 EXPERIMENTAL SETTINGS

Our RDP model is compared with five state-of-the-art methods, including iForest (Liu et al., 2008),
autoencoder (AE) (Hinton & Salakhutdinov, 2006), REPEN (Pang et al., 2018), DAGMM (Zong
et al., 2018) and RND (Burda et al., 2019). iForest and AE are two of the most popular baselines.
The other three methods learn representations specifically for anomaly detection.

As shown in Table 1, the comparison is performed on 14 publicly available datasets of various
domains, including network intrusion, credit card fraud detection, disease detection and bank cam-
paigning. Many of the datasets contain real anomalies, including DDoS, Donors, Backdoor, Cred-
itcard, Lung, Probe and U2R. Following (Liu et al., 2008; Pang et al., 2018; Zong et al., 2018), the
rare class(es) is treated as anomalies in the other datasets to create semantically real anomalies. The
Area Under Receiver Operating Characteristic Curve (AUC-ROC) and the Area Under Precision-
Recall Curve (AUC-PR) are used as our performance metrics. Larger AUC-ROC/AUC-PR indicates
better performance. The reported performance is averaged over 10 independent runs.

Table 1: AUC-ROC (mean±std) performance of RDP and its five competing methods on 14 datasets.

Data Characteristics Our Method RDP and Its Five Competing Methods
Data N D Anomaly (%) iForest AE REPEN DAGMM RND RDP
DDoS 464,976 66 3.75% 0.880 ± 0.018 0.901 ± 0.000 0.933 ± 0.002 0.766 ± 0.019 0.852 ± 0.011 0.942 ± 0.008
Donors 619,326 10 5.92% 0.774 ± 0.010 0.812 ± 0.011 0.777 ± 0.075 0.763 ± 0.110 0.847 ± 0.011 0.962 ± 0.011
Backdoor 95,329 196 2.44% 0.723 ± 0.029 0.806 ± 0.007 0.857 ± 0.001 0.813 ± 0.035 0.935 ± 0.002 0.910 ± 0.021
Ad 3,279 1,555 13.99% 0.687 ± 0.021 0.703 ± 0.000 0.853 ± 0.001 0.500 ± 0.000 0.812 ± 0.002 0.887 ± 0.003
Apascal 12,695 64 1.38% 0.514 ± 0.051 0.623 ± 0.005 0.813 ± 0.004 0.710 ± 0.020 0.685 ± 0.019 0.823 ± 0.007
Bank 41,188 62 11.26% 0.713 ± 0.021 0.666 ± 0.000 0.681 ± 0.001 0.616 ± 0.014 0.690 ± 0.006 0.758 ± 0.007
Celeba 202,599 39 2.24% 0.693 ± 0.014 0.735 ± 0.002 0.802 ± 0.002 0.680 ± 0.067 0.682 ± 0.029 0.860 ± 0.006
Census 299,285 500 6.20% 0.599 ± 0.019 0.602 ± 0.000 0.542 ± 0.003 0.502 ± 0.003 0.661 ± 0.003 0.653 ± 0.004
Creditcard 284,807 29 0.17% 0.948 ± 0.005 0.948 ± 0.000 0.950 ± 0.001 0.877 ± 0.005 0.945 ± 0.001 0.957 ± 0.005
Lung 145 3,312 4.13% 0.893 ± 0.057 0.953 ± 0.004 0.949 ± 0.002 0.830 ± 0.087 0.867 ± 0.031 0.982 ± 0.006
Probe 64,759 34 6.43% 0.995 ± 0.001 0.997 ± 0.000 0.997 ± 0.000 0.953 ± 0.008 0.975 ± 0.000 0.997 ± 0.000
R8 3,974 9,467 1.28% 0.841 ± 0.023 0.835 ± 0.000 0.910 ± 0.000 0.760 ± 0.066 0.883 ± 0.006 0.902 ± 0.002
Secom 1,567 590 6.63% 0.548 ± 0.019 0.526 ± 0.000 0.510 ± 0.004 0.513 ± 0.010 0.541 ± 0.006 0.570 ± 0.004
U2R 60,821 34 0.37% 0.988 ± 0.001 0.987 ± 0.000 0.978 ± 0.000 0.945 ± 0.028 0.981 ± 0.001 0.986 ± 0.001

Our RDP model uses the optional novelty loss for anomaly detection task by default. Similar to
RND, given a data point x, its anomaly score in RDP is defined as the mean squared error between
the two projections resulted by φ(x; Θ?) and η(x). Also, a boosting process is used to filter out
5% likely anomalies per iteration to iteratively improve the modelling of RDP. This is because the
modelling is otherwise largely biased when anomalies are presented. In the ablation study in Section
4.1.3, we will show the contribution of all these components.

4.1.2 COMPARISON TO THE STATE-OF-THE-ART COMPETING METHODS

The AUC-ROC and AUC-PR results are respectively shown in Tables 1 and 2. RDP outperforms all
the five competing methods in both of AUC-ROC and AUC-PR in at least 12 out of 14 datasets. This
improvement is statistically significant at the 95% confidence level according to the two-tailed sign
test (Demšar, 2006). Remarkably, RDP obtains more than 10% AUC-ROC/AUC-PR improvement
over the best competing method on six datasets, including Donors, Ad, Bank, Celeba, Lung and
U2R. RDP can be thought as a high-level synthesis of REPEN and RND, because REPEN leverages
a pairwise distance-based ranking loss to learn representations for anomaly detection while RND
is built using Ladaux . In nearly all the datasets, RDP well leverages both Lrdp and Ladaux to achieve
significant improvement over both REPEN and RND. In very limited cases, such as on datasets
Backdoor and Census where RND performs very well while REPEN performs less effectively, RDP
is slightly downgraded due to the use of Lrdp. In the opposite case, such as Probe, on which REPEN
performs much better than RND, the use of Ladaux may drag down the performance of RDP a bit.
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Table 2: AUC-PR (mean±std) performance of RDP and its five competing methods on 14 datasets.
Data iForest AE REPEN DAGMM RND RDP
DDoS 0.141 ± 0.020 0.248 ± 0.001 0.300 ± 0.012 0.038 ± 0.000 0.110 ± 0.015 0.301 ± 0.028
Donors 0.124 ± 0.006 0.138 ± 0.007 0.120 ± 0.032 0.070 ± 0.024 0.201 ± 0.033 0.432 ± 0.061
Backdoor 0.045 ± 0.007 0.065 ± 0.004 0.129 ± 0.001 0.034 ± 0.023 0.433 ± 0.015 0.305 ± 0.008
Ad 0.363 ± 0.061 0.479 ± 0.000 0.600 ± 0.002 0.140 ± 0.000 0.473 ± 0.009 0.726 ± 0.007
Apascal 0.015 ± 0.002 0.023 ± 0.001 0.041 ± 0.001 0.023 ± 0.009 0.021 ± 0.005 0.042 ± 0.003
Bank 0.293 ± 0.023 0.264 ± 0.001 0.276 ± 0.001 0.150 ± 0.020 0.258 ± 0.006 0.364 ± 0.013
Celeba 0.060 ± 0.006 0.082 ± 0.001 0.081 ± 0.001 0.037 ± 0.017 0.068 ± 0.010 0.104 ± 0.006
Census 0.071 ± 0.004 0.072 ± 0.000 0.064 ± 0.005 0.061 ± 0.001 0.081 ± 0.001 0.086 ± 0.001
Creditcard 0.145 ± 0.031 0.382 ± 0.004 0.359 ± 0.014 0.010 ± 0.012 0.290 ± 0.012 0.363 ± 0.011
Lung 0.379 ± 0.092 0.565 ± 0.022 0.429 ± 0.005 0.042 ± 0.003 0.381 ± 0.104 0.705 ± 0.028
Probe 0.923 ± 0.011 0.964 ± 0.002 0.964 ± 0.000 0.409 ± 0.153 0.609 ± 0.014 0.955 ± 0.002
R8 0.076 ± 0.018 0.097 ± 0.006 0.083 ± 0.000 0.019 ± 0.011 0.134 ± 0.031 0.146 ± 0.017
Secom 0.106 ± 0.007 0.093 ± 0.000 0.091 ± 0.001 0.066 ± 0.002 0.086 ± 0.002 0.096 ± 0.001
U2R 0.180 ± 0.018 0.230 ± 0.004 0.116 ± 0.007 0.025 ± 0.019 0.217 ± 0.011 0.261 ± 0.005

4.1.3 ABLATION STUDY

This section examines the contribution of Lrdp , Ladaux and the boosting process to the performance
of RDP. The experimental results in AUC-ROC are given in Table 3, where RDP\X means the RDP
variant that removes the ‘X’ module from RDP. In the last two columns, Org SS indicates that we
directly use the distance information calculated in the original space as the supervisory signal, while
SRP SS indicates that we use SRP to obtain the distances as the supervisory signal. It is clear that
the full RDP model is the best performer. Using the Lrdp loss only, i.e., RDP\Ladaux, can achieve
performance substantially better than, or comparably well to, the five competing methods in Table 1.
This is mainly because the Lrdp loss alone can effectively force our representation learner to learn
the underlying class structure on most datasets so as to minimise its prediction error. The use of
Ladaux and boosting process well complement the Lrdp loss on the other datasets.

In terms of supervisory source, RDP and SRP SS perform substantially better than Org SS on most
datasets. This is because the distances in both the non-linear random projection in RDP and the
linear projection in SRP SS well preserve the distance information, enabling RDP to effectively
learn much more faithful class structure than that working on the original space.

Table 3: AUC-ROC results of anomaly detection (see Appendix C for similar AUC-PR results).
Decomposition Supervision Signal

Data RDP RDP\Lrdp RDP\Ladaux RDP\Boosting Org SS SRP SS
DDoS 0.942 ± 0.008 0.852 ± 0.011 0.931 ± 0.003 0.866 ± 0.011 0.924 ± 0.006 0.927 ± 0.005
Donors 0.962 ± 0.011 0.847 ± 0.011 0.737 ± 0.006 0.910 ± 0.013 0.728 ± 0.005 0.762 ± 0.016
Backdoor 0.910 ± 0.021 0.935 ± 0.002 0.872 ± 0.012 0.943 ± 0.002 0.875 ± 0.002 0.882 ± 0.010
Ad 0.887 ± 0.003 0.812 ± 0.002 0.718 ± 0.005 0.818 ± 0.002 0.696 ± 0.003 0.740 ± 0.008
Apascal 0.823 ± 0.007 0.685 ± 0.019 0.732 ± 0.007 0.804 ± 0.021 0.604 ± 0.032 0.760 ± 0.030
Bank 0.758 ± 0.007 0.690 ± 0.006 0.684 ± 0.004 0.736 ± 0.009 0.684 ± 0.002 0.688 ± 0.015
Celeba 0.860 ± 0.006 0.682 ± 0.029 0.709 ± 0.005 0.794 ± 0.017 0.667 ± 0.033 0.734 ± 0.027
Census 0.653 ± 0.004 0.661 ± 0.003 0.626 ± 0.006 0.661 ± 0.001 0.636 ± 0.006 0.560 ± 0.006
Creditcard 0.957 ± 0.005 0.945 ± 0.001 0.950 ± 0.000 0.956 ± 0.003 0.947 ± 0.001 0.949 ± 0.003
Lung 0.982 ± 0.006 0.867 ± 0.031 0.911 ± 0.006 0.968 ± 0.018 0.884 ± 0.018 0.928 ± 0.008
Probe 0.997 ± 0.000 0.975 ± 0.000 0.998 ± 0.000 0.978 ± 0.001 0.995 ± 0.000 0.997 ± 0.001
R8 0.902 ± 0.002 0.883 ± 0.006 0.867 ± 0.003 0.895 ± 0.004 0.830 ± 0.005 0.904 ± 0.005
Secom 0.57 ± 0.004 0.541 ± 0.006 0.544 ± 0.011 0.563 ± 0.008 0.512 ± 0.007 0.530 ± 0.016
U2R 0.986 ± 0.001 0.981 ± 0.001 0.987 ± 0.000 0.988 ± 0.002 0.987 ± 0.000 0.981 ± 0.002
#wins/draws/losses (RDP vs.) 13/0/1 13/0/1 12/0/2 10/2/2 6/0/8

4.2 PERFORMANCE EVALUATION IN CLUSTERING

4.2.1 EXPERIMENTAL SETTINGS

For clustering, RDP is compared with four state-of-the-art unsupervised representation learning
methods in four different areas, including HLLE (Donoho & Grimes, 2003) in manifold learning,
Sparse Random Projection (SRP) (Li et al., 2006) in random projection, autoencoder (AE) (Hinton &
Salakhutdinov, 2006) in data reconstruction-based neural network methods and Coherence Pursuit
(COP) (Rahmani & Atia, 2017) in robust PCA. These representation learning methods are first
used to yield the new representations, and K-means (Hartigan & Wong, 1979) is then applied to the
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representations to perform clustering. Two widely-used clustering performance metrics, Normalised
Mutual Info (NMI) score and F-score, are used. Larger NMI or F-score indicates better performance.
The clustering performance in the original feature space, denoted as Org, is used as a baseline. As
shown in Table 4, five high-dimensional real-world datasets are used. Some of the datasets are
image/text data. Since here we focus on the performance on tabular data, they are converted into
tabular data using simple methods, i.e., by treating each pixel as a feature unit for image data or
using bag-of-words representation for text data2. The reported NMI score and F-score are averaged
over 30 times to address the randomisation issue in K-means clustering. In this section RDP adds
the reconstruction loss Lcluaux by default, but RDP also works very well without the use of Lcluaux .

4.2.2 COMPARISON TO THE-STATE-OF-THE-ART COMPETING METHODS

Table 4 shows the NMI and F-score performance of K-means clustering. Our method RDP en-
ables K-means to achieve the best performance on three datasets and ranks second in the other two
datasets. RDP-enabled clustering performs substantially and consistently better than that based on
AE in terms of both NMI and F-score. This demonstrates that the random distance loss enables
RDP to effectively capture some class structure in the data which cannot be captured by using the
reconstruction loss. RDP also consistently outperforms the random projection method, SRP, and
the robust PCA method, COP. It is interesting that K-means clustering performs best in the original
space on Sector. This may be due to that this data contains many relevant features, resulting in no
obvious curse of dimensionality issue. Olivetti may contain complex manifolds which require ex-
tensive neighbourhood information to find them, so only HLLE can achieve this goal in such cases.
Nevertheless, RDP performs much more stably than HLLE across the five datasets.

Table 4: NMI and F-score performance of K-means on the original space and projected spaces.
Data Characteristics NMI Performance

Data N D Org HLLE SRP AE COP RDP
R8 7,674 17,387 0.524 ± 0.047 0.004 ± 0.001 0.459 ± 0.031 0.471 ± 0.043 0.025 ± 0.003 0.539 ± 0.040
20news 18,846 130,107 0.080 ± 0.004 0.017 ± 0.000 0.075 ± 0.002 0.075 ± 0.006 0.027 ± 0.040 0.084 ± 0.005
Olivetti 400 4,096 0.778 ± 0.014 0.841 ± 0.011 0.774 ± 0.011 0.782 ± 0.010 0.333 ± 0.018 0.805 ± 0.012
Sector 9,619 55,197 0.336 ± 0.008 0.122 ± 0.004 0.273 ± 0.011 0.253 ± 0.010 0.129 ± 0.014 0.305 ± 0.007
RCV1 20,242 47,236 0.154 ± 0.000 0.006 ± 0.000 0.134 ± 0.024 0.146 ± 0.010 N/A 0.165 ± 0.000

Data Characteristics F-score Performance
Data N D Org HLLE SRP AE COP RDP
R8 7,674 17,387 0.185 ± 0.189 0.085 ± 0.000 0.317 ± 0.045 0.312 ± 0.068 0.088 ± 0.002 0.360 ± 0.055
20news 18,846 130,107 0.116 ± 0.006 0.007 ± 0.000 0.109 ± 0.006 0.083 ± 0.010 0.009 ± 0.004 0.119 ± 0.006
Olivetti 400 4,096 0.590 ± 0.029 0.684 ± 0.024 0.579 ± 0.022 0.602 ± 0.023 0.117 ± 0.011 0.638 ± 0.026
Sector 9,619 55,197 0.208 ± 0.008 0.062 ± 0.001 0.187 ± 0.009 0.184 ± 0.010 0.041 ± 0.004 0.191 ± 0.007
RCV1 20,242 47,236 0.519 ± 0.000 0.342 ± 0.000 0.508 ± 0.003 0.514 ± 0.057 N/A 0.572 ± 0.003

Table 5: F-score performance of K-means clustering (see similar NMI results in Appendix D).
Decomposition Supervision Signal

Data RDP RDP\Lrdp RDP\Lcluaux Org SS SRP SS
R8 0.360 ± 0.055 0.312 ± 0.068 0.330 ± 0.052 0.359 ± 0.028 0.363 ± 0.046
20news 0.119 ± 0.006 0.083 ± 0.010 0.117 ± 0.005 0.111 ± 0.005 0.111 ± 0.007
Olivetti 0.638 ± 0.026 0.602 ± 0.023 0.597 ± 0.019 0.610 ± 0.022 0.601 ± 0.023
Sector 0.191 ± 0.007 0.184 ± 0.010 0.217 ± 0.007 0.181 ± 0.007 0.186 ± 0.009
RCV1 0.572 ± 0.003 0.514 ± 0.057 0.526 ± 0.011 0.523 ± 0.003 0.532 ± 0.001

4.2.3 ABLATION STUDY

Similar to anomaly detection, this section examines the contribution of the two loss functions Lrdp
and Lcluaux to the performance of RDP, as well as the impact of different supervisory sources on the
performance. The F-score results of this experiment are shown in Table 5, in which the notations
have exactly the same meaning as in Table 3. The full RDP model that uses both Lrdp and Lcluaux
performs more favourably than its two variants, RDP\Lrdp and RDP\Lcluaux, but it is clear that using
Lrdp only performs very comparably to the full RDP. However, using Lcluaux only may result in large

2RDP can also build upon advanced representation learning methods for the data transformation, for which
some interesting preliminary results are presented in Appendix G.
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performance drops in some datasets, such as R8, 20news and Olivetti. This indicates Lrdp is a more
important loss function to the overall performance of the full RDP model. In terms of supervisory
source, distances obtained by the non-linear random projection in RDP are much more effective
than the two other sources on some datasets such as Olivetti and RCV1. Three different supervisory
sources are very comparable on the other three datasets.

5 RELATED WORK

Self-supervised Learning. Self-supervised learning has been recently emerging as one of the most
popular and effective approaches for representation learning. Many of the self-supervised methods
learn high-level representations by predicting some sort of ‘context’ information, such as spatial or
temporal neighbourhood information. For example, the popular distributed representation learning
techniques in NLP, such as CBOW/skip-gram (Mikolov et al., 2013a) and phrase/sentence embed-
dings in (Mikolov et al., 2013b; Le & Mikolov, 2014; Hill et al., 2016), learn the representations
by predicting the text pieces (e.g., words/phrases/sentences) using its surrounding pieces as the con-
text. In image processing, the pretext task can be the prediction of a patch of missing pixels (Pathak
et al., 2016; Zhang et al., 2017) or the relative position of two patches (Doersch et al., 2015). Also,
a number of studies (Goroshin et al., 2015; Misra et al., 2016; Lee et al., 2017; Oord et al., 2018)
explore temporal contexts to learn representations from video data, e.g., by learning the temporal
order of sequential frames. Some other methods (Agrawal et al., 2015; Zhou et al., 2017; Gidaris
et al., 2018) are built upon a discriminative framework which aims at discriminating the images be-
fore and after some transformation, e.g., ego motion in video data (Agrawal et al., 2015; Zhou et al.,
2017) and rotation of images (Gidaris et al., 2018). There have also been popular to use generative
adversarial networks (GANs) to learn features (Radford et al., 2015; Chen et al., 2016). The above
methods have demonstrated powerful capability to learn semantic representations. However, most
of them use the supervisory signals available in image/video data only, which limits their application
into other types of data, such as traditional tabular data. Although our method may also work on
image/video data, we focus on handling high-dimensional tabular data to bridge this gap.

Other Approaches. There have been several well-established unsupervised representation learn-
ing approaches for handling tabular data, such as random projection (Arriaga & Vempala, 1999;
Bingham & Mannila, 2001; Li et al., 2006), PCA (Wold et al., 1987; Schölkopf et al., 1997; Rah-
mani & Atia, 2017), manifold learning (Roweis & Saul, 2000; Donoho & Grimes, 2003; Hinton &
Roweis, 2003; McInnes et al., 2018) and autoencoder (Hinton & Salakhutdinov, 2006; Vincent et al.,
2010). One notorious issue of PCA or manifold learning approaches is their prohibitive computa-
tional cost in dealing with large-scale high-dimensional data due to the costly neighbourhood search
and/or eigen decomposition. Random projection is a computationally efficient approach, supported
by proven distance preservation theories such as the Johnson-Lindenstrauss lemma (Johnson & Lin-
denstrauss, 1984). We show that the preserved distances by random projection can be harvested to
effectively supervise the representation learning. Autoencoder networks are another widely-used
efficient feature learning approach which learns low-dimensional representations by minimising re-
construction errors. One main issue with autoencoders is that they focus on preserving global infor-
mation only, which may result in loss of local structure information. Some representation learning
methods are specifically designed for anomaly detection (Pang et al., 2018; Zong et al., 2018; Burda
et al., 2019). By contrast, we aim at generic representations learning while being flexible to incor-
porate optionally task-dependent losses to learn task-specific semantic-rich representations.

6 CONCLUSION

We introduce a novel Random Distance Prediction (RDP) model which learns features in a fully
unsupervised fashion by predicting data distances in a randomly projected space. The key insight is
that random mapping is a theoretical proven approach to obtain approximately preserved distances,
and to well predict these random distances, the representation learner is optimised to learn consistent
preserved proximity information while at the same time rectifying inconsistent proximity, resulting
in representations with optimised distance preserving. Our idea is justified by thorough experiments
in two unsupervised tasks, anomaly detection and clustering, which show RDP-enabled anomaly
detectors and clustering substantially outperform their counterparts on 19 real-world datasets. We
plan to extend RDP to other types of data to broaden its application scenarios.
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A IMPLEMENTATION DETAILS

RDP-enabled Anomaly Detection. The RDP consists of one fully connected layer with 50 hidden
units, followed by a leaky-ReLU layer. It is trained using Stochastic Gradient Descent (SGD) as its
optimiser for 200 epochs, with 192 samples per batch. The learning rate is fixed to 0.1. We repeated
the boosting process 30 times to obtain statistically stable results. In order to have fair comparisons,
we also adapt the competing methods AE, REPEN, DAGMM and RND into ensemble methods and
perform the experiments using an ensemble size of 30.

RDP-enabled Clustering. RDP uses a similar network architecture and optimisation settings as the
one used in anomaly detection, i.e., the network consists of one fully connected layer, followed by
a leaky-ReLU layer, which is optimised by SGD with 192 samples per batch and 0.1 learning rate.
Compared to anomaly detection, more semantic information is required for clustering algorithms
to work well, so the network consists of 1,024 hidden units and is trained for 1,000 epochs. Clus-
tering is a significant yet common analysis method, which aims at grouping samples close to each
other into the same clusters and separating far away data points into different clusters. Compared
to anomaly detection that often requires pattern frequency information, clustering has a higher re-
quirement of the representation expressiveness. Therefore, if the representative ability of a model is
strong enough, it should also be able to learn representations that enable clustering to work well on
the projected space.

Note that the representation dimension M in the φ function and the projection dimension K in the η
function are set to be the same to alleviate parameter tuning. This means that M = K = 50 is used
in anomaly detection and M = K = 1024 is used in clustering. We have also tried deeper network
structures, but they worked less effectively than the shallow networks in both anomaly detection
and clustering. This may be because the supervisory signal is not strong enough to effectively
learn deeper representations. We show in Appendix E that RDP performs stably w.r.t. a range of
representation dimensions in both anomaly detection and clustering tasks.

The runtime of RDP at the testing stage is provided in Appendix F with that of the competing meth-
ods as baselines. For both anomaly detection and clustering tasks, RDP achieves very comparable
time complexity to the most efficient competing methods (see Tables 10 and 11 in Appendix F for
detail).

B DATASETS

The statistics and the accessible links of the datasets used in the anomaly detection and clustering
tasks are respectively presented in Tables 6 and 7. DDoS is a dataset containing DDoS attacks
and normal network flows. Donors is from KDD Cup 2014, which is used for detecting a very
small number of outstanding donors projects. Backdoor contains backdoor network attacks derived
from the UNSW-NB15 dataset. Creditcard is a credit card fraud detection dataset. Lung contains
data records of lung cancer patients and normal patients. Probe and U2R are derived from KDD
Cup 99, in which probing and user-to-root attacks are respectively used as anomalies against the
normal network flows. The above datasets contain real anomalies. Following (Liu et al., 2008;
Pang et al., 2018; Zong et al., 2018), the other anomaly detection datasets are transformed from
classification datasets by using the rare class(es) as the anomaly class, which generates semantically
real anomalies.

11



Under review as a conference paper at ICLR 2020

Table 6: Datasets used in the anomaly detection task

Data N D Anomaly (%) Link
DDoS 464,976 66 3.75% http://www.csmining.org/cdmc2018/index.php
Donors 619,326 10 5.92% https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose
Backdoor 95,329 196 2.44% https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity
Ad 3,279 1,555 13.99% https://archive.ics.uci.edu/ml/datasets/internet+advertisements
Apascal 12,695 64 1.38% http://vision.cs.uiuc.edu/attributes/
Bank 41,188 62 11.26% https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
Celeba 202,599 39 2.24% http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
Census 299,285 500 6.20% https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29
Creditcard 284,807 29 0.17% https://www.kaggle.com/mlg-ulb/creditcardfraud
Lung 145 3,312 4.13% https://archive.ics.uci.edu/ml/datasets/Lung+Cancer
Probe 64,759 34 6.43% http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
R8 3,974 9,467 1.28% http://csmining.org/tl files/Project Datasets/r8 r52/r8-train-all-terms.txt
Secom 1,567 590 6.63% https://archive.ics.uci.edu/ml/datasets/secom
U2R 60,821 34 0.37% http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

R8, 20news, Sector and RCV1 are widely used text classification benchmark datasets. Olivetti is a
widely-used face recognition dataset.

Table 7: Datasets used in the clustering task
Data N D #Classes Link
R8 7,674 17,387 8 http://csmining.org/tl files/Project Datasets/r8 r52/r8-train-all-terms.txt
20news 18,846 130,107 20 https://scikit-learn.org/0.19/datasets/twenty newsgroups.html
Olivetti 400 4,096 40 https://scikit-learn.org/0.19/datasets/olivetti faces.html
Sector 9,619 55,197 105 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html#sector
RCV1 20,242 47,236 2 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html#rcv1.binary

C AUC-PR PERFORMANCE OF ABLATION STUDY IN ANOMALY DETECTION

The experimental results of AUC-PR performance of RDP and its variants in the anomaly detec-
tion task are shown in Table 8. Similar to the results shown in Table 3, using the Lrdp loss only,
our proposed RDP model can achieve substantially better performance over its counterparts. By
removing the Lrdp loss, the performance of RDP drops significantly in 11 out of 14 datasets. This
demonstrates that the Lrdp loss is heavily harvested by our RDP model to learn high-quality rep-
resentations from random distances. Removing Ladaux from RDP also results in substantial loss of
AUC-PR in many datasets. This indicates both the random distance prediction loss Lrdp and the
task-dependent loss Ladaux are critical to RDP. The boosting process is also important, but is not as
critical as the two losses. Consistent with the observations derived from Table 3, distances calculated
in non-linear and linear random mapping spaces are more effective supervisory sources than that in
the original space.

D NMI PERFORMANCE OF ABLATION STUDY IN CLUSTERING

Table 9 shows the NMI performance of RDP and its variants in the clustering task. It is clear that
our RDP model with the Lrdp loss is able to achieve NMI performance that is comparably well to
the full RDP model, which is consistent to the observations in Table 5. Without using the Lrdp

loss, the performance of the RDP model has some large drops on nearly all the datasets. This
reinforces the crucial importance of Lrdp to RDP, which also justifies that using Lrdp alone RDP
can learn expressive representations. Similar to the results in Table 5, RDP is generally more reliable
supervisory sources than Org SS and SRP SS in this set of results.

E SENSITIVITY W.R.T. THE DIMENSIONALITY OF REPRESENTATION SPACE

This section presents the performance of RDP using different representation dimensions in its feature
learning layer. The sensitivity test is performed for both anomaly detection and clustering tasks.
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Table 8: AUC-PR performance of RDP and its variants in the anomaly detection task.
Decomposition Supervision Signal

Data RDP RDP\Lrdp RDP\Ladaux RDP\Boosting Org SS SRP SS
DDoS 0.301 ± 0.028 0.110 ± 0.015 0.364 ± 0.013 0.114 ± 0.001 0.363 ± 0.007 0.380 ± 0.030
Donors 0.432 ± 0.061 0.201 ± 0.033 0.104 ± 0.007 0.278 ± 0.040 0.099 ± 0.004 0.113 ± 0.010
Backdoor 0.305 ± 0.008 0.433 ± 0.015 0.142 ± 0.006 0.537 ± 0.005 0.143 ± 0.005 0.154 ± 0.028
Ad 0.726 ± 0.007 0.473 ± 0.009 0.491 ± 0.014 0.488 ± 0.008 0.419 ± 0.015 0.530 ± 0.007
Apascal 0.042 ± 0.003 0.021 ± 0.005 0.031 ± 0.002 0.028 ± 0.003 0.016 ± 0.003 0.035 ± 0.007
Bank 0.364 ± 0.013 0.258 ± 0.006 0.266 ± 0.018 0.278 ± 0.007 0.262 ± 0.016 0.265 ± 0.021
Celeba 0.104 ± 0.006 0.068 ± 0.010 0.060 ± 0.004 0.072 ± 0.008 0.050 ± 0.009 0.065 ± 0.010
Census 0.086 ± 0.001 0.081 ± 0.001 0.075 ± 0.001 0.087 ± 0.001 0.077 ± 0.002 0.064 ± 0.001
Creditcard 0.363 ± 0.011 0.290 ± 0.012 0.414 ± 0.02 0.329 ± 0.007 0.362 ± 0.016 0.372 ± 0.024
Lung 0.705 ± 0.028 0.381 ± 0.104 0.437 ± 0.083 0.542 ± 0.139 0.361 ± 0.054 0.464 ± 0.053
Probe 0.955 ± 0.002 0.609 ± 0.014 0.952 ± 0.007 0.628 ± 0.011 0.937 ± 0.005 0.959 ± 0.011
R8 0.146 ± 0.017 0.134 ± 0.031 0.109 ± 0.006 0.173 ± 0.028 0.067 ± 0.016 0.134 ± 0.019
Secom 0.096 ± 0.001 0.086 ± 0.002 0.096 ± 0.006 0.090 ± 0.001 0.088 ± 0.004 0.093 ± 0.004
U2R 0.261 ± 0.005 0.217 ± 0.011 0.266 ± 0.007 0.238 ± 0.009 0.187 ± 0.013 0.239 ± 0.023
#wins/draws/losses (RDP vs.) 13/0/1 11/0/3 11/0/3 12/0/2 5/0/9

Table 9: NMI performance of RDP and its variants in the clustering task.
Decomposition Supervision Signal

Data RDP RDP\Lrdp RDP\Lcluaux Org SS SRP SS
R8 0.539 ± 0.040 0.471 ± 0.043 0.505 ± 0.037 0.567 ± 0.021 0.589 ± 0.039
20news 0.084 ± 0.005 0.075 ± 0.006 0.081 ± 0.002 0.075 ± 0.002 0.074 ± 0.003
Olivetti 0.805 ± 0.012 0.782 ± 0.010 0.784 ± 0.010 0.795 ± 0.011 0.787 ± 0.011
Sector 0.305 ± 0.007 0.253 ± 0.010 0.340 ± 0.007 0.295 ± 0.009 0.298 ± 0.008
Rcv1 0.165 ± 0.000 0.146 ± 0.010 0.168 ± 0.000 0.154 ± 0.002 0.147 ± 0.000

E.1 SENSITIVITY TEST IN ANOMALY DETECTION

Figures 2 and 3 respectively show the AUC-ROC and AUC-PR performance of RDP using different
representation dimensions on all the 14 anomaly detection datasets used in this work. It is clear
from both performance measures that RDP generally performs stably w.r.t. the use of different
representation dimensions on diverse datasets. This demonstrates the general stability of our RDP
method on different application domains. On the other hand, the flat trends also indicate that, as an
unsupervised learning source, the random distance cannot provide sufficient supervision information
to learn richer and more complex representations in a higher-dimensional space. This also explains
the performance on quite a few datasets where the performance of RDP decreases when increasing
the representation dimension. In general, the representation dimension 50 is recommended for RDP
to achieve effective anomaly detection on datasets from different domains.

E.2 SENSITIVITY TEST IN CLUSTERING

Figure 4 presents the NMI and F-score performance of RDP-enabled K-means clustering using
different representation dimensions on all the five datasets in the clustering task. Similar to the
sensitivity test results in the anomaly detection task, on all the five datasets, K-means clustering per-
forms stably in the representation space resulted by RDP with different representation dimensions.
The clustering performance may drop a bit when the representation dimension is relatively low, e.g.,
512. Increasing the representation to 1,280 may help RDP gain better representation power in some
datasets but is not a consistently better choice. Thus, the representation dimension 1,024 is gener-
ally recommended for clustering. Recall that the required representation dimension in clustering is
normally significantly higher than that in anomaly detection, because clustering generally requires
significantly more information to perform well than anomaly detection.

F COMPUTATIONAL EFFICIENCY

The runtime of RDP is compared with its competing methods in both anomaly detection and clus-
tering tasks. Since training time can vary significantly using different training strategies in deep
learning-based methods, it is difficult to have a fair comparison of the training time. Moreover, the
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Figure 2: AUC-ROC results of RDP w.r.t. different representation dimensions on 14 datasets.
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Figure 3: AUC-PR results of RDP w.r.t. different representation dimensions on 14 datasets.

models can often be trained offline. Thus, we focus on comparing the runtime at the testing stage.
All the runtime experiments below were done on a computing server node equipped with 32 Intel
Xeon E5-2680 CPUs (2.70GHz) and 128GB Random Access Memory.

F.1 TESTING RUNTIME IN ANOMALY DETECTION

The testing runtime in seconds of RDP and its five competing anomaly detection methods on 14
anomaly detection datasets are provided in Table 10. Since most of the methods integrate represen-
tation learning and anomaly detection into a single framework, the runtime includes the execution
time of feature learning and anomaly detection for all six methods. In general, on most large datasets,
RDP runs comparably fast to the most efficient methods iForest and RND, and is faster the two re-
cently proposed deep methods REPEN and DAGMM. Particularly, RDP runs faster than REPEN
and DAGMM by a factor of around five on high-dimensional and large-scale datasets like Donors
and Census. RDP is slower than the competing methods in processing small datasets. This is mainly
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Figure 4: NMI and F-score performance of RDP-enabled K-means using different representation
dimensions on all the five datasets used in clustering.

because RDP has a base runtime of its boosting process. Therefore, the runtime of RDP seems to be
almost constant across the datasets. This is a very desired property for handling high-dimensional
and large-scale datasets.

Table 10: Testing runtime (in seconds) on 14 anomaly detection datasets.
Data Characteristics RDP and Its Five Competing Methods

Data N D iForest AE REPEN DAGMM RND RDP
DDoS 464,976 66 54.06 86.86 172.47 197.85 31.86 28.93
Donors 619,326 10 28.17 52.31 226.14 194.45 44.31 36.84
Backdoor 95,329 196 26.51 51.66 36.43 187.61 12.26 29.95
Ad 3,279 1,555 6.71 14.71 3.24 31.54 8.12 30.83
Apascal 12,695 64 6.53 4.27 6.30 69.35 3.62 22.88
Bank 41,188 62 9.72 6.87 17.25 170.56 9.31 28.47
Celeba 202,599 39 20.54 26.70 71.60 223.70 18.05 33.91
Census 299,285 500 155.77 225.29 121.08 236.21 42.83 57.74
Creditcard 284,807 29 22.45 29.38 103.18 235.93 20.97 30.84
Lung 145 3,312 6.20 13.11 2.16 39.75 1.44 24.29
Probe 64,759 34 9.55 10.06 28.14 131.40 9.90 29.61
R8 3,974 9,467 59.70 45.48 7.81 31.99 8.26 14.33
Secom 1,567 590 7.32 5.78 2.83 18.22 3.23 22.52
U2R 60,821 34 8.95 9.38 26.55 185.88 9.90 28.10

F.2 TESTING RUNTIME IN CLUSTERING

Table 11 shows the testing runtime of RDP and its four competing methods in enabling clustering
on five datasets. Since exactly the same K-means clustering is used on the features in all the five
cases, we exclude the runtime of the K-means clustering for more straightforward comparison. The
results show that RDP runs comparably fast to the very efficient methods SRP and AE since they
do not involve complex computation at the testing stage; RDP runs about five orders of magnitude
faster than HLLE since HLLE takes a huge amount of time in its nearest neighbours searching. Note
that ‘Org’ indicates the clustering performed on the original space, so it involves no feature learning
and does not take any time.

Table 11: Testing runtime (in seconds) on five clustering datasets.
Data Characteristics RDP and Its Four Competing Methods

Data N D Org HLLE SRP AE RDP
R8 7,674 17,387 - 9,658.85 1.16 1.08 0.89
20news 18,846 130,107 - 94,349.20 2.26 11.49 6.85
Olivetti 400 4,096 - 166.02 0.73 0.03 0.03
Sector 9,619 55,197 - 24,477.80 1.40 4.28 2.87
RCV1 20,242 47,236 - 47,584.79 2.80 8.91 5.04
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G COMPARISON TO STATE-OF-THE-ART REPRESENTATION LEARNING
METHODS FOR RAW TEXT AND IMAGE DATA

Since RDP relies on distance information as its supervisory signal, one interesting question is that,
can RDP still work when the presented data is raw data in a non-Euclidean space, such as raw text
and image data? One simple and straightforward way to enable RDP to handle those raw data is,
as what we did on the text and image data used in the evaluation of clustering, to first convert the
raw texts/images into feature vectors using commonly-used methods, e.g., TF-IDF (Aizawa, 2003)
for text data and treating each pixel as a feature unit for image data, and then perform RDP on these
vector spaces. A further question is that, do we need RDP in handling those data since there are now
a large number of advanced representation learning methods that are specifically designed for raw
text/image datasets? Or, how is the performance of RDP compared to those advanced representation
learning methods for raw text/image datasets? This section provides some preliminary results in the
clustering task for answering these questions.

G.1 ON RAW TEXT DATA

On the raw text datasets R8 and 20news, we first compare RDP with the advanced document rep-
resentation method Doc2Vec3 as in (Le & Mikolov, 2014). Recall that, for RDP, we first use the
bag-of-words model and document frequency information (e.g., TF-IDF) to simply convert doc-
uments into high-dimensional feature vectors and then perform RDP using the feature vectors.
Doc2Vec leverages the idea of distributed representations to directly learn representations of doc-
uments. We further derive a variant of RDP, namely Doc2Vec+RDP, which performs RDP on
the Doc2Vec projected representation space rather than the bag-of-words vector space. All RDP,
Doc2Vec and Doc2Vec+RDP project data onto a 1,024-dimensional space for the subsequent learn-
ing tasks. Note that, for the method Doc2Vec+RDP, to better examine the capability of RDP in
exploiting the Doc2Vec projected space, we first use Doc2Vec project raw text data onto a higher-
dimensional space (5,120 dimensions for R8 and 10,240 dimensions for 20news), and RDP further
learns a 1,024-dimensional space from this higher-dimensional space.

The comparison results are shown in Table 12. Two interesting observations can be seen. First,
RDP can significantly outperform Doc2Vec on R8 or performs comparably well on 20news. This
may be due to the fact that the local proximity information learned in RDP is critical to cluster-
ing; although the word prediction approach in Doc2Vec helps learn semantic-rich representations
for words/sentences/paragraphs, the pairwise document distances may be less effective than RDP
since Doc2Vec is not like RDP that is designed to optimise this proximity information. Second,
Doc2Vec+RDP can achieve substantially better performance than Doc2Vec, especially on the dataset
20news where Doc2Vec+RDP achieves a NMI score of 0.198 while that of Doc2Vec is only 0.084.
This may be because, as discussed in Section 3.3, RDP is equivalent to learn an optimised feature
space out of its input space (Doc2Vec projected feature space in this case) using imperfect super-
vision information. When there is sufficient accurate supervision information, RDP can learn a
substantially better feature space than its input space. This is also consistent with the results in Ta-
ble 4, in which clustering based on the RDP projected space also performs substantially better than
that working in the original space ‘Org’.

Table 12: NMI and F-score performance of K-means clustering using RDP, Doc2Vec, and
Doc2Vec+RDP based feature representations of the text datasets R8 and news20.

Data Characteristics NMI Performance
Data N D Doc2Vec RDP Doc2Vec+RDP
R8 7,674 17,387 0.241 ± 0.022 0.539 ± 0.040 0.250 ± 0.003
20news 18,846 130,107 0.080 ± 0.003 0.084 ± 0.005 0.198 ± 0.009

Data Characteristics F-score Performance
Data N D Doc2Vec RDP Doc2Vec+RDP
R8 7,674 17,387 0.317 ± 0.014 0.360 ± 0.055 0.316 ± 0.007
20news 18,846 130,107 0.115 ± 0.006 0.119 ± 0.006 0.126 ± 0.009

3We use the implementation of Doc2Vec in a popular text mining python package gensim available at
https://radimrehurek.com/gensim/index.html
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G.2 ON RAW IMAGE DATA

On the raw image dataset Olivetti, we compare RDP with the advanced representation learning
method for raw images, RotNet (Gidaris et al., 2018). RDP uses each image pixel as a feature
unit and performs on a 64 × 64 vector space. RotNet directly learns representations of images by
predicting whether a given image is rotated or not. Similar to the experiments on raw text data, we
also evaluate the performance of RDP working on the RotNet projected space, i.e., RotNet+RDP.
All RDP, RotNet and RotNet+RDP first learn a 1,024 representation space, and then K-means is
applied to the learned space to perform clustering. In the case of RotNet+RDP, the raw image data is
first projected onto a 2,048-dimensional space, and then RDP is applied to this higher-dimensional
space to learn a 1,024-dimensional representation space.

We use the implementation of RotNet released by its authors4. Note that the original RotNet is
applied to large image datasets and has a deep network architecture, involving four convolutional
blocks with three convolutional layers for each block. We found directly using the original architec-
ture is too deep for Olivetti and performs ineffectively as the data contains only 400 image samples.
Therefore, we simplify the architecture of RotNet and derive four variants of RotNet, including
RotNet4×2, RotNet4×1, RotNet3×1 and RotNet2×1. Here RotNeta×b represents RotNet with a con-
volutional blocks and b convolutional layers for each block. Note that RotNet2×1 is the simplest
variant we can derive that works effectively. We evaluate the original RotNet, its four variants and
the combination of these five RotNets and RDP.

Table 13: NMI and F-score performance of K-means clustering using RDP, RotNet, and Rot-
Net+RDP based feature representations of the image dataset Olivetti.

NMI Performance F-score Performance
Org 0.778 ± 0.014 0.590 ± 0.029
RDP 0.805 ± 0.012 0.638 ± 0.026
RotNet 0.467 ± 0.014 0.243 ± 0.014
RotNet+RDP 0.472 ± 0.011 0.242 ± 0.011
RotNet4×2 0.518 ± 0.010 0.281 ± 0.014
RotNet4×2+RDP 0.517 ± 0.010 0.282 ± 0.014
RotNet4×1 0.519 ± 0.010 0.283 ± 0.014
RotNet4×1+RDP 0.536 ± 0.010 0.298 ± 0.011
RotNet3×1 0.526 ± 0.014 0.303 ± 0.018
RotNet3×1+RDP 0.567 ± 0.010 0.336 ± 0.015
RotNet2×1 0.561 ± 0.010 0.339 ± 0.016
RotNet2×1+RDP 0.587 ± 0.009 0.374 ± 0.015

The evaluation results are presented in Table 13. Impressively, RDP can significantly outperform
RotNet and all its four variants on Olivetti. It is interesting that Org (i.e., performing K-means
clustering on the original 64 × 64 vector space) also obtains a similar superiority over the RotNet
family. This may be because Olivetti is too small to provide sufficient training samples for RotNet
and its variants to learn its underlying semantic abstractions. This conjecture can also explain the
increasing performance of RotNet variants with decreasing complexity of the RotNet architecture.
Similar to the results on the raw text data, applying RDP on the RotNet projected spaces can also
learn substantially more expressive representations than the representations yielded by RotNet and
its variants, especially when the RotNet methods work well, such as the two cases: RotNet3×1 vs.
RotNet3×1+RDP and RotNet2×1 vs. RotNet2×1+RDP.

H PERFORMANCE EVALUATION IN CLASSIFICATION

We also performed some preliminary evaluation of the learned representations in classification tasks
using a feed-forward three-layer neural network model as the classifier. We used the same datasets
as in the clustering task. Specifically, the representation learning model first outputs the new rep-
resentations of the input data, and then the classifier performs classification on the learned repre-
sentations. RDP is compared with the same competing methods HLLE, SRP, AE and COP as in
clustering. F-score is used as the performance evaluation metric here.

4The released code of RotNet is available at https://github.com/gidariss/FeatureLearningRotNet.
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The results are shown in Table 14. Similar to the performance in clustering and anomaly detection,
our model using only the random distance prediction loss Lrdp, i.e., RDP\Lcluaux, performs very
favourably and stably on all the five datasets. The incorporation of \Lcluaux into the model, i.e., RDP,
helps gain some extra performance improvement on datasets like 20news, but it may also slightly
downgrade the performance on other datasets. An extra hyperparameter may be added to control the
importance of these two losses.

Table 14: F-score performance of classification on five real-world datasets.
Data HLLE SRP AE COP RDP\Lcluaux RDP
R8 0.246 0.895 0.874 0.860 0.900 0.906
20news 0.005 0.733 0.709 0.718 0.735 0.753
Olivetti 0.895 0.899 0.820 0.828 0.900 0.896
Sector 0.037 0.671 0.645 0.689 0.690 0.696
RCV1 0.766 0.919 0.918 N/A 0.940 0.926
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