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Abstract—Visual information is increasingly recognized 
as a useful method to detect rail surface defects due to its 
high efficiency and stability. However, it cannot suf-
ficiently detect a complete defect in the complex back-
ground information. The addition of surface profiles can 
effectively improve this by including a 3-D information of 
defects. However, in high-speed detection, the tradi-tional 
3-D profile acquisition is difficult and separate from the
image acquisition, which cannot satisfy the above-
mentioned requirements effectively. Therefore, an unsuper-
vised stereoscopic saliency detection method based on a
binocular line-scanning system is proposed in this article.
This method can simultaneously obtain a highly precise
image as well as profile information while also avoids the
decoding distortion of the structured light reconstruction
method. In our method, a global low-rank nonnegative re-
construction algorithm with a background constraint is
pro-posed. Unlike the low-rank recovery model, the
algorithm has a more comprehensive low rank and
background clus-tering properties. Furthermore, outlier
detection based on the geometric properties of the rail
surface is also pro-posed in this method. Finally, the image
saliency results and depth outlier detection results are
associated with the collaborative fusion, and a dataset
(RSDDS-113) containing the rail surface defects is
established for the experimental verification. The
experimental results demonstrate that our method can
obtain a mean absolute error of 0.09 and area under the
ROC curve of 0.94, better than 15 state-of-the-art
algorithms.

Index Terms—Line-scanning system, low-rank nonneg-
ative reconstruction, rail defects detection, saliency, 
stereoscopic.
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I. INTRODUCTION

S
URFACE inspection plays a pivotal role in improving the

rail manufacturing process. Different from the online rail

surface inspection system [1], [2], the manufacturing process

inspection of the rail products faces the following problems.

1) The working environment is harsh.

2) The appearance of the rolled rail surface is complicated.

3) The generation and distribution of defects are random.

4) The rail transmission has a high speed and vibration.

5) The surface detection system needs to work continuously.

Manual inspection is inefficient and has a low sensitivity [2],

[32], which will slow down the entire manufacturing process.

Compared with the manual inspection, nondestructive testing

methods, such as ultrasonic testing, acoustic emission testing,

and magnetic flux leakage [3], have a higher sensitivity and

data interaction in the industrial inspection. However, most of

them are time intensive [2] to the target motion and the detected

defects lack the intuitive descriptions of defects’ shapes. A

machine vision has more advantages in surface defects testing.

Especially with the development of the hardware and software,

the application of machine vision technology in the railway

measurement has attracted more attention.

Machine vision detection systems usually rely on analysis

of images content [3], [4], and defects’ characteristics [33],

[34]. At present, most of them are based on grayscale images,

which is due to the high detection speed and the low cost of

the equipment. For some recent studies, such as mentioned in

[3], the improved completed local binary patterns (ICLBP) and

generalized completed local binary patterns (GCLBP) features

of the grayscale images are constructed for the detection. In

[4], the texture features of the defect-free grayscale images

are analyzed for judging the steel strip defects. However, these

methods of using grayscale images may cause a misjudgment in

defect detection due to the lack of color information.

In some surface contour inspection fields, a 3-D profile recon-

struction is one of the commonly used methods. Enzberg and

Al-Hamadi [5] use a 3-D surface quality testing by establishing

a surface approximation model. Lilienblum and Al-Hamadi

[6] use the structured light and line-scanning stereo matching

to obtain the 3-D information. However, the above-mentioned

methods have to face the difficulty of the encode and decode

structured light fringes, and the reconstruction accuracy depends

on the resolution of stripes. Besides, the 3-D information and the

image information cannot be uniformly used in the detection

process that the two processes are independent.
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Fig. 1. Some defects’ images of the rail surface. (a) Scar defect I.
(b) Hole defect. (c) Scar defect II. From left to right: original image, depth
map, ground truth, 3-D points cloud. The red box is the defect and the
dark area in yellow box is the information missing area (which has false
depth information).

The abovementioned image-based and 3-D profile-based de-

tection methods can obtain impressive detection results but they

still face the following problems.

1) Image information is susceptible to the illumination and

shooting angles. The low-texture defects are difficult to

be detected in the similar texture background area, as

shown in Fig. 1(a). In particular, the grayscale images

may detect more false defects due to the lack of color

information.

2) In the profile detection, some local distortion or loss of

depth information will lead to false detection, as shown

in the yellow box area of Fig. 1(b). Besides, the defects

with a small depth change are easily submerged in a large

curvature background, as shown in Fig. 1(c).

In summary, the single information in the abovementioned

description is not enough to detect defects. A multimodal fu-

sion detection method with the image information and depth

information is necessary.

In this article, a new stereoscopic saliency detection method

based on a stereoscopic visual system is proposed. The visual

system can quickly acquire the 2-D image and 3-D profile of a

rail surface.

The main contributions of this article are as follows.

1) The application of a binocular line-scanning system in

surface defect detection is a pioneering work that can

serve as a reference for other industrial fields. Under the

support of the system, an unsupervised saliency detection

method based on the stereoscopic images is proposed. The

method integrates a variety of information (2-D image and

3-D profile) and the rail data are used as a case for the

experimental verification.

2) A global low-rank and nonnegative reconstruction

(GLRNNR) saliency algorithm is constructed for the im-

age defects detection. Compared with the traditional low-

rank recovery (LRR) model, the algorithm incorporates

the background information constraints and nonnegative

constraints, which can make our model has clustering

properties under the constraint of global low rank.

3) According to the geometrical and depth information of the

rail surface, a method for detecting the rail surface outlier

by constructing the indirect plane is proposed. Then, the

image saliency results and the depth saliency results are

combined to get the final defect saliency map.

4) A total of 113 stereoscopic image pairs are collected and

organized into the rail surface defects dataset (RSDDS-

113), which include the left-camera images and the cor-

responding depth maps.

The rest of this article is organized as follows. Section II

introduces some related work. Section III describes the hardware

acquisition system. In Section IV, the 2-D image saliency de-

tection method is explained and the 3-D profile outlier detection

algorithm based on the indirect plane and geometric properties

is elaborated, and then the abovementioned two detection results

are fused. In Section V, 15 methods are used for experimental

comparison and analysis. Finally, Section VI concludes this

article.

II. RELATED WORK

Saliency detection is inspired by the human visual system

(HVS), to detect the region of interest with the visual unique-

ness in the face of complex scenes [2], [7]–[9]. By selectively

acquiring the relevant regional information, HVS can greatly

avoid computational waste and reduce the difficulty of the image

analysis.

In recent years, saliency models based on machine learning,

the low-rank sparse principle [8], and graph theory [9] have

achieved many good results. Especially, the LRR model is often

used to distinguish the background and foreground, due to its

not requiring a large number of labeled samples for training.

The LRR model (1) treats the background feature as a

low-rank matrix L. The decomposed error is treated as fore-

ground information S with a sparse noise. F denotes the orig-

inal image feature matrix. λ is the balance factor, defined as

follows:

argmin
L,S

rank(L) + λ‖S‖0 s.t. F = L+ S. (1)

Since the original LRR model [8], [11] is a nondeterministic

polynomial time problem, the kernel norm ‖ · ‖∗ and 1-norm

‖ · ‖1 are used to solve (1). The abovementioned formula can be

redescribed as follows:

argmin
L,S

‖L‖∗ + λ‖S‖1 s.t. F = L+ S

or

argmin
S

‖Z‖∗ + λ‖S‖2,1 s.t. F = DZ + S (2)

where Z denotes the reconstruction coefficients of F with

respect to the dictionary D. In some studies, D is played by

an over-complete dictionary or directly replaced by F , namely

F = FZ + S.



Fig. 2. Binocular stereo camera and triangulation.

The following problems usually exist in LRR models.

1) The construction of the over-complete dictionary D is

tedious and difficult, especially when the number of sam-

ples is insufficient.

2) When the difference between the foreground and back-

ground is tiny, the foreground area also has a low-rank

characteristic.

3) Finally, the negative values of Z lack a clear and reason-

able guiding explanation, e.g., the cluster indication for

the saliency analysis of the image.

In order to effectively solve the abovementioned prob-

lem, a GLRNNR saliency detection algorithm is used in im-

age defects detection. The algorithm is based on the back-

ground priori constraint, and the nonnegative low-rank sparse

constraint.

III. HARDWARE ACQUISITION SYSTEM

In this article, a binocular line-scanning system is creatively

implemented for surface detection. Compared with the existing

visual inspection equipment, this system is based on a binocular

stereo camera (BSC), which is produced by Chromasens. It can

obtain 2-D and 3-D information at a high speed and a high res-

olution. Meanwhile, it can effectively preclude the nonuniform

between the 2-D and 3-D information acquisition during the

detection process and provides more effective information for

the detection of surface defects.

The optical resolution of BSC can reach 70 µm/pixel; the

maximum acquisition speed can be 1.4 m/s; the maximum frame

rate is 21 kHz; and the line-scanning camera has 7142 pixels and

an Red, Green and Blue color (RGB) three-channel sensor.

According to the principle of the triangulation and polar line

correction, as shown in Fig. 2, the disparity map of the left and

right cameras can be obtained by the stereo matching [35], [36].

Then, the corresponding depth map can be calculated based

on the disparity map by combining the internal and external

parameters of the cameras of BSC, as shown in Fig. 3.

In order to accelerate the calculation of the depth informa-

tion, a simple and fast stereo matching algorithm called the

semiglobal matching (SGM) [12] is used. The left and right

consistency detection error of SGM is “10” and the matching

disparity range is between −165 and +165. Based on the above-

mentioned conditions, the BSC can provide the high-precision

depth information with a resolution of 14 µm in a range of

52 mm.

Fig. 3. Acquired depth information by the stereo matching.

IV. PROPOSED METHOD

A. Saliency Detection With GLRNNR

In general, the homogeneity region of the image has sim-

ilar saliency information. In order to decrease the computa-

tional complexity, the simple linear iterative clustering [13]

is used to segment the original image into n homogeneous

regions. The m-dimensional feature information about each

region is utilized to construct an overall image feature matrix

F = {f1, f2, . . . , fn} ∈ Rm×n.

As previously stated, since the negative values in the coef-

ficient matrix Z lack a reasonable explanation for the actual

cluster, then according to the nonnegative low-rank and sparse

graph (NNLRS) [14] model, the LRR model can be changed

to the following representation with a nonnegative coefficient

constraint:

argmin
Z

‖Z‖∗+β‖H‖1+λ‖S‖2,1

s.t. F = DZ + S,Z = H,H ≥ 0. (3)

Otherwise, to improve the detection effect, some priori in-

formation [10], [23] are used, such as the boundary background

priori, the center priori, and the color priori. However, the use

of these priori information is separate from the solving process

of LRR in some saliency models, which results in an inability

to improve the results of LRR.

To solve the above-mentioned problems, a GLRNNR is uti-

lized and transformed into the following equation optimization

problem. In the process of the low-rank decomposition, not only

the image boundary information is invoked as the dictionaryB to

carry on the background priori constraint but also the coefficient

matrix Z is also nonnegative constrained. Meanwhile, L is used

to ensure the low-rank property of the global background of the

image

argmin
L,Z,S1,S2

‖L‖∗ + ‖Z‖∗+α‖S1‖2,1 + β‖S2‖2,1

+ λ‖H1‖1 + η‖H2‖1

s.t. F = L+ S1, L = H1, L = BZ + S2,

Z = H2, H2 ≥ 0 (4)

where L denotes the global low-rank term and S1 means

the global sparse term. B stands for the background dictio-

nary, L = BZ + S2 is the boundary background constraint

reconstruction, Z indicates the reconstruction coefficient, S2

means the reconstruction error,H2 ≥ 0 signifies the nonnegative



Fig. 4. GLRNNR decomposition with the boundary priori and nonneg-
ative coefficient constraint.

TABLE I
GLRNNR DECOMPOSITION WITH LADMAP

constraint of Z, and α, β, λ, and η are the balance factors, as

shown in Fig. 4.

The abovementioned problem can be converted into the aug-

mented Lagrangian function as follows:

LA(L,Z,S1,S2)=‖L‖∗+‖Z‖∗+α‖S1‖2,1+β‖S2‖2,1+λ‖H1‖1

+ η‖H2‖1+〈Y1, F − L− S1〉+〈Y2, L−H1〉

+ 〈Y3, L−BZ − S2〉 〈Y4, Z −H2〉

+
µ1

2

(

‖F − L− S1‖
2
F + ‖L−H1‖

2
F

)

+
µ2

2

(

‖L−BZ − S2‖
2
F + ‖Z −H2‖

2
F

)

(5)

where Y1, Y2, Y3, and Y4 are the Lagrange multipliers, and

µ1 and µ2 are the penalty for violating the linear constraints.

L, Z, S1, and S2 can be solved by alternating iterations with

LADMAP [14], as given in Table I.

The detailed iterative update steps are as follows.

Step 1. Updating L: According to Zhuang et al. [14],Ψ(τ)(·)
expresses the singular-value shrinkage algorithm

with soft threshold τ , which is used to approximate

the calculation of the kernel paradigm. The result of

L obtained by the (k+1)th iteration is as follows:

Lk+1 = Ψ(

1
2µ1_k+µ2_k

)

(

µ1_k (T1_k + T2_k) + µ2_kT3_k

2µ1_k + µ2_k

)

(6)

where

⎧

⎨

⎩

T1_k = F − S1_k + Y1_k/µ1_k

T2_k = B × Zk + S2_k − Y3_k/µ2_k

T3_k = H1_k − Y2_k/µ1_k

.

Step 2. Updating H1:

H1_k+1 = Ψ(

λ

µ1_k

) (Lk+1 − Y2_k/µ1_k) . (7)

Step 3. Updating S1:

S1_k+1 = Ψ(

α
µ1_k

) (F − Lk+1 + Y1_k/µ1_k) . (8)

Step 4. Updating Z:

Zk+1 = Ψ(

1

µ2_k ·‖B‖2
2

)

×

(

Zk +
BT (Lk+1 −BZ − S2_k + Y3_k/µ2_k)

‖B‖2
2

−
(Z −H2_k + Y4_k/µ2_k)

‖B‖2
2

)

. (9)

Step 5. Updating H2: It is needed to perform the nonnegative

constraints during the process of updating.

H2_k+1 = max(Ψ(

η
µ2_k

) (Zk+1 − Y4_k/µ2_k) , 0).

(10)

Step 6. Updating S2:

S2_k+1 = Ψ(

β
µ2_k

) (Lk+1 −BZk+1 + Y3_k/µ2_k) .

(11)

Step 7. Updating Y1, Y2, Y3, Y4: The detailed iterative update

steps for Lagrange multipliers (Y1, Y2, Y3, Y4) are as

follows:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Y1_k+1 = Y1_k + µ1_k (F − Lk+1 − S1_k+1)

Y2_k+1 = Y2_k + µ1_k (Lk+1 −H1_k+1)

Y3_k+1 = Y3_k + µ2_k (Lk+1 −BZk+1 − S2_k+1)

Y4_k+1 = Y4_k + µ2_k (Zk+1 −H2_k+1)

.

(12)

Based on S1 and S2, the saliency Sal of the ith superpixels

region in the image is calculated as follows:

Sali =
1

ZSal
· ‖(S1)i + (S2)i‖

2

2
(13)

where (S1)i and (S2)i are the ith column vectors of S1 and S2,

respectively. ZSal is the normalization coefficient.



Fig. 5. (a) Spatial symmetric ruled surface region ΩS . (b) Projection
on the X_Y plane ΩX_Y . (c) Indirect plane obtained by LSM.

Otherwise, a multiscale fusion method is used to obtain the

final saliency map

Sal_map =

N
∑

j=1

wj · Sal(j) (14)

where the fusion is performed using N scales superpixel seg-

mentation, and wn and Sal(n) are the corresponding weight and

saliency results at the jth scale, respectively.

B. Outlier Saliency Model With Depth

The ideal rail surface can be viewed as a ruled surface gener-

ated by a moving straight line

S(t, u) = p(t) + u · r(t) (15)

where S(t, u) is a point on the ruled surface. The directrix p(t)
is the curved path of a moving line. The moving line is called

a generator. r(t) means the unit vector of the generator passing

through p(t). If the ruled surface is a general cylinder, r(t) is

fixed, e.g., r(t) ≡ r0.

It can be recognized that any rail cross section perpendicular

to r(t) should have a similar profile. It is the key to detect the

outlier of the profile.

Limited by the depth of the camera field, the indicative feature

of r(t)may be missing in the image. It is particularly severe when

the imaging plane is not perpendicular to the direction of the rail

movement.

In order to discover r(t), a method based on an indirect fitting

plane is proposed in this article. The indirect plane (I-plane) is

the approximate fitting plane of a spatially symmetric region on

a ruled surface with the least square method (LSM), as shown

in Fig. 5(c) and in Fig. 6(b).

In this method, it is assumed that there is a spatially symmetric

area ΩS on a general cylindrical ruled surface and after a rigid

transformation (translation and rotation), ΩS is converted into

as shown in Fig. 5 and Fig. 6(a). The projection region of

ΩS on the X_Y plane is ΩX_Y = {(x, y)|x2 + y2 = r2}. The

directrix of ΩS on the X_Z plane is p(t). The direction vector

of the generator is r(t), where r(t) ≡
−→
Vg and

−→
Vg = (0, 1, κ0).

Otherwise, l is one of the generators on ΩS . On surface ΩS ,

there are the following relationships:
⎧

⎪

⎨

⎪

⎩

∫

l
x · yds = 0

∫

l
yds = 0

∫

l
y · zplds = 0

s.t. l : z = κ0 · y + zpl, zpl ∈ p(t) (16)

Fig. 6. (a) Spatially symmetric region. (b) Fit the I-plane with LSM.

(c) Calculate the centroid of the mass and the direction
−→
Vg .

where (x, y, z) are the points’ coordinates on ΩS , and zpl is the

intersection of l and X_Y plane.

The discrete sampling on surface ΩS , the sample point set

PS = {(xPS
, yPS

, zPS
)|(xPS

, yPS
, zPS

) ∈ ΩS}can be written

as a discrete form, which is as follows:

⎧

⎪

⎨

⎪

⎩

∑

xPS
· yPS

= 0
∑

yPS
= 0

∑

yPS
· zPS

=
∑

κ0 · y
2
PS

. (17)

This article uses the LSM to find the I-plane a0 · x+ a1 · y −
z + a2 = 0

IP = argmin
a0,a1,a2

∑

PS

(a0 · xPS
+ a1 · yPS

− zPS
+ a2)

2. (18)

Solving (18) by using ∂IP
∂a0

= 0, ∂IP
∂a1

= 0, ∂IP
∂a2

= 0

⎡

⎢

⎣

∑

x2
PS

∑

xPS
· yPS

∑

xPS

∑

xPS
· yPS

∑

y2
PS

∑

yPS

∑

xPS

∑

yPS
nPS

⎤

⎥

⎦
•

⎡

⎢

⎣

a0

a1

a2

⎤

⎥

⎦

=

⎡

⎢

⎣

∑

xPS
· zPS

∑

yPS
· zPS

∑

zPS

⎤

⎥

⎦
. (19)

Known by (17) and (19), a1 = κ0. The normal vector of the

I-plane is [a0, κ0,−1], such that the I-plane is parallel to
−→
Vg.



Fig. 7. (a) Three-dimensional point cloud profile in the coordinate

system of (
−→
Vcc,

−→
Vg ,

−−→
Vlsp). (b) Projection of point cloud on the new X_Y

plane. (c) Projection of the profile along direction
−→
Vg . (d) Outlier detection

along direction
−→
Vg .

The vector
−→
Vcc = (1, 0, 0) is perpendicular to the direction

vector r(t).
−→
Vg can be obtained by crossing the normal vector

−−→
Vlsp = [a0, κ0,−1] of the I-plane and the vector

−→
Vcc, and ε is a

normalized constant, as shown in Fig. 6(c).

−→
Vg = ε ·

−→
Vcc ×

−−→
Vlsp. (20)

For the calculation of
−→
Vcc before rotation, it can be obtained by

the center of distance mass Pm and geometric center Pg , where

Pm = (
∑

xPS
· dPS

,
∑

yPS
· dPS

,
∑

zPS
· dPS

)/
∑

dPS
and

dPS
denotes the distance between ΩS and I-plane. Pg =

(xp, yp, zp) means the geometric center of ΩS .
−−→
Vmg =

−−−→
PgPm

is presented so that
−→
Vcc =

−−→
Vmg −

−−→
Vmg ·

−−→
Vlsp ·

−−→
Vlsp/|

−−→
Vlsp|.

The original data are projected in the new coordinate system

(
−→
Vcc,

−→
Vg,

−−→
Vlsp), as shown in Fig. 7(a). The point data perform

the outlier detection of the new Z-value along
−→
Vg, as shown in

Fig. 7(d). It is worth noting that the actual surface is nonsmooth

and the depth map contains the noise and errors, as shown in

Fig. 7(c). Here, the RANSAC [15] algorithm is used to perform

a line fit for Z-value along
−→
Vg. zlsp represents the ideal Z-value

online.

In order to weaken the influence of the noise and errors,

the
−→
Vg direction should be fine-tuned through setting the an-

gle fine-tuning interval ϕ and minimizing the overall variance
−→
ξ = argmin−→

ξ ∈ϕ
var((|zlsp − zlsp|)−→Vg+

−→
ξ
).

Then, the saliency of the outlier of the rail surface is calculated

as follows:

SD = ( |zlsp − zlsp| )−→Vg+
−→
ξ

(21)

where zlsp represents the distance of the points on the ruled

surface to the I-plane and zlsp indicates the ideal value along the

direction
−→
Vg +

−→
ξ . It is worth noting that ΩS should be selected

Fig. 8. Saliency detection of the rail surface defects combined with the
2-D and 3-D information.

as far as possible without defects or microdefects. As shown in

Fig. 8, the 2-D saliency map is segmented into the foreground

and background regions by Otsu [16]. Then, the largest inscribed

circle of the background region is selected as ΩX_Y .

The main defect area is highlighted by the centroid recon-

straint

SDep(xSD
,ySD )

=
1

ZDep

× exp

[

−

(

(

xSD
−x′

SD

)2
+
(

ySD
−y′SD

)2

σ2
xy

)]

· SD(xSD
,ySD )

(22)

and

⎧

⎪

⎨

⎪

⎩

x′
SD

=
∑

xSD
·SD(xSD )
∑

SD

y′SD
=

∑

ySD
·SD(ySD )
∑

SD

σxy = min (Var(xSD
),Var(ySD

)) (23)

where ZDep denotes the normalization constant, SD(xSD
,ySD

)

means the pixel saliency value at (xSD
, ySD

), and Var(·) repre-

sents the variance.

C. Final Saliency Fusion

In order to effectively fuse the 2-D-based and 3-D-based

saliency detection results, the collaborative fusion detection

process, as shown in Fig. 8, is employed.

First, the initial 2-D saliency result SC1 is obtained by the

algorithm of GLRNNR. Similar to [25], a 53-D feature vector

is employed in GLRNNR.

Second, SC1 is subjected to the threshold segmentation by

Otsu [16] to obtain ΩX_Y in the background. The 3-D detection



Fig. 9. Rail samples and the experimental equipment.

result SDep is obtained by the outlier detection, which is the

pixel level.

According to the outlier saliency model, the detected defect

may be incomplete and cover the background noise of a rough

surface. Especially for the scar defect, the detection results are

more obvious at the edge of the defect due to the interior of the

defect is consistent with the background profile. With the su-

perpixels segmentation and clustering properties of GLRNNR,

it can expand the range of the defects and reduce the impact of

the background noise.

Therefore, SDep will be seen as the 54th dimensional feature

vector to recalculate the new 2-D result SC using GLRNNR.

Finally, SC and SDep results are nonlinearly combined as

follows:

SF =
1

3

(

SDep + SC +
√

SDep · SC

)

. (24)

V. EXPERIMENT

A. Dataset

1) RSDDS-113: The dataset samples are taken from an ac-

tual industrial production line of one section-steel factory. The

20 rail segments of them with the defects information are

collected and employed to construct the rail surface defects

dataset (RSDDS-113). Under the laboratory conditions, the data

acquisition process is shown in Fig. 9.

The data of the samples cover all the positions of the rail,s such

as the waist surface, the tread surface, and the bottom surface.

The types and locations of their surface defects are random.

In the RSDDS-113 dataset, 113 pairs of them with the typical

defects will be selected and employed. Every pair consists of the

left-camera image and the corresponding depth image.

In the dataset, the main types of defects are rolling scar,

corrosion, scratches, holes, pits, and so on, as shown in Fig. 10.

The RSDDS-113 dataset and our codes are available at the

Github homepage (https://github.com/neu-rail-rsdds/rsdds).

2) Rail Surface Discrete Defect (RSDD) Dataset [2]: The

RSDD is a public railway image dataset, which is mainly

composed of 2-D grayscale images captured from the express

rails and heavy haul rails, including two subdatasets: Type-I

and Type-II. The dataset is used to verify the applicability of

GLRNNR for online railway images.

The Type-II dataset has a narrower and more consistent back-

ground than the Type-I dataset but more sophisticated defects

are included, which are shown in Fig. 15.

Fig. 10. Defect image (upper) and depth map (lower) of the rail sur-
face. (a) Rolling scar. (b) Corrosion. (c) Scratches. (d) Holes. (e) Pits.

Fig. 11. (a) PR curve and (b) ROC curve for each step.

TABLE II
MAE AND AUC OF EACH STEP OF OUR METHOD

B. Evaluation Metrics

For a comprehensive assessment, five evaluation metrics [17]

are used for RSDD-113, including the precision–recall (PR)

curve, the receiver operating characteristic (ROC) curve, area

under the ROC curve (AUC), mean absolute error (MAE), and

the F-measure. Two evaluation metrics (pixel-level index and

defect-level index) [2] are employed for the RSDD dataset.

C. Comparison With State-of-the-Art Methods

1) RSDDS-113 Dataset: In this article, the values of the

parameters involved in this experiment are as follows: α =
0.02; β = 1.2; λ = 0.02; η = 1.2 in (4). The scale of the su-

perpixels in (14) is N = 5, namely 200–600 and wn = 0.2,

and max_iters = 200 in Table I. Otherwise, the adjustment

angle of the direction vector of the ruled surface is ϕ =
(0,±2 sin(π/120), 0).

The results of each step are evaluated by the above-mentioned

indicators, as illustrated in Fig. 11 and Table II. The results

demonstrate that each step is effective for generating the final

saliency map.

As shown in Fig. 11, “depth saliency” denotes the result

SDep, which is produced by the outlier detection. “GLRNNR”

https://github.com/neu-rail-rsdds/rsdds


TABLE III
MAE AND AUC OF LRR, DSR, NNLRSR, AND GLRNNR

Fig. 12. Comparison of LRR, DSR, NNLRS, and our GLRNNR. (a) PR
curve. (b) ROC curve.

TABLE IV
MAE AND AUC OF THE IMAGE SALIENCY METHODS AND OURS

TABLE V
MAE AND AUC OF THE DEPTH SALIENCY METHODS AND OURS

represents the saliency result SC1 generated using only a single

color image. “GLRNNR-D” represents the saliency result SC

regenerated using SDep and the color image. “Fusion result”

indicates the final merger SF of SC and SDep.

As illustrated in Table III and Fig. 12, compared with the

algorithms, such as LRR [8], DSR [20], and NNLRS [14],

the GLRNNR algorithm using only the color information is

obviously superior to the abovementioned algorithm. Otherwise,

it is also verified that GLRNNR with the nonnegative sparse

constraint can improve the influence of the negative coefficients

of DSR.

As shown in Figs. 13 and 14, 15 methods have been com-

pared. It includes ten methods, which use only the color image,

including CA [10], CDCP [11], DRFI [18], GLC [19], DSR [20],

HDCT [21], Itti et al. [22], MBS [23], Zhou et al. [24], and SMD

[25]. Besides, other five methods have been also compared, such

as ACSD [26], CAIP-MB [27], DCMC [28], DES [29], and LBE

[30], which use the image and depth information.

In order to verify the effectiveness of the proposed algorithm,

“GLRNNR,” “GLRNNR-D,” and the final fusion result “Ours”

are divided into groups for the experimental comparison, as

shown in Figs. 13 and 14, and the MAE and AUC are also listed

in Tables IV and V.

As shown in Fig. 13, the GLRNNR algorithm in this article can

obtain a better result than the other methods without the depth

information. The detection effect of “GLRNNR-D” is obviously

better than ACSD, CAIP-MB, DCMC, DES, and LBE. The

Fig. 13. Comparison of CA, CDCP, DRFI, GLC, DSR, HDCT, Itti,
MBS, Zhou, SMD, GLRNNR, and Ours. (a) PR curve. (b) ROC curve.
(c) F-measure curve.

Fig. 14. Comparison of ACSD, CAIP-MB, DCMC, DES, LBE,
GLRNNR-D, and Ours. (a) PR curve. (b) ROC curve. (c) F-measure
curve.

MAE of “GLRNNR-D” is slightly worse than CAIP-MB in

Fig. 14 and Table V but the AUC of “GLRNNR-D” is obviously

higher than CAIP-MB. It is possible that CAIP-MB strengthens

the requirement of accuracy and leads to a decrease in the recall

rate.



Fig. 15. Sample defect images and results of different methods for
(a) Type-I and (b) Type-II of the RSDD dataset. From left to right, each
column in (a) and (b) is original image, ground truth, LN + DLBP, MLC
+ PEME, PM, CTFM, and Ours.

The MAE is mainly for the regression problems but it is sus-

ceptible to the background noise. In Tables IV and V, the MAE of

our proposed methods is equal to other excellent algorithms. To

evaluate the effectiveness of defect detection, it is necessary to

use some additional evaluation metrics, which are suitable for

the segmentation and classification problems, such as the PR

curve and AUC. It can be found that the PR curve and AUC of

ours are excellent than other algorithms.

In the experimental comparisons, the final fusion results of

our method are significantly better than the other 15 methods.

Otherwise, when the resolution of the image is set to 256 × 512

and the number of the superpixels is set to 200, “GLRNNR”

takes 3.9 s, and the depth outlier detection takes 4.9 s, which

does not use the graphics processing unit (GPU) acceleration.

In practical applications, offline and parallel processing meth-

ods are utilized. First, GLRNNR and 3-D outlier detection

algorithms are, respectively, used for preprocessing detection.

Then, if the defect requirements are not satisfied, the two pieces

of information are combined using our fusion detection method

in this article.

2) RSDD Dataset: For the RSDD dataset, the values of the

parameters in (4) and (14) are the same as the RSDDS-113.

Considering the comparison with other known methods

(LN+DLBP, MLC+PEME, PM, CTFM) in [2], Otsu [16] and

active contours [31] are used to segment the saliency results

into the foreground and background. As described in [2], the

evaluation metrics of the RSDD dataset are pixel-level index

(precision, recall, and F-measure) and defect-level index (preci-

sion’, recall’, and F-measure’). The results of the RSDD dataset

are shown in Fig. 15 and the evaluation metrics of comparison

are given in Tables VI and VII.

It can be ascertained that GLR is significantly better than the

other algorithms in Type-I. Otherwise, the GLRNNR is equal to

TABLE VI
EXPERIMENTAL RESULTS FOR THE TYPE-I RSDD DATASET

TABLE VII
EXPERIMENTAL RESULTS FOR THE TYPE-II RSDD DATASET

CTFM at the accuracy and recall rate of the pixel-level index of

Type-II but it is better than the other algorithms at the defect-level

index.

VI. CONCLUSION

In this article, a novel unsupervised stereoscopic saliency

detection method for rail surface defects was proposed. It was

based on a binocular line-scanning system, GLRNNR saliency

algorithm, and depth outlier detection. First, a 2-D image and

3-D profile information of the rail surface were obtained by

our developed binocular color line-scanning system. Second,

utilizing LADMAP and GLRNNR, the algorithm could quickly

obtain the saliency map of a 2-D image. Next, the outlier region

of the 3-D profile was detected based on a 2-D saliency map and

the surface characteristics. Meanwhile, the 3-D saliency map

was also used as a feature to enhance the 2-D saliency map. Fi-

nally, the last 2-D saliency result and the 3-D result were nonlin-

early fused. Our experimental results on the RSDDS-113 dataset

outperformed the 15 state-of-the-art methods in the literature.

Furthermore, to verify the applicability to the online railway

images, the gray image dataset RSDD was also used to compare

with other known methods. The experimental results showed that

the GLNNRR method proposed in this article is also suitable for

general gray rail images and can obtain better detection results.

It is worth noting that the method in this article is only suitable

for locating rail surface defects. More research is needed to

determine the defect attributes. In addition, the limitations on

the imaging hardware equipment hinder this method from being

effectively applied to detect shallow internal defects. Therefore,

in the future, we will look at the multimodal information fusion

and defect classification.
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