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ABSTRACT Accurate segmentation of choroidal neovascularization (CNV) patterns is vital for precise

lesion size quantification in age-related macular degeneration. In this paper, we develop a method for

unsupervised and parallel segmentation of CNV in optical coherence tomography based on a grid tissue-

like membrane (GTM) system. A GTM system incorporates a modified Clustering In QUEst (CLIQUE)

algorithm into tissue-like membrane systems. Exploiting CLIQUE’s aptitude for unsupervised clustering,

GTM systems can detect CNV of different shapes, positions and density without the need of a training stage.

The average dice ratio is 0.84±0.04, outperforms both baseline and the state-of-the-art methods. Besides,

being a parallel computational paradigm, GTM systems can handle all scans under analysis simultaneously

and therefore they are less time consuming, completing CNV detection on 48 scans in 0.56 seconds.

INDEX TERMS GTM systems, unsupervised segmentation, choroidal neovascularization, OCTA.

I. INTRODUCTION

Age-related macular degeneration (AMD) is the main

cause of blindness for the elderly population in developed

countries [1]. One of its manifestations is the neovascular-

ization that breaks through the Bruch’s membrane into the

outer retina, a process known as choroidal neovascularization

(CNV) [2]–[4]. In the past, fluorescein angiography (FA)

or indocyanine green angiography (ICGA) have been used

to detect CNV in the clinical practice. These techniques

are invasive, involving intravenous dye injections [5], and

cannot provide depth-resolved visualization of vasculature.

Alternatively, optical coherence tomography (OCT) is a nat-

urally three-dimensional imaging technique and the recent

The associate editor coordinating the review of this manuscript and

approving it for publication was Eduardo Rosa-Molinar .

functional addition of OCT angiography (OCTA) can detect

flow with high sensitivity at different retinal depths [6], [7],

including flow in CNV [8], [9]. Although OCTA computes

volumetric flow datasets, artifacts caused by projections cast

by superficial flow onto deeper layers are observed in the

outer retina, confounding interpretation of CNV. Therefore,

automated discrimination of the pixels belonging to CNV

vasculature from noise without manual intervention is a chal-

lenging task for the sake of accurate assessment of lesion

size. Only few works [10], [11] focused on the automatic

segmentation of CNV. Liu et al. [10] proposed a saliency-

based algorithm to recognize CNV in OCTA outer retinal

en face angiograms. This method could detect the CNV area

with an accuracy of 83% on 7 subjects. We have previously

proposed density cell-like P systems with active membranes

to improve the accuracy of recognition of CNV area to 87%
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on 22 subjects [11]. However, both of the above two methods

could not distinguish between distinct vessels forming the

CNV vascular pattern or detect the CNV boundaries with

precision. Moreover, they must employ methods in [12] to

remove artifacts, which increased the computational com-

plexity of the algorithms.

In order to design an algorithm with the ability to find

arbitrary groups and discriminate noise pixels with high flow

signal from the pixels in the CNV vascular pattern, clustering

method can be used. Clustering is an unsupervised machine

learning paradigm designed for classification of pixels with

similar characteristics without any prior knowledge of the

dataset nor need for a training stage [13]. Clustering algo-

rithms can be based on the connectivity of points (hierar-

chical clustering), the distance from cluster centroids (e.g.

k-means or fuzzy c-means), distribution models or density of

points (e.g. DBSCAN). Clustering In QUEst (CLIQUE) is an

example of a grid-density based clustering algorithm, which

has both the advantages of grid and density clustering [14].

CLIQUE reduces the time consumption in density clustering

by searching data based on grids [15]. Unlike partitioned clus-

tering algorithms and hierarchical algorithms, which need

to either input the number of clusters before computing or

select the expected shapes of groups, CLIQUE has the ability

to discover groups with arbitrary shapes and, therefore, it

is suitable for detecting individual CNV vessels in OCTA.

However, clustering algorithms such as CLIQUE are time

consuming. They need to read the dataset in each dimension,

do self-joining of every unit, and require trial and error to

determine the appropriate length and sensitivity of units.

To alleviate these problems and improve the effective-

ness of CLIQUE, it can be implemented in a parallel com-

putation scheme that can scan all dimensions in different

membranes simultaneously. Membrane computing, initiated

by Păun [16], is a computational model that encapsulates

the data in arrangements of ‘‘membranes’’ that communi-

cate under certain rules with a given computational purpose.

Membrane computing has been applied on the segmenta-

tion of digital images [17]–[19] as well as in various fields

such as language generation, electricity fault diagnosis, and

combination optimization [1], [20]–[24]. Clustering based on

membrane systems has shown good convergence, robustness,

and parallelism [25]–[29]. In image processing applications,

membranes can operate in parallel in different local areas

independently of the image size [30]. In particular, the tissue-

like membrane system (TMS) is a particularly flexible net-

workmembrane structure that is adaptable to various network

topologies [31], [32]. TMSs have a network membrane struc-

ture consisting of several one-membrane cells in a common

environment and a certain number of channels connecting the

cells. These features become very useful in organizing the

CLIQUE algorithm for detection of CNV architectures with

different characteristics of vascular pixel distribution.

Based on the above considerations, we formulate here a

grid tissue-like membrane (GTM) system, which consists of

a modified CLIQUE clustering algorithm implemented in a

tissue-like membrane system, and apply it to the detection

of CNV vascular patterns in OCTA images. Specifically, we

use the GTM system to find a cluster of pixels contained in

the largest number of grid units, representing the location

of CNV vasculature. The proposed method can distinguish

CNV vasculature from surrounding noise better than previ-

ous methods, has the ability to discover clusters with arbitrary

shapes. The average dice ratio of our method for CNV is 0.84,

which is the best result to date.

The contributions of our work can be summarized as

follows:

(1) GTMsystems integrate clustering algorithm into tissue-

like membrane systems, with the goal of making full use

of the excellent convergence, robustness and parallelism of

membrane systems as well as the good performance of clus-

tering algorithm for CNV segmentation. New types of rules

are also designed to solve complex real applications.

(2) A modified CLIQUE algorithm is proposed to be

implemented in GTM system for more accurate clustering.

In particular, effective data points and new search path are

defined in the identification and grouping of dense units to

deal with the abundant noise around CNV vascular pattern.

(3) Compared to detection of CNV area based on removing

artifacts by other methods, our approach yields CNV vascular

pattern segmentation directly. Detailed lesion identification

may significantly help doctors achieve early and accurate

diagnosis.

II. PROBLEM STATEMENT

Clustering is to divide a set of objects, where objects in

the same group are more similar to each other than them

to objects in different groups. The segmentation of CNV

vascular pattern in OCTA can be viewed as a clustering prob-

lem, where one cluster is the target lesion and the others are

backgrounds. The combination of clustering and membrane

systems showed good performance [25]–[29]. TMS [31], [32]

is a classic type of membrane system, which associates a

graph structure consisting of nodes corresponding to cells and

the environment and edges that represent channels linking

various components.

A TMS (Fig. 1) with symport/antiport rules is formally

defined as a tuple:
∏

=
(

O,w1, . . . ,wq,R1, . . . ,Rq, i0
)

, (1)

where O is a finite set of objects; w1, . . . ,wq are initial mul-

tisets of objects; i0 ∈ {0, 1, . . . , q} indicates the output cells

of the system. Ri are finite sets of symport/antiport rules in

cell i; and 1 ≤ i ≤ q. A symport rule has the form (i, u/λ, j),

which means that the multiset of objects u goes from cell i to

cell j. An antiport rule has the form (i, u/v, j), indicating that

the multiset of objects u in cell i and the multiset of objects v

in cell j are interchanged.

The tissue-like P system starts with the initial multisets

w1, . . . ,wq. Then, in each step, the symport and antiport rules

are applied in the maximally parallel manner (a maximal

multiset of applicable rules is non-deterministically chosen
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FIGURE 1. Membrane structure of tissue-like membrane system. S1 is the
environment, which has no membranes outside. 1. . . q are q numbers of
computing membranes.

and applied). This process is repeated until a termination con-

dition is satisfied.When it terminates, final result is embodied

by the output cells.

III. CNV VASCULAR PATTERN RECOGNITION

BY GTM SYSTEMS

Inspired by CLIQUE algorithm and TMS, we propose GTM

systems to detect CNV vessels. The flowchart of the proposed

method is shown in Fig. 2. The purpose of GTM systems is to

find the set with themaximum number of adjacent dense units

(defined below), which represents a cluster of CNV pixels.

Since OCTA are 2-dimensional images, we implemented

the modified CLIQUE algorithm in a space of 2-dimensional

points. The input consists of a set of 2-dimensional set of

non-zero pixels V = {v1, v2, . . . , vn}, where vi = {vi1, vi2},

1 ≤ i < n and vi1, vi2 are coordinates of point vi. Because

noise is abundant andCNVpixels are closer to each other than

noise pixels, we applied an additional filtering step based on

the Euclidean distance information between pixels to reduce

the number of noise pixels in the computation of GTM.

The Euclidean distance between two pixels vα and vβ ,

α, β ∈ {1, 2, . . . , n}, i 6= j is computed by Eq.(2) and the

set S = {dis(vα, vβ )} corresponding to the set of distances

between any two pixels is saved.

dis(vα, vβ ) =

√

(vi1α − vi2α)2 + (vi1β − vi2β )2 (2)

Rather than using all non-zero pixels in the identification

of dense units, we define effective data points, which are all

pixels vα whose Euclidean distance to the closest non-zero

pixel vβ is less than an input parameter τ .

Then, each dimension of OCTA is partitioned into ζ

intervals of equal length, forming non-overlapping units.

A 2-dimensional unit σ has the form {σ1, σ2}, where σj =
[

lj, hj
)

, 1 ≤ j ≤ 2 is a right-open interval in the partition.

A pixel vi is contained in a unit σ if its location in both

j dimensions is within the interval lj ≤ vij < hj. A unit

σ is considered to be dense if it contains a number Q of

effective points with Q > θ , where θ is defined before

computation according to the distribution of CNV pixels.

After all dense units have been recognized, the unit σF with

the maximal number of adjacent dense units is selected.

FIGURE 2. Description of the proposed method. In block (A), the OCTA image is acquired. In Block (B), a threshold is set first to remove low flow
signal pixels and a median filtering is used to smooth the OCTA image. 8×8 units are used to partition the filtered angiogram. The rightmost image
in block (B) represents the positions of all non-zero pixels and the grid units where they are located. In Block (C), a GTM-systems-based algorithm
is used to segment CNV vascular patterns. The densest unit is first detected (highlighted in yellow) and assigned to a membrane in a membrane
structure formed by a skin membrane containing as many inner membranes as units in the grid. Adjacent membranes within the structure can
communicate with each other. The last figure of Block (C) depicts the search path method. Each unit is considered to be dense if the amount of
effective data points in it is larger than a certain threshold. After all dense units have been recognized, the unit with the maximal number of
adjacent dense units is selected, which is highlighted in yellow. This unit and its adjacent dense units are chosen as the first members of cluster C .
Then, each unit in C is set as a start unit to search whether its outer neighbors are also dense, in order to be added to C . When the search ends, the
clusters are extracted and the vascular pattern is found in the cluster with the largest number of units.
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Two 2-dimensional dense units are adjacent if they have a

common face or if there exists another 2-dimensional dense

unit adjacent to both. Then, σF and its adjacent dense units

are chosen as the first members of cluster C . Then, each unit

in C is set as a start unit to search whether its outer neighbors

are dense. If they are dense, they will be added to C (Fig. 2,

search path). The algorithm terminates when no more units

are searched and the cluster with the maximal set of adjacent

dense units is output as the collection of units containing the

CNV pixels.

Next, we propose a GTM system as a parallel implementa-

tion of CLIQUE for the detection of the CNV pixels. A GTM

system is a kind of tissue-like P system (TMS) [23]. TMS

has graph based membrane structures, which is a flexible net-

work topology with several one-membrane cells in a common

environment and a certain number of channels connecting

the cells. Each cell contains multisets of objects and commu-

nicates with each other through the communication rules in

parallel.

The structures and ways of communication of TMS is

suitable for finding adjacent dense units and implementing

the search path in the detection of CNV architectures.

A GTM system for the detection of the CNV pixels is a

construct of the form:
∏

= {O, λ, q, σ, σ0, ω,Ri} (3)

The finite non-empty alphabet is O = {V , S, ζ, τ, θ} ; λ

denotes an empty object; q is the initial number of cells, σ =

{σ1, σ2, . . . , σq} is the set of cells, excluding σ0, which is the

environment. The membrane structure is shown in Block (C)

of Fig. 2. ω = {i,Vi, Si, τ, θ} are initial multisets of objects

in every cell σi ; Any two cells σi and σj representing units σi
and σj contain objects, can communicate with each other and

are subjected to rules Ri defined below:

(σi, {i,Vi, Si, τ, θ}/σi, λ), Si > τ (4)

(σi, {i,Vi, Si, τ, θ}/σj, {i,Vi, Si, τ, θ}) (5)

(σF , {gmax,F,VF , SF , τ, θ})/σF ,C) (6)

(σi, {i,Vi, Si, τ, θ,C} → σ0, {i,Vi, Si, τ, θ,C}) (7)

(σi, {i,Vi, Si, τ, θ,C} → σ0, {i,Vi, Si, τ, θ,C}) (8)

Rule Eq. (4) removes objects from cell σi if they are

non-effective data points in unit µi considering the distance

threshold τ . Eq. (5) communicates dense units with their

adjacent dense units. Eq. (5) sends {i,Vi, Si, τ, θ} to another

cell σj connected with σi within σ0. Eq. (6) obtains cell σF
.Variable gmax counts the number of units adjacent to σF .

Eq. (6) also produces a new object C , which means unit σF
belongs to clusterC . If units outsideC are dense and adjacent

to dense units withinC , they are incorporated toC by Eq. (7).

‘out’ means multiset {i,Vi, Si, τ, θ,C}will be sent to σ0 from

cell σi . Eq. (8) outputs all cells that have object C .

The process halts when there are no rules being activated.

When the system halts, all the objects in the output cell σ0 are

regarded as the final solution of the GTM system.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. DATA ACQUISITION

OCTA data was acquired from 48 patients with neovascular

AMD recruited at the Shandong Eye Hospital, Shandong

Eye Institute. The image size is 465×465, acquired on

SPECTRALIS HRA+OCT Multicolor with OCT2 Module

(Heidelberg EngineeringGmbH,Germany).Manual segmen-

tation of CNV vascular pattern by two experienced graders

are deemed as ground-truth.

B. PRE-PROCESSING

First, a threshold at 0.3 is imposed to reduce noise while pre-

serving the CNV structure and a median filter with 3×3-pixel

kernel is applied in order to smooth images. Then, we extract

the position of all remaining non-zero pixels vi = (vi1, vi2),

1 ≤ i ≤ 465.

C. PARAMETERS SETTING

There are three initialization parameters: ζ = 58 is the

interval size of units, τ = 5 is the maximum distance

between effective points and θ = 25 is the minimum number

of effective data points necessary to consider σ dense. 48

scans from subjects with neovascular AMD were processed

in MATLAB 2017a (MathWorks, Natick, MA) on an Intel

Xeon(R) CPU (3.30GHz×4) simultaneously due to the par-

allelism of GTM systems. The time invested to process all

subjects was only 0.56 s.

D. EVALUATION METRICS

Results obtained from GTM systems were compared with

manual results by computing the dice ratio, accuracy, false

negative rate (FNR) and false positive rate (FPR). Dice ratio

is defined between GTM (G) and manual (M) images as:

dice =
2× ‖ G ∩M ‖

‖ G ∩M ‖
(9)

Accuracy was calculated by Eq. (10) from the number of

true positive (TP), true negative (TN), false positive (FP) and

false negative (FN) pixels.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(10)

FNR and FPR measure the fractions of relevant segmented

pixels. The definitions of these metrics are given below:

False negative rate =
FN

TP+ FN
(11)

False positive rate =
FP

FP+ TN
(12)

The true positive (TP) score reflects the number of vas-

cular pixels correctly identified as vascular pixels. The false

positive (FP) score reflects the number of non-vascular pixels

incorrectly identified as vascular pixels. The true negative

(TN) score reflects the number of background pixels correctly

identified as background pixels. Finally, the false negative

(FN) score reflects the number of non-background pixels

incorrectly identified as background pixels.
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E. COMPARISON WITH THE STATE-OF-THE-ART METHODS

In this subsection, we compare the performance of our pro-

posed method for the segmentation of CNV vascular pat-

tern with the two state-of-the-art methods briefly introduced

below.

Liu et al. [10] proposed a saliency-based algorithm to rec-

ognize CNV area in OCTA outer retinal en face angiograms.

Xue et al. [11] employed DBScan algorithm in cell-like

P system with active membranes to improve the accuracy of

recognition of CNV area.

Table 1 compares the segmentation performance of our

proposed method with two state-of-the-art methods, using

mean dice ratio, accuracy, FNR and FPR (with standard

deviation).

Dice ratio and accuracy over 48 samples increase from

0.65 to 0.84 and 0.91 to 0.96. FNR and FPR decrease

TABLE 1. Quantitative comparisons of Dice, Accuracy, FNR, and FPR for
CNV vascular pattern segmentation on the OCTA images of 48 subjects.
(The best results are indicated in bold, mean ± std).

from 0.25 to 0.23, and 0.14 to 0.03, compared to the

state-of-the-art methods. Four examples of the ground-

truth and our segmentations are shown in Fig. 3. As

can be observed from Fig. 3, the similarity with manual

FIGURE 3. CNV vascular pattern segmentation results for four examples (S1, S2, S3 and S4). The first row shows the OCTA, and
the second row shows the final segmentation results, the third row shows the ground-truth segmentations and the last row
shows the compared results between our segmentation results and the ground-truth segmentations. Pink results show the
under-segmentation of GTM system compared with the ground-truth Segmentations. And Green results show the
over-segmentation of GTM system compared with the ground-truth segmentations.
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FIGURE 4. Qualitative comparison of the results of GTM system with different parameters to manual grading on three cases (S5, S6, S7). Pink
results show the under-segmentation of GTM system compared with the manual grading. And Green results show the over-segmentation of
GTM system compared with the manual grading.

grading is higher by our proposed method, in spite of

diverse shapes and locations of CNV vessels in OCTA

images.

Moreover, although manual grading was used as reference

for performance evaluation, the grader cannot remove noise

contained within the CNV membrane area. Since the GTM

system removes noise pixels by elimination of non-effective

points from membranes and hence, never promoting them to

a cluster C, manual grading and GTM system would differ

at these points. For this reason, the false negative rate was

significantly higher than the false positive rate, indicating that

there is a limitation in the accuracy of manual grading for

performance assessment.

To further evaluate the contribution of the modified

CLIQUE algorithm inGTM system, we also compared it with

the unmodified version. The four indices over 48 samples are

0.77±0.06, 0.93±0.06, 0.23±0.08, 0.20±0.05. Therefore,

our proposed method with the modified CLIQUE algorithm

improves the segmentation accuracy significantly.

F. EVALUATION ON THE IMPACT OF THE INTERVAL

SIZE OF UNITS

Since different interval sizes of the units (i.e. the initial num-

ber of membranes) change the effective points in each unit

which contributes to different cluster accuracies, we conduct

experiments using three different interval sizes of the units,

i.e., 48, 58 and 68. As shown in Fig. 4 (S5) and Fig. 5,

our method obtains the best results with ζ = 58. Due to

the small interval size, the effective points decrease in each

unit, the performance is with high under-segmentation. On

the contrary, large interval size causes redundant noises in

each unit, leading to over-segmentation.

G. EVALUATION ON THE IMPACT OF THE MAXIMUM

DISTANCE BETWEEN EFFECTIVE POINTS

To find a maximum distance that ensures the number of

effective points in their units and minimum the number of

noises, we set the maximum distance as 3, 5, 7 for testing.
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FIGURE 5. Changes of values of dice ratio with respect to three different
interval sizes. The first bar, second bar and last bar correspond to the
sizes of 48, 58 and 68, respectively.

FIGURE 6. Changes of values of dice ratio with respect to three different
maximum distance. The first bar, second bar and last bar correspond to
the distances of 3, 5 and 7, respectively.

Small distance increases the workload and costs more time.

The performance results are given in Fig. 4 (S6) and Fig. 6.

The maximum distance of 5 obviously perform better than

the others. Therefore, we select τ = 5 for experiments.

H. EVALUATION ON THE IMPACT OF THE MINIMUM

NUMBER OF EFFECTIVE DATA

We also compared the proposed method on three different

minimum number of effective data points, i.e., 15, 25, 35.

Similar to maximum distance, the minimum number of effec-

tive data points also contribute to the selection of dense units.

As can be seen in Fig. 4 (S7) and Fig. 7, θ = 25 are the best

choices for the detection of CNV vessels for all the 48 cases.

I. EVALUATION ON IMAGES WITH LOW QUALITY

Sine the proposed method does not need to employ additional

methods, like [12] to remove artifacts, which decreased the

computational complexity of the algorithms. To further verify

the effectiveness of the proposed method on images with low

quality, we also conduct our experiments on OCTA images

with noise pixels that are bright and found within the vicinity

of vessels. As can be seen in Fig. 8, the proposed method

can also segment CNV vessels accurately. But noise pixels as

FIGURE 7. Changes of values of dice ratio with respect to three different
minimum number of effective data points. The first bar, second bar and
last bar correspond to the number of 15, 25 and 35, respectively.

FIGURE 8. Performance of the GTM systems compared to manual
delineation in the scan that noise pixels are bright and found within the
vicinity of vessels. Yellow arrows direct to noise pixels in yellow circles.

TABLE 2. The p-values of our method compared to the other methods for
the results in Table 1.

high as pixels in CNV and located in the same grid cannot

be removed. After confirmed by clinicians, the segmentation

is significant in helping them diagnose and treat patients

with CNV.

J. STATISTICAL SIGNIFICANCE TEST

We compared our results with those of previous methods

using t-tests. The p-values for the dice ratio, accuracy, FNR,

FPR of CNV were all <0.001 (Table 2) compared with

methods [10]. The p-values for dice ratio, accuracy, FPR

(Table 2) are also p<0.001 compared with methods [11].

Therefore, our proposed method leads to highly significant

improvements (p<0.001) in the ability to correctly detect

CNV vessels compared with the methods in [10], [11].
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TABLE 3. Running time of our method compared to other methods.

K. RUNNING TIME OF GTM SYSTEMS

Table 3 provides the running time of GTM systems, method

in [10], method in [11] and CLIQUE algorithmwithout mem-

brane systems, which shows that GTM systems can improve

the efficiency of CNV vessels segmentation.

V. CONCLUSION

We have reported an automatic detection algorithm for CNV

in AMD. We treat the vessel segmentation problem as a

clustering problem and implement a modified CLIQUE clus-

tering into a tissue-like membrane computing model, which

we call a GTM system, to identify vascular patterns. Com-

pared with the CLIQUE clustering algorithm, the GTM

system handles all cases synchronously and guarantees con-

vergence. Unconcerned about the size of dataset, the GTM

system can be performed in parallel in different local areas,

which reduces time consumption and improves efficiency.

The GTM model can complete the segmentation task in

a population of 48 subjects in less than a second. Good

accuracy and similarity to the results from human grading

were obtained. The algorithmwas characterized by high com-

putational speed, guaranteed convergence and high detec-

tion accuracy, which indicates the effectiveness of proper

hybridization of a tissue membrane system with conven-

tional methods. It also suggests a promising way toward the

improvement and biological realization of several machine

learning methods by using membrane systems. Our future

work will focus on the applications of this hybrid approach

to more problems.
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