
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 4, AUGUST 2012 1275

Unsupervised Salient Object Segmentation Based on

Kernel Density Estimation and Two-Phase Graph Cut
Zhi Liu, Member, IEEE, Ran Shi, Liquan Shen, Yinzhu Xue, King Ngi Ngan, Fellow, IEEE, and Zhaoyang Zhang

Abstract—In this paper, we propose an unsupervised salient
object segmentation approach based on kernel density estimation

(KDE) and two-phase graph cut. A set of KDE models are first

constructed based on the pre-segmentation result of the input
image, and then for each pixel, a set of likelihoods to fit all KDE

models are calculated accordingly. The color saliency and spatial

saliency of each KDE model are then evaluated based on its
color distinctiveness and spatial distribution, and the pixel-wise

saliency map is generated by integrating likelihood measures of

pixels and saliency measures of KDE models. In the first phase of
salient object segmentation, the saliency map based graph cut is

exploited to obtain an initial segmentation result. In the second

phase, the segmentation is further refined based on an iterative

seed adjustment method, which efficiently utilizes the information

of minimum cut generated using the KDE model based graph cut,

and exploits a balancing weight update scheme for convergence

of segmentation refinement. Experimental results on a dataset

containing 1000 test images with ground truths demonstrate the

better segmentation performance of our approach.

Index Terms—Color saliency, graph cut, kernel density estima-

tion, saliency model, salient object segmentation, seed adjustment,
spatial saliency.

I. INTRODUCTION

S ALIENT object segmentation plays an important role in a

variety of applications including content-based image re-

trieval [1], object-based image/video adaptation [2], [3], scene

understanding [4], etc. A human observer can effortlessly iden-

tify salient objects even in a complex natural scene, but unsuper-

vised segmentation of salient objects from images is nontrivial

for a computer. In the last decade, many approaches have been
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proposed for salient object segmentation, but it still remains a

challenging problem up to now.

Salient objects in natural scenes generally stand out relative

to its surrounding regions in terms of some features, and draw

attention from a human observer. Therefore, the mechanism

of human visual attention is useful for devising a feasible

approach for unsupervised salient object segmentation. In

practice, most salient object segmentation approaches exploit

the so-called saliency map, which is generated using a saliency

model, to provide the position and scale information of salient

object as the useful segmentation cues. The quality of saliency

map is a key factor that affects the reliability of salient object

segmentation. In the following, we will first briefly introduce

some related saliency models used for salient object segmen-

tation (a recent comprehensive survey on saliency models for

a wide range of applications can be found in [5]), and then

review salient object segmentation approaches using different

schemes.

Based on a biologically-plausible visual attention architec-

ture [6] and feature integration theory [7], Itti et al. proposed a

well-known saliency model [8], which computes feature maps

of luminance, color and orientation using a center-surround

operator across different scales, and performs normalization

and summation to generate the saliency map. Salient regions

showing high local contrast with their surrounding regions can

be highlighted in the saliency map. Inspired by the centre-sur-

round scheme used in Itti’s saliency model, image saliency

is measured using more features such as local contrast of

color, texture and shape feature [9], multi-scale contrast [10],

ordinal signatures of edge and color orientation histograms

[11], oriented subband decomposition-based energy [12], and

local regression kernel-based self-resemblance [13]. The key

factor for realizing the center-surround scheme is the selection

of surrounding region, which is selected as the whole image

region in the frequency-tuned saliency model [14], and the

maximum symmetric region in [15]. In [16], based on a region

segmentation result, the center-surround differences on five

features including color contrast, size, symmetry, orientation

and eccentricity of regions are fully exploited to generate a

region-level saliency map.

Except for the aforementioned center-surround scheme,

there are various formulations for measuring saliency. In

the frequency domain, both the spectral residual of Fourier

transform [17] and the phase spectrum of quaternion Fourier

transform [18] are exploited to evaluate the saliency at block

level. Based on information theory, the rarity represented using

self-information of local image features [19], and the average

transferring information represented using entropy rate [20]

are exploited to measure saliency. Conditional random field

(CRF) learning is exploited in [21] to integrate a set of feature

1520-9210/$31.00 © 2012 IEEE
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maps including multi-scale contrast, center-surround histogram

and color spatial distribution into the saliency map. Recently,

different statistical models and the global information of the

image are efficiently utilized to improve the quality of the

saliency map. In [22], the global color distribution represented

using Gaussian mixture models (GMM), and both local and

global orientation distribution are fully utilized to selectively

generate the saliency map. In [23], the kernel density estima-

tion (KDE)-based nonparametric model is constructed for each

segmented region, and color and spatial saliency measures of

KDE models are evaluated and exploited to measure the pixel’s

saliency. In [24], the histogram-based global contrast and the

spatially weighted regional contrast are exploited to generate

the saliency map at pixel-level and region-level, respectively.

It should be noted that some of the aforementioned saliency

models generate spotlight saliency maps [8]–[13], [17]–[20],

which generally can only highlight the center portion and/or

the high-contrast boundaries of salient objects, but cannot sup-

press the high-contrast background regions. The other saliency

models [14]–[16], [21]–[24] can highlight the salient regions

more completely and suppress the background regions more

sufficiently, and generally improve the quality of the generated

saliency maps. Undoubtedly, the latter class of saliency maps is

more suitable for salient object segmentation. If simple thresh-

olding operations are performed on the saliency maps, the ob-

tained salient objects using the latter class of saliency maps are

generally better. In [25] and [26], convex hull analysis is per-

formed on several binary object masks, which are generated by

thresholding different feature-based saliency maps, to select the

one with the most compact shape to represent the salient ob-

ject. However, the thresholding operation is only sufficient for

those clear saliency maps, in which the complete salient object

is highlighted with well-defined boundaries and background re-

gions are totally suppressed, to accurately extract the salient ob-

ject. Therefore, more elaborate salient object segmentation ap-

proaches are needed for improving the segmentation quality and

enhancing the applicability on various images.

Region segmentation can be used as a post-processing step

to improve the accuracy of the segmented salient object bound-

aries. In [10], [12], and [14], region saliency is computed as the

average saliency of all pixels in each segmented region, and is

exploited to select some high-saliency regions to constitute the

salient object. On the other hand, region segmentation can also

be used as a pre-processing step for salient object segmenta-

tion. In [1], the contrasts of color and texture features are ex-

ploited to evaluate the saliency measures of segmented regions,

and region combinations are iteratively popped out as salient

objects by maximizing a global saliency index. However, the

quality of salient object segmented using these approaches is

highly dependent on the region segmentation result, and is se-

verely degraded due to the problem of under-segmentation or

over-segmentation.

Diverse methods from statistics, pattern recognition, and

graph theory have been introduced into different salient object

segmentation approaches. In [27], the attention GMM for

salient object and background GMM are constructed on the

image clustering result, and pixels are classified under the

Bayesian framework to obtain the salient object. In [28], the

saliency map generated using Itti’s model is exploited to select

seed pixels for salient objects, and a Markov random field that

integrates the features of color, texture and edge is utilized to

grow salient object regions. In [29], a support vector machine is

trained to select regions for clustering into the salient object. In

[30], random walks on the weighted graph are exploited to se-

lect salient nodes and background nodes, and semi-supervised

learning is further used to determine the labels of unlabelled

nodes. However, its main limitation is that the generated binary

mask of salient object only has block-level accuracy.

Generally, any problem of object segmentation can be for-

mulated as a pixel-level binary labeling problem, which can be

solved under the framework of graph cut [31]. In the context

of salient object segmentation, the key issue is how to use the

information of saliency map for graph cut. In [32] and [33], by

performing binarization on the saliency map using the manu-

ally set threshold, the seeds for salient object/background are

selected inside/outside a region with a pre-defined distance to

the image center, and are exploited to define the data term for

the graph. Differently, for constructing the graph in [15], the

saliency map generated based on the maximum symmetric sur-

rounding region is directly exploited to define the data term,

and the smoothness term is defined to promote the label coher-

ence among neighboring pixels with similar colors. However,

as stated in [15], the quality of the segmented salient object

strongly depends on the quality of the saliency map. Therefore,

it is not desirable to obtain an acceptable quality of salient object

segmentation if the salient object is not sufficiently highlighted

or the background is not effectively suppressed in the saliency

map. In [34], the saliency map is generated using the statis-

tical formulation on the feature distribution contrast between

the center and surrounding window. For constructing the graph,

both saliency map and color similarity are used to define the

two complementary data terms, and CRF learning is exploited

to determine the weights for the two data terms and the smooth-

ness term. However, the pre-determined scales for surrounding

window, the manually set prior probability in statistical formu-

lation, and the weights pre-determined using CRF learning may

be not appropriate for some complicated images to achieve an

acceptable segmentation quality.

Although various approaches mentioned above have been

proposed for salient object segmentation, the segmentation

quality achieved on complicated images, including cluttered

background, highly textured regions, and low contrast between

object and background, is severely degraded in most cases.

In order to enhance the segmentation reliability especially for

complicated images and improve the overall segmentation

quality, we propose an efficient salient object segmentation

approach using a KDE-based saliency model and a two-phase

graph cut framework. Our approach, which is extended from

our previous work [23], provides more appropriate saliency

maps for salient object segmentation, and achieves a higher

segmentation quality for a wide range of images using the

proposed two-phase graph cut framework. Compared with

previous salient object segmentation approaches, the main

contributions of our approach are threefold. First, we propose

to evaluate color saliency and spatial saliency of a set of KDE

models, which are constructed based on the pre-segmentation

result of the input image, and then generate the pixel-wise
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Fig. 1. Illustration of KDE modeling and saliency evaluation. (a) Original image. (b) Pre-segmentation result. (c) Normalized color saliency values of KDE
models. (d) Normalized spatial saliency values of KDE models.

saliency map based on saliency measures of KDE models.

Second, we propose a two-phase graph cut framework, in

which the saliency map based graph cut in the first phase

is generally sufficient to obtain a visually acceptable salient

object segmentation result for some saliency maps, and the

segmentation refinement based on the iterative seed adjust-

ment in the second phase is exploited to further refine the

unsatisfactory initial segmentation result. Third, we efficiently

utilize the information of minimum cut obtained using the

KDE model based graph cut for reasonable adjustments of

object/background seeds, and ensure the convergence of seg-

mentation refinements with the introduction of the balancing

weight update scheme for graph cut. Experimental results show

that our approach achieves considerable improvements on

segmentation quality compared to two state-of-the-art salient

object segmentation approaches [15], [34].

The rest of this paper is organized as follows. Section II de-

scribes the KDE-based saliency model, and Section III details

the two-phase graph cut framework for salient object segmenta-

tion. Extensive experimental results are presented in Section IV,

and conclusions are given in Section V.

II. KDE-BASED SALIENCY MODEL

For the purpose of efficient salient object segmentation, we

expect to obtain a suitable saliency map that can effectively

highlight salient object regions with well-defined boundaries

and suppress background regions. In this section, we present a

KDE-based saliency model, which first constructs KDE models

based on pre-segmentation result, then evaluates the saliency

measures of KDE models, and finally generates the pixel-wise

saliency maps. The following three subsections will detail the

KDE-based saliency model.

A. KDE Modeling Based on Pre-Segmentation

The original color image in the RGB color space is first trans-

formed into the Luv color space, and then partitioned into a set

of regions using the mean shift algorithm [35], in which the pa-

rameters of spatial bandwidth and range bandwidth are set to

their default values. We only adjust the parameter of minimum

allowable region area to control the degree between over-seg-

mentation and under-segmentation, and set it to , where

and denotes the image width and height, respectively. We

set to 0.03 for the following examples in Sections II and III,

and we will show experimental analysis on how the parameter

affects the quality of saliency maps and salient object segmen-

tation results in Section IV. For the example image in Fig. 1(a),

the pre-segmentation result using the mean shift algorithm is

shown in Fig. 1(b), in which each segmented region is repre-

sented using its mean color.

The pixels in each segmented region are

then used as the samples to construct a KDE-based nonpara-

metric model . As a nonparametric technique,

which estimates the density function directly from the sample

data without any assumptions about the underlying distribution,

KDE can asymptotically converge to any density function [36].

This property makes KDE quite general and applicable to mod-

eling the pixel samples from either homogenous region or tex-

tured region segmented using the mean shift algorithm. Specif-

ically, for each pixel , its likelihood to fit each KDE model

is defined as

(1)

where denotes the number of pixels in , i.e., the number of

samples in . denotes the color feature of the pixel , and

denotes the color feature of any pixel in . Specifically,

Gaussian distribution is selected as the kernel function for

each KDE model due to its continuity, differentiability and

locality properties [36], and is defined as

(2)

where is the bandwidth matrix, and is the color

difference vector between and .

Since the chrominance channels are decoupled from the lumi-

nance channel in the Luv color space, we assume that the band-

width for each channel has no correlation with the other two

channels. Therefore, is simplified as a 3-D diagonal matrix,

and (2) is simplified as

(3)

where denotes the bandwidth of the th channel in , and

denotes the th component of the color difference vector

. The bandwidth for each channel is independently estimated

using the fast binned kernel density estimator [37]. It can be seen

from (1)–(3) that the likelihood measure is higher when

the color differences between the pixel and the sample pixels

in the KDE model are smaller, and vice versa.

B. Saliency Evaluation of KDE Models

The saliency of each KDE model is then evaluated based on

its color distinctiveness and spatial distribution, and the color

saliency and spatial saliency of KDE models are calculated in
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turn. The color distance vector and the spatial distance vector

between each pixel and each KDEmodel are, respectively,

defined as

(4)

(5)

where is the mean color of sample pixels in is

the spatial position of the pixel , and is defined as the

weighted spatial center position of the color distribution repre-

sented by

(6)

where denotes the set of all pixels in the image. Using (6),

the contribution of the pixels that show similar colors with the

sample pixels in is substantially considered over the whole

image.

Since the colors of salient objects are distinctive from back-

ground colors in natural images, the pixels belonging to salient

objects have larger distances to other pixels in the color domain.

Therefore, if the colors covered by a KDE model are far

away from the colors covered by other KDE models in the color

domain, the colors covered by are such distinctive colors.

Between any pair of KDE models, and , the color dis-

tance with symmetrical form is defined in a probabilistic manner

as follows:

(7)

where the former (resp. latter) term in the square bracket rep-

resents the color distance to (resp. ) normalized over all

pixels by considering the pixels’ likelihoods to fit (resp. ).

The average of such two normalized color distances is then used

to reasonably measure the color distance between and .

The color saliency for is then defined as the sum of

weighted color distances between and all the other KDE

models

(8)

where the weight is the ratio of the number of samples in

to the total number of samples in all KDE models, and

. The normalized color saliency values of all KDE

models calculated for the example image

in Fig. 1(a) are shown in Fig. 1(c), in which each KDE model

is represented using a bar with its mean color. We can see from

Fig. 1(c) that the two KDE models (the 11th and 12th bar) have

higher color saliency values, and they cover the colors of salient

object (the flower). On the other hand, the color saliency values

of other KDE models that cover background colors are effi-

ciently suppressed in Fig. 1(c).

Based on the center-surround scheme, which has been in-

tensively explored using different representations in previous

saliency models, salient objects are generally surrounded by

background regions, and thus in the spatial domain, the colors of

background regions usually have a wider distribution over the

whole image than the colors of salient objects. In the following,

the spatial distribution of KDE models is used to distinguish

those models covering the colors of salient objects from other

models. Similarly as (7), the spatial distance between any pair

of KDE models, and , is defined as

(9)

Based on the above analysis, KDE models that mainly cover

the colors of salient objects have shorter spatial distances to

other KDE models. The spatial saliency for is thus defined

as the reciprocal of the sum of weighted spatial distances be-

tween and all KDE models

(10)

For the example image in Fig. 1(a), the normalized spatial

saliency values for all KDE models are

shown in Fig. 1(d), in which the two KDE models (the 11th

and 12th bar) also have higher spatial saliency values, while the

spatial saliency values of other KDE models are suppressed.

By comparing (8) with (10), it should be noted that the intra-

distance is included in (10), while (8) only includes

inter-distances . The reason for such a dif-

ference is described as follows. The intra-distance ac-

tually represents the spatial distribution of colors covered in ,

and thus it is considered for the evaluation of spatial saliency.

However, the intra-distance actually reflects the color

homogeneity of the samples in . For the evaluation of color

saliency, it is not reasonable to introduce such a bias that one

KDE model covering more colors is more salient than another

KDEmodel covering fewer colors, and thus is excluded

from the color saliency evaluation for KDE models.

C. Saliency Map Generation

Based on the color saliency values and spatial saliency values

of KDE models, the pixel-wise color saliency map and spa-

tial saliency map are generated as follows:

(11)

(12)
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Fig. 2. Examples of saliency map generation. (a) Color saliency map. (b) Spa-
tial saliency map. (c) Final saliency map.

Fig. 3. More examples of saliency map generation. (a) Original images.
(b) Color saliency maps. (c) Spatial saliency maps. (d) Final saliency maps.

Equation (11)–(12) indicates that the color/spatial saliency

for each pixel is the sum of color/spatial saliency values of

all KDE models weighted by its likelihoods to fit these KDE

models. In this sense, the global color information of the image

is actually incorporated into the saliency calculation for each

local pixel. Based on Fig. 1(c) and (d), the pixel-wise color

saliency map and spatial saliency map are, respectively, shown

in Fig. 2(a) and (b), which are normalized into the range of [0,

255] for display. By integrating color saliency map with spatial

saliency map, the final saliency map is generated as follows:

(13)

For the example image in Fig. 1(a), its final saliency map is

shown in Fig. 2(c), which is also normalized into the range of [0,

255] for display. Compared with Fig. 2(a) and (b), we can see

that the salient object is completely highlighted, and background

regions are more effectively suppressed in Fig. 2(c). Based on

our observations on the saliency maps generated for a variety

of images, we have found that color saliency map and spatial

saliency map can complement each other to generate a more

reasonable final saliencymap, which can highlight salient object

regions and suppress background regions more effectively (see

more examples shown in Fig. 3).

III. TWO-PHASE GRAPH CUT

The saliency map generated using our KDE-based saliency

model can provide useful cues for segmentation of salient

objects, and a simple thresholding operation seems enough

to extract the salient objects with acceptable quality for some

saliency maps, in which salient object regions are sufficiently

highlighted and background regions are completely suppressed.

Nonetheless, for segmentation reliability on a wide range of

saliency maps and a higher segmentation quality, we propose

a two-phase graph cut-based salient object segmentation ap-

proach. In the first phase, the saliency map based graph cut

is exploited to efficiently obtain the initial salient object seg-

mentation result. In the second phase, the object/background

seeds are initialized using the initial salient object segmenta-

tion result, and the iterative seed adjustment-based graph cut

is exploited to refine the salient object segmentation result

using the gradually improved object/background seeds. Some

basic terminologies of graph cut will be briefly reviewed in

Section III-A. The first phase and the second phase of the

proposed approach will be detailed in Section III-B and III-C,

respectively.

A. Basic Terminologies of Graph Cut

Salient object segmentation is explicitly formulated as a bi-

nary pixel labeling problem, which can be solved under the

framework of graph cut [31]. The input image is represented

using an undirected graph , where is a set of nodes

and is a set of undirected edges connecting these nodes. Each

node in the graph represents each pixel in the image, and there

are two additional terminals in the graph, i.e., object terminal

and background terminal . There are two types of edges in

the graph. Specifically, edges between neighboring nodes are

called -links where stands for “neighbor”, and edges con-

necting nodes to terminals are called -links where stands for

“terminal”. All graph edges including -links and -links are as-

signed with some nonnegative costs. Formally, let denotes

the set of all pairs of neighboring pixels in , which denotes

the set of all pixels in the image. The two sets, and , are rep-

resented as follows:

(14)

(15)

where all -links are included in , and and de-

note the -link connecting with and , respectively.

A cut is defined as a subset of edges , and nodes in the

graph are separated by this subset of edges. Graph cut seeks to

minimize a cost function with the following form to determine

the optimal label configuration:

(16)

where is a binary vector denoting any possible label

configuration of all pixels, can be assigned with the label

“bkg” for background or “obj” for salient object, and the Kro-

necker delta is defined as

(17)

is the data term based on the label is

the smoothness term for neighboring pixels , and is the

weight for balancing the two terms. The data term pe-

nalizes the inconsistency between a label and the observed

data such as saliency value and color feature of a pixel , and

the smoothness term penalizes the label discontinuity
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of neighboring pixels . The minimum cut of the graph can

be efficiently solved using the max-flow algorithm [38], and the

corresponding binary labels of pixels are used to represent the

salient object segmentation result.

B. Saliency Map Based Graph Cut

We observe that a considerable portion of saliency maps gen-

erated using our saliency model can generally highlight salient

object regions and suppress background regions. Therefore, we

first exploit the saliency map to define the cost function of graph

cut, and obtain the initial segmentation result of salient objects.

Based on the saliency map , for each pixel , the confidence

belonging to the salient object is defined as

(18)

where is the average saliency value of . In (18), the former

term is used as the basic measure to estimate for each pixel

the confidence belonging to the salient object, i.e., a pixel with

a higher saliency value is more likely to belong to the salient ob-

ject. The latter term in (18) is introduced as an adjusting factor

to reasonably enlarge the differences of the evaluated confi-

dences between high-saliency pixels and low-saliency pixels in

the saliency map with lower contrast. Based on the saliency map

, for each pixel , the confidence belonging to the background

is similarly defined as

(19)

Based on (18) and (19), the data term for each pixel is de-

fined as

(20)

where the subscript may denote “obj” or “bkg”, and its com-

plement denotes “bkg” or “obj”, accordingly.

Based on the general observation that neighboring pixels with

similar saliency values are highly likely to belong to the same

salient object or background, the smoothness term for any pair

of neighboring pixels is defined as

(21)

where the coefficient is defined as

(22)

The coefficient is actually used as a local balancing

weight on the basis of neighboring pixels, to replace the role

of the global balancing weight . Specifically, is set to 1 in

the first phase. With the introduction of , the smoothness

term is further increased for those neighboring pixels that both

have higher/lower saliency values, and thus the label smooth-

ness, i.e., the probability that the neighboring pixels should be

assigned with the same label, is increased reasonably.

The graph is constructed based on the above defined data

term and smoothness term, and then graph cut is performed

Fig. 4. Initial salient object segmentation results obtained using the saliency
map based graph cut. The corresponding saliency maps are shown in Figs. 2(c)
and 3(d).

to obtain the initial salient object segmentation result. For

the saliency map in Fig. 2(c) and the three saliency maps

in Fig. 3(d), the initial salient object segmentation results

are shown in Fig. 4(a)–(d). It can be seen from Fig. 4 that the

saliency map based graph cut can accurately segment the salient

objects using the saliency maps with high contrast between

salient objects and background regions, and can overcome the

negative effect of some falsely highlighted/suppressed small

background/object regions in the saliency map [see the bottom

row in Fig. 3(d), and Fig. 4(d)].

However, for some images shown in Fig. 5(a), whose saliency

maps in Fig. 5(b) show relatively low contrast between parts

of the salient objects and the surrounding background regions,

some redundant background regions are erroneously contained

in the initial salient object segmentation results as shown in

Fig. 5(c). We can see from Fig. 5 that only saliency map in-

formation may be insufficient to obtain an acceptable segmen-

tation of salient objects. Therefore, in Section III-C, we will

present the iterative seed adjustment-based segmentation refine-

ment method to refine such unsatisfactory initial segmentation

results.

C. Segmentation Refinement Based on Iterative Seed

Adjustment

In the second phase, we refine the segmentation result based

on the iterative seed adjustment, which efficiently utilizes the

information of minimum cut with the introduction of balancing

weight update scheme. The proposed segmentation refinement

method consists of the following four steps.

Step 1) The object/background pixels in the initial salient

object segmentation result is used as the object/background

seeds, which will be updated in the following iterative

seed adjustment process. TwoKDEmodels are constructed

based on object seeds and background seeds, respectively.

For clarity of description, we use a trimap to represent the

object seeds (white), background seeds (black), and un-

certain pixels (gray), which are denoted by the three sets

, and , respectively (Section III-C1).

Step 2) For each pixel, the confidence belonging to the ob-

ject/background is calculated using the KDE model con-

structed based on object/background seeds. The graph is

then constructed by redefining the cost terms and the bal-

ancing weight, and graph cut is performed to obtain the

minimum cut (Section III-C1).

Step 3) Based on the analysis of minimum cut, the ob-

ject/background seeds are adjusted and used to update the

trimap (Section III-C2), and the balancing weight is also

adaptively updated (Section III-C3).
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Fig. 5. Illustration of salient object segmentation process for the image postbox and parachute jump. (a) Original images. (b) Saliency maps. (c) Initial salient
object segmentation results. (d)–(g) Updated trimaps representing object seeds (white), background seeds (black), and unknown pixels (gray) during the iterative
seed adjustment process (from the 1st to the 4th iteration). (h) Final salient object segmentation results.

Step 4) The information of minimum cut is exploited

to determine whether the iteration process from Step 2)

to 3) should be repeated or not. If the iteration process

is terminated, the graph is constructed based on the fi-

nally refined object/background seeds, and graph cut is

performed to obtain the final salient object segmentation

result (Section III-C4).

1) KDE Model Based Graph Cut: Using the seed pixels in

and as samples, two KDE models are constructed for

salient object and background, respectively. For each pixel ,

the confidence belonging to the object/background is redefined

as

(23)

where the subscript “ ” may denote “obj” or “bkg”, and

may denote for the set of object/background seeds.

Gaussian distribution is used as the kernel function , and the

estimation of its bandwidth matrix is the same as that described

in Section II-A.

Based on the redefined confidence belonging to the object/

background, the data term is recalculated using (20). The

smoothness term is redefined as

(24)

The global balancing weight is used in the graph cut during

the segmentation refinement process, and is iteratively up-

dated based on the minimum cut obtained in each iteration (see

Section III-C3). The initialization of is based on the analysis

of the histogram with 256 bins generated for the saliency map

. Let denote the number of bins whose values are greater

than the average value of all bins, and denote the standard

deviation of . The balancing weight is initialized as

(25)

where the superscript “1” denotes the initialization of used

in the first iteration. For saliency maps that sufficiently high-

light salient objects and suppress background regions, a smaller

value of and a larger value of result in a smaller value

of , which puts relatively more confidence on the data term

for salient object segmentation. Therefore, the initial balancing

weight is set adaptive to the quality of saliency map. The con-

stant coefficient is set to 128, the possibly achieved maximum

value of , for a reasonable range of the balancing weight.

The graph is constructed based on the updated data term,

smoothness term and the balancing weight, and graph cut is per-

formed to obtain the minimum cut, which is exploited to adjust

the object/background seeds in the following subsection.

2) Seed Adjustment: The objective of seed adjustment

process is to gradually refine object/background seeds by

utilizing the information of minimum cut for a reliable seg-

mentation of salient objects. The seed adjustment process in

one iteration is detailed as follows. In the th iteration, the

possibly inaccurate background/object seeds are removed from

and considered as temporary object/background

seeds, which are added into the temporary seed set

for further determination

(26)

where denotes the minimum cut obtained using the KDE

model based graph cut, in which the KDE model for object/

background is constructed using the seed pixels in in

the th iteration. The rationality for (26) is explained as follows.

For a background/object seed pixel in the th iteration, if

its -link with the background/object terminal is cut off,

it is likely that such a pixel is not a reliable background/object

seed, and thus is removed from and correspondingly

added into .

These temporary seeds in are used to update each

pixel’s confidence belonging to the object/background using

(23). Then the graph is re-constructed by only updating the

data terms, and graph cut is performed again to obtain a new

minimum cut . The object/background seeds for the next

iteration are determined based on the adjustment rules listed

in Table I. In the case of , the rationality for the

listed rules is explained as follows. If its -link with the object

terminal is not cut off, it further enhances the possibility that

should be used as an object seed and added into in

the next iteration. However, if its -link with the object terminal

is cut off, it indicates that is not a reliable seed and
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TABLE I
RULES FOR SEED ADJUSTMENT

should be put into the set in the next iteration. The similar

explanation is also applicable to the case of .

Starting from the inaccurate initial segmentation results

shown in Fig. 5(c), the seed adjustment processes are shown in

Fig. 5(d)–(g). There are a total of 4 iterations for the two exam-

ples. We can observe from the trimaps in Fig. 5(d)–(g) that the

object/background seeds become more and more suitable for

salient object segmentation during the seed adjustment process.

3) Balancing Weight Update: The balancing weight used

in each iteration is an important factor to control seed adjust-

ments. Based on the balancing weight in the th iteration, the

balancing weight used in the next iteration is adaptively updated

as follows:

(27)

where denotes the number of -links belonging to the

minimum cut . The coefficient is used to maintain a

suitable range of the balancing weight, and is set to 10 by the

experiments.

The form of (27) ensures that the balancing weight mono-

tonically decreases during the whole iteration process. Using

the max-flow algorithm for graph cut, a larger value of the bal-

ancing weight indicates that the capacity of -links is easily sat-

urated and likely to be cut off, while a smaller value indicates

that the -links are unlikely to be cut off. Therefore, will

decrease during the whole iteration process, and it can be seen

from (26) that the temporary object/background seeds selected

in each iteration will become fewer and fewer. In this sense, the

object/background seeds will becomemore andmore stable. Be-

sides, it can be seen from (27) that the degressive trend of the

balancing weight is further enhanced due to the decrease of

during the whole iteration process. Therefore, theoretically, the

balancing weight update scheme can guarantee the convergence

of the iterative seed adjustment process. Experimentally, we can

observe from Fig. 5(d)–(g) that inaccurate seeds are gradually

corrected as either accurate seeds or unknown pixels during sev-

eral iterations. More examples of iterative seed adjustment are

shown in Fig. 11.

4) Final Segmentation: By combining the seed adjustment

with the adaptive update of balancing weight, we can obtain

more reliable object/background seeds. We exploit the value of

to determine whether the iteration process should be ter-

minated or not. If the initial segmentation result obtained using

saliency map based graph cut is already acceptable, the refine-

ment only slightly improves the segmentation quality by seed

adjustments and not absolutely necessary. Therefore, we termi-

nate the seed adjustment process after the 1st iteration if

is less than 7.5% of the total number of -links, a relatively

larger value, which is effective to timely terminate the iteration

process starting from an initial segmentation result with accept-

able quality such as the examples in Fig. 4. The subsequent it-

erations are exploited to gradually refine the seeds for a reliable

segmentation, and thus a rather smaller value, 0.5% of the total

number of -links, is used as the termination condition.

For the two examples in Fig. 5, their seed adjustment pro-

cesses are terminated after 4 iterations, and the finally refined

object/background seeds and the uncertain pixels are repre-

sented using the trimaps in Fig. 5(g). Based on the finally

refined object/background seeds, the KDE model based graph

cut is performed to obtain the binary labeling result, which is

used as the final salient object segmentation result. As shown

in Fig. 5(h), we can see that single or multiple salient objects

can be accurately extracted with well-defined boundaries. A

visual comparison between Fig. 5(h) and (c) obviously demon-

strates the effectiveness of the iterative seed adjustment-based

segmentation refinement method.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed salient object

segmentation approach on an image test set [14] with manually

segmented ground truths for salient objects in 1000 images

(publicly available at http://ivrg.epfl.ch/supplementary_mate-

rial/RK_CVPR09/GroundTruth/binarymasks.zip), which are

selected from MSRA SOD (Microsoft Research Asia Salient

Object Database, Image Set B) containing 5000 high-quality

images [21]. First, we generate the saliency maps for all

test images using the proposed KDE-based saliency model,

and compare the saliency detection performance with five

state-of-the-art saliency models, i.e., the most well-known Itti’s

model [8] and four recent saliency models including Zhang’s

model [19], Cheng’s model [24], Achanta’s model [15], and

Rahtu’s model [34] in Section IV-A. Then, we perform salient

object segmentation using the proposed two-phase graph cut

approach, and compare the segmentation performance with two

state-of-the-art salient object segmentation approaches, i.e.,

Achanta’s approach [15] and Rahtu’s approach [34]. Subjective

evaluation and objective evaluation of salient object segmen-

tation are presented in Section IV-B and IV-C, respectively.

Besides, we analyze how the performance of pre-segmentation

using mean shift directly affects the quality of saliency maps

in Section IV-A and finally affects the quality of salient object

segmentation results in Section IV-C. Finally, we discuss some

possible extensions based on our approach in Section IV-D.

A. Performance Evaluation of Saliency Models

For performance evaluation of different saliency models,

we use the implementation code of Saliency Toolbox [39] for

Itti’s saliency model, and the authors’ implementation codes

for the other four saliency models. For comparison with other

saliency models, the only parameter in our saliency model

is set to 0.03. Using the six saliency models, we generate six

classes of saliency maps for all 1000 test images. A subjec-

tive comparison of saliency maps generated using different

saliency models is shown in Fig. 6. Compared with the other
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Fig. 6. Subjective comparison of saliency maps generated using different
saliency models. (a) Original images. (b) Ground truths. Saliency maps gener-
ated using (c) Itti’s model, (d) Zhang’s model, (e) Cheng’s model, (f) Achanta’s
model, (g) Rahtu’s model, and (h) our model, respectively.

five saliency models, we can see from Fig. 6 that salient object

regions can be more completely highlighted with well-defined

boundaries, and background regions can be more effectively

suppressed in the saliency maps generated using our saliency

model. Therefore, we can anticipate that our saliency maps are

generally more applicable to salient object segmentation.

In order to objectively evaluate the saliency detection perfor-

mance of the six saliency models, we adopt the two commonly

used objective measures, i.e., precision and recall, and plot the

precision-recall curves for comparison. For each test image, the

binary ground truth is denoted by , and the binary salient ob-

ject mask generated by thresholding the saliency map is denoted

by . In both and , each object pixel is labeled as “1” and

each background pixel is labeled as “0”, the precision and recall

are defined as

precision (28)

recall (29)

All the six classes of saliency maps are first normalized into

the same range of [0, 255]. Then we use a series of fixed integer

thresholds from 0 to 255, and obtain 256 binary salient object

masks for each saliency map. At each threshold, the precision/

recall measures for all 1000 saliency maps are averaged, and

as shown in Fig. 7, the precision-recall curve of each saliency

model plots the 256 average precision measures against the 256

average recall measures. The precision-recall curves present a

robust comparison of saliency detection performance. These

curves indicate how well different classes of saliency models

can highlight salient objects and suppress background regions.

We can see from Fig. 7 that the precision-recall curve of our

saliency model is the highest one, and thus we can conclude that

Fig. 7. Precision-recall curves of the six saliency models.

Fig. 8. Precision-recall curves generated using our color saliency maps, spatial
saliency maps, and final saliency maps.

the quality of our saliencymaps is generally better than the other

five classes of saliency maps for salient object segmentation.

As stated in Section II-C, in our saliency model, the comple-

mentary effect of color saliency map and spatial saliency map

contributes to the generation of more reasonable final saliency

map. Similarly as Fig. 7, three precision-recall curves generated

using our color saliency maps, spatial saliency maps, and final

saliency maps are shown in Fig. 8. We can observe from Fig. 8

that the precision-recall curve generated using our final saliency

maps is obviously higher than the other two precision-recall

curves. Therefore, Fig. 8 objectively demonstrates the comple-

mentary effect of color saliency map and spatial saliency map.

We further evaluate how the pre-segmentation performance

of the mean shift algorithm affects the quality of our saliency

maps. We adjust the only parameter to control the degree

between over-segmentation and under-segmentation in the

pre-segmentation result, and generate a set of saliency maps

with different values of . Similarly as Fig. 7, five preci-

sion-recall curves generated by setting from 0.008 (the finest

pre-segmentation) to 0.07 (the coarsest pre-segmentation) are

shown in Fig. 9. We can see from Fig. 9 that the quality of our

saliency maps generally degrades with the increase of , but the

three precision-recall curves with not greater than 0.03 are

very close. Therefore, we can conclude that the performance of
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Fig. 9. Precision-recall curves generated using our saliency model with dif-
ferent values of .

our saliency model is consistently robust to with a value not

greater than 0.03.

B. Subjective Evaluation of Salient Object Segmentation

In order to evaluate the performance of salient object segmen-

tation, we perform experiments on all 1000 test images using

the proposed two-phase graph cut approach, and compare the

segmentation performance with Achanta’s approach [15] and

Rahtu’s approach [34].We use our saliencymaps generated with

in our two-phase graph cut approach for the following

comparisons with the other two approaches in Section IV-B.

The results for some test images are shown in Fig. 10, in

which both saliency maps and salient object segmentation re-

sults generated using the three approaches are shown for sub-

jective comparison. For images with obvious contrast between

the salient object and a simple background (the 1st–4th rows

in Fig. 10), the salient objects are highlighted with well-de-

fined boundaries in the three classes of saliency maps, and the

salient objects segmented using the three approaches are visu-

ally acceptable. However, for images with relatively low con-

trast between some parts of salient objects and the surrounding

background regions (the 5th–7th rows in Fig. 10), the quality

of both Achanta’s and Rahtu’s saliency maps is obviously de-

graded. For images with more complex backgrounds, which

may contain strong structures and texture patterns (the 8th–10th

rows in Fig. 10), the center-surround scheme exploited in both

Achanta’s and Rahtu’s saliency model cannot effectively sup-

press such background regions with higher local contrast.

In contrast, our saliency model efficiently utilizes the global

information of the image to evaluate the saliency measures of

KDE models, and thus can efficiently suppress background

regions in such images (the 5th–10th rows in Fig. 10). There-

fore, the salient object segmentation results obtained using

Achanta’s approach and Rahtu’s approach contain irrelevant

background regions and/or incomplete salient objects, while

our approach can completely segment the salient objects with

well-defined boundaries due to the relatively high-quality

saliency maps. From the observation of the two-phase graph

cut performed on these images in Fig. 10, we have found that

the initial segmentation results obtained in the first phase are

Fig. 10. Subjective comparison of some salient object segmentation re-
sults. (a) Original images. (b) Ground truths. (c) Achanta’s saliency maps.
(d) Achanta’s segmentation results. (e) Rahtu’s saliency maps. (f) Rahtu’s
segmentation results. (g) Our saliency maps. (h) Our segmentation results.

sufficiently accurate, and the seed adjustment processes in the

second phase terminate after the first iteration. Therefore, we

can conclude that a high-quality saliency map can generally

guarantee a quick convergence of segmentation refinement.

More segmentation results on some complicated images

with various scenes are shown in Fig. 11, which illustrates the

iterative seed adjustment process of our approach, and also

shows the saliency maps and segmentation results obtained

using Achanta’s approach and Rahtu’s approach for subjec-

tive comparison. Compared with Fig. 10, the quality of our

saliency maps in Fig. 11 is lower, i.e., the complex background

regions cannot be efficiently suppressed and/or some parts of

complex salient objects cannot be efficiently highlighted, and

our initial segmentation results are not visually satisfactory.

We can observe from the former four examples in Fig. 11 that

the iterative seed adjustment method can gradually refine the

object/background seeds, and guarantees the acceptable quality

of final segmentation results. For these examples, we can see

that Achanta’s segmentation results are highly dependent on

the saliency maps, and thus the relatively low-quality saliency

maps significantly degrade the quality of segmentation results.

Rahtu’s approach also cannot efficiently overcome the insuf-

ficiency of their saliency maps, and some background regions

that are highlighted in their saliency maps appear in their

segmentation results. Therefore, with relatively low-quality

saliency maps, it is not reliable that the one-shot graph cut

used in Achanta’s approach and Rahtu’s approach guarantees

acceptable segmentation results, while our two-phase graph cut

approach can exploit the iterative seed adjustment process to

obtain possibly refined segmentation results.
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Fig. 11. Subjective comparison of salient object segmentation using Achanta’s approach, Rahtu’s approach, and our approach with the illustration of the iterative
seed adjustment process. The symbol N/A (Not Available) in the top two examples and the bottom three examples indicates that the iterative seed adjustment
process performs less than 4 iterations. For these five examples, the total number of iteration is 3, 3, 1, 1, and 3, respectively, from top to bottom.
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Fig. 12. Salient object segmentation results on some complicated im-
ages. (a) Original images. (b) Ground truths. (c) Achanta’s saliency maps.
(d) Achanta’s segmentation results. (e) Rahtu’s saliency maps. (f) Rahtu’s
segmentation results. (g) Our saliency maps. (h) Our segmentation results.

However, we also find that the proposed iterative seed adjust-

ment method cannot achieve substantial segmentation refine-

ments for some complicated images as shown in the latter three

examples of Fig. 11. In such images, some background regions

are visually salient against the main part of background (the

5th example), salient objects contain multiple heterogeneous re-

gions (the 6th example), or there are very similar colors between

some parts of the salient object and background regions (the

last example). For such images, the main part of background is

sufficiently suppressed, but such visually salient background re-

gions are also highlighted and/or some regions of salient objects

are also effectively suppressed in our saliency maps. It is un-

feasible for the iterative seed adjustment method to effectively

correct unsuitable object/background seeds in such cases, and

thus the refinements on our initial segmentation results are not

noticeable.

Fig. 12 shows more results on such complicated images with

visually salient background regions (the 1st and 2nd examples),

heterogeneous salient object (the 3rd and 4th examples), and

similar colors between salient object and background regions

(the 5th and 6th examples). We can see from Fig. 12 that our

approach achieves a better segmentation quality for the 1st, 3rd,

and 5th examples, while Rahtu’s approach outperforms our ap-

proach on the other three examples.We can further observe from

Fig. 12 that the contrast between salient object and background

in the saliency map is the major factor to affect the segmenta-

tion quality for the three approaches.

Salient object segmentation results on more test images are

shown in Fig. 13 for subjective comparison. We can see from

Fig. 13 that the quality of Achanta’s segmentation results is

generally lower than Rahtu’s results and our results. Compared

with Rahtu’s approach, our approach can generally segment

the more complete salient objects with well-defined bound-

aries. The segmentation results shown in Fig. 13 as well as

Figs. 10–12 demonstrate that our approach achieves an overall

better subjective segmentation quality than Achanta’s approach

and Rahtu’s approach. The examples shown in the bottom

part of Fig. 13 further demonstrate that it is generally difficult

to obtain satisfactory salient object segmentation results on

Fig. 13. Subjective comparison of more salient object segmentation results.
From top to bottom: original images, ground truths, Achanta’s segmentation
results, Rahtu’s segmentation results, and our segmentation results.

such complicated images as the examples in Fig. 12. For an

unsupervised salient object segmentation approach, it is gen-

erally unreliable to compose many heterogeneous regions into

a complete salient object, remove visually salient background

regions, and separate salient object regions from background

regions with very similar colors, since it is likely that such

object (resp. background) regions show very low contrast with

the correctly suppressed background regions (resp. highlighted

object regions) in the saliency maps.

C. Objective Evaluation of Salient Object Segmentation

We further objectively evaluate the quality of salient object

segmentation results using the measures of precision and recall,

and an overall performance measure, F-measure, which is de-

fined as

precision recall

precision recall
(30)

where the coefficient is set to 0.5 in our experiments. The

precision and recall are calculated for each image using (28)

and (29), in which denotes the binary salient object mask

obtained using each approach. The three measures are aver-

aged over all 1000 test images to evaluate the segmentation

performance of each approach. Table II shows the three mea-

sures achieved using Achanta’s approach, Rahtu’s approach,

and our approach with different pre-segmentation results, which

are generated by adjusting the parameter in the mean shift al-

gorithm. As already shown in Fig. 9, the overall quality of our

saliency maps is similar when is not greater than 0.03. We

can see from Table II that our approach achieves a consistently

higher segmentation performance in terms of F-measure when

is not greater than 0.03, and outperforms Achanta’s approach

and Rahtu’s approach on all the three measures when is not

greater than 0.05. Therefore, Table II not only demonstrates the

overall better segmentation performance of our approach, but
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TABLE II
OBJECTIVE COMPARISON ON SEGMENTATION PERFORMANCE OF ACHANTA’S APPROACH, RAHTU’S

APPROACH, AND OUR APPROACH WITH DIFFERENT PRE-SEGMENTATION RESULTS

Fig. 14. Salient object segmentation results obtained with different pre-segmentation results.

also shows its overall robustness to different pre-segmentation

results.

Based on the observation of our segmentation results, we

have found that for most images, the quality of our segmenta-

tion results is not sensitive to different pre-segmentation results

obtained with different values of . Fig. 14 shows a series of

pre-segmentation results, saliency maps, and salient object seg-

mentation results by setting to 0.015, 0.03, and 0.05, respec-

tively. For most images such as the former four examples in

Fig. 14, the saliency maps obtained with different pre-segmen-

tation results have a similarly high quality, and thus the different

salient object segmentation results are visually acceptable. Al-

though a suitable pre-segmentation result, in which salient ob-

ject boundaries are well preserved with a reasonable number of

segmented regions cannot always be obtained using the mean

shift algorithm, especially for in these examples,

our saliency maps show the robustness to and guarantee the

quality of segmentation results. However, we also notice that for

some complicated images such as the latter three examples in

Fig. 14, the under-segmentation of a heterogeneous salient ob-

ject (the 5th example) and the over-segmentation of the complex

background (the last two examples) in the pre-segmentation re-

sults affect the quality of saliency maps, and finally degrade the

quality of segmentation results. The best segmentation quality is

achieved by setting to 0.015 for the 5th example, 0.03 for the

6th example, and 0.05 for the last example, respectively. There-

fore, it is possible to improve the segmentation quality by tuning

for some complicated images. In summary, we can conclude

from Table II and Fig. 14 that the pre-segmentation performance

of the mean shift algorithm does not affect the overall robust-

ness of our approach, but may affect the segmentation quality

of some complicated images.

However, we notice that for some complicated images, it is

nontrivial to preservewell-defined boundaries between different

regions in the pre-segmentation results by parameter tuning of

the mean shift algorithm. In order to improve the pre-segmen-

tation quality, which partly affects the quality of saliency map

and salient object segmentation result, we will try to develop

a more suitable image segmentation algorithm to replace the

mean shift algorithm in our future work. Specifically, some su-

perpixel segmentation algorithm [40] can be first used to ob-

tain an over-segmentation result with uniform-sized regions,

and then a scale-aware region merging algorithm using statis-

tical models will be designed to obtain a moderate segmentation

result.

D. Discussion

As demonstrated by previous two subsections, our approach

shows an overall better segmentation performance both sub-

jectively and objectively. It should be noted that unsupervised
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Fig. 15. Some preliminary results of human object segmentation.

salient object segmentation approaches are designed to be gen-

eral for a variety of images, and it is likely that any unsuper-

vised approach cannot segment the user-desired salient objects

from some complicated images. Our approach can serve as a

base for developing an efficient interactive object segmentation

tool, which can permit the user to flexibly refine the unsatis-

fied salient object segmentation results for some complicated

images using simple user interactions. Besides, the proposed

two-phase graph cut framework can serve as a general segmen-

tation tool for different applications. For example, we are cur-

rently developing a frontal human object segmentation system

for virtual video conference, and some preliminary results of

human object segmentation are shown in Fig. 15. We incor-

porate the specific high-level knowledge about human object,

i.e., a template-based human model, with our two-phase graph

cut framework, and can efficiently segment single or multiple

human objects.

V. CONCLUSION

In this paper, we have presented an efficient unsupervised

salient object segmentation approach using KDE and the two-

phase graph cut. The proposed saliency model utilizes the color

saliency and spatial saliency of KDE models to generate a more

appropriate saliency map for salient object segmentation. The

proposed two-phase graph cut exploits the saliency map in the

first phase, and combines the KDE model based graph cut, it-

erative seed adjustment based on the analysis of minimum cut,

and the balancing weight update scheme in the second phase,

to enhance the segmentation reliability for complicated images

and improve the overall segmentation quality. Experimental re-

sults on a collection of 1000 test images demonstrate the better

segmentation performance of our approach. We believe that the

proposed salient object segmentation approach can be incorpo-

rated into object-based image retrieval and image adaptation

systems to improve their performances. In our future work, we

will extend the current framework to segment salient objects

from videos by developing a spatiotemporal saliency model and

incorporating an efficient object tracking method.
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