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ABSTRACT

Herein, we propose a novel multi-layer Markov random field
(MRF) image segmentation model which aims at combin-
ing color and texture features: Each feature is associated
to a so calledfeature layer, where an MRF model is de-
fined using only the corresponding feature. A special layer
is assigned to the combined MRF model. This layer inter-
acts with each feature layer and provides the segmentation
based on the combination of different features. The model
is quite generic and isn’t restricted to a particular texture
feature. Herein we will test the algorithm using Gabor and
MRSAR texture features. Furthermore, the algorithm au-
tomatically estimates the number of classes at each layer
(there can be different classes at different layers) and the
associated model parameters.

1. INTRODUCTION

In this paper, we develop a Markovian approach to perform
color textured image segmentation. The algorithm should
identify all the regions and then assign each pixel to the
most likely region type (i.e. we want to perform a pixel
classification). This new MRF model should make use of
multiple features in an efficient way during the segmenta-
tion process. Color feature usually preserves boundaries but
it is more sensitive to local color variations. Hence color-
based segmentation provides sharp edges but often inhomo-
geneous regions. On the other hand, texture features give us
fuzzy boundaries but more homogeneous regions. By com-
bining these two features, we hope to get sharp boundaries
andhomogeneous regions.

Basically, there are two approaches in the literature to
color texture segmentation: One approach deals directly with
color textures[1, 2]. In [1], an unsupervised segmentation
algorithm is proposed which uses Gaussian MRF models
for color textures. These models are defined in each color
plane with interactions between different color planes. The
segmentation algorithm is based on agglomerative hierar-

chical clustering. A different approach is presented in [2]
which uses a multiband smoothing algorithm to generate a
multiscale representation of an image. The smoothing is
based on human psychophysical measurements of color ap-
pearance. First the coarsest level is clustered to isolate core
clusters. Other pixels are then reassigned to these core clus-
ters using a probabilistic assignment. Another frequently
used approach tries to combine traditional gray level texture
features together with pure color features [3]. Our approach
falls into this category.

The novelty of our model can be summarized as fol-
lows: First, we usedifferentfeatures at different layers. This
allows us to work with different models or to have vary-
ing number of regions at different layers, choosing the one
which describes the best our feature data at a given layer.
In addition, we have a special layer, calledcombined layer,
which does not correspond to any feature but provides a way
to combine different features. Our algorithm will automati-
cally estimate the number of pixel classes and the associated
model parameters at each layer. Only hyper-parameters are
fixed a priori. Second, the layers are fully connected: each
pixel interacts with the corresponding pixel at other layers.
Multiscale pyramids have also been successfully applied for
image segmentation [4]. In these models, each layer usually
contains thesameimage data at different resolutions. How-
ever, we usedifferentdata at different layers and we do not
perform subsampling, therefore our model is not a pyramid.
In this respect, our model is similar to [1, 2].

2. MULTI-LAYER SEGMENTATION MODEL

We use perceptually uniform CIE-L∗u∗v∗ color values and
texture features derived from the gray-level image. Seg-
mentation requires simultaneous measurements in both spa-
tial and frequency domain. Fortunately, the spatial reso-
lution is considerably increased when we are combining
texture features with color. Our model consists of 3 lay-
ers. At each layer, we use a first order neighborhood sys-
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tem and higher order inter-layer cliques (Fig. 1). The im-
age features are represented by multi-variate Gaussian dis-
tributions. Let us denote the color layer bySc, the tex-
ture layer bySt and the combined layer bySx. All lay-
ers are of the same size. Our MRF model is defined over
the latticeS = Sc ∪ Sx ∪ St. For each sites, the region-
type (or pixel class) that the site belongs to is specified by
a class label,ωs, which is modeled as a discrete random
variable taking values inΛ = {1, 2, . . . , L}. The set of
these labelsω = {ωs, s ∈ S} is a random field, called
the label process. Furthermore, the observed image fea-
tures (color and texture) are supposed to be a realization
F = {f̃s|s ∈ Sc∪St} from another random field, which is a
function of the label processω. Basically, theimage process
F represents the deviation from the underlying label pro-
cess. Thus, the overall segmentation model is composed of
the hidden label processω and the observable image process
F . Our goal is to find an optimal labelinĝω which maxi-
mizes the a posteriori probabilityP (ω | F), that is themax-
imum a posteriori(MAP) estimate [5]:arg maxω∈Ω P (ω |
F) = arg maxω∈Ω

∏
s∈S P (f̃s | ωs)P (ω), whereΩ de-

notes the set of all possible labelings. We use the MMD
algorithm [6] to obtain a good but theoretically subopti-
mal MAP estimate. Simulated Annealing could also be
used at the price of higher CPU times. According to the
Hammersley-Clifford theorem[5], P (ω | F) follows a Gibbs
distribution:

P (ω | F) =
exp(−U(ω))

Z
=

∏
C∈C exp(−VC(ωC))

Z
(1)

whereU(ω) is called anenergy function, Z is the normal-
izing constant andVC denotes theclique potentialof clique
C ∈ C having the label configurationωC . Note that the
energies ofsingletons(ie. cliques of single sitess ∈ S)
directly reflect the probabilistic modeling of labels without
context, while higher order clique potentials express rela-
tionship between neighboring pixel labels. In the remaining
part of this section, we will define these clique potentials for
each layer.

2.1. Feature Layers

On the color layer, the observed imageFc = {f̃ c
s |s ∈

Sc} consists of three spectral component values (L∗u∗v∗)
at each pixels denoted by the vector̃f c

s . We assume that
P (f̃ c

s | ωs) follows a Gaussian distribution, the classesλ ∈
Λc = {1, 2, . . . , Lc} are represented by the mean vectors
µ̃c

λ and the covariance matricesΣc
λ. The class label as-

signed to a sites on the color layer is denoted byψs. The
energy functionU(ψ,Fc) of the so defined MRF layer has
the following form:
∑

s∈Sc

Gc(f̃ c
s , ψs) + β

∑

{s,r}∈C
δ(ψs, ψr) + γc

∑

s∈Sc

V c(ψs, η
c
s)

   

Inter−layer Cliques

Intra−layer Cliques

Combined

Texture

Color

Fig. 1. Multi-layer MRF model.

Since we assume thatP (f̃ c
s | ωs) is Gaussian, it follows

from Eq. (1) that the corresponding energy potentials
Gc(f̃ c

s , ψs) should be log Gaussians:

ln(
√

(2π)3 | Σc
ψs
|) +

1
2
(f̃ c

s − µ̃c
ψs

)Σc−1
ψs

(f̃ c
s − µ̃c

ψs
)T

(2)
δ(ψs, ψr) = 1 if ψs andψr are different and−1 otherwise.
β > 0 is a parameter controlling the homogeneity of the
regions. Asβ increases, the resulting regions become more
homogeneous. The last term (V c(ψs, η

c
s)) is the inter-layer

clique potential which will be defined later andγc is a pa-
rameter controlling the influence of the combined layer. As
γc increases, the influence is higher.

On the texture layer, the observation consists of a set
of Gabor [7] and MRSAR [8] image features. We adopt
these two type of features because Gabor filters are good
at discriminating strongly ordered textures while MRSAR
features can better describe weakly ordered or random tex-
tures. Out of these features, we only need an optimal subset.
The selection of the best features can also be automated [9]
but herein we do not consider this issue. We will manually
select the best 6-9 feature images.

The MRF model itself is the same as the color one with
some obvious changes in notation: The observation consists
of 6 − 9 dimensional texture feature vectorsF t = {f̃ t

s |s ∈
St}. The energy of higher order cliques is
ξ
∑
{s,r}∈C δ(φs, φr)+γt

∑
s∈St V t(φs, η

t
s), whereξ (resp.

γt) has the same role asβ (resp.γc) in the color layer. Fur-
thermore,φs denotes the label assigned to a sites.

2.2. Combined Layer

The combined layer only uses the texture and color features
indirectly, through inter-layer cliques. A label consists of a
pair of color and texture labels such thatη = 〈ηc, ηt〉, where
ηc ∈ Λc andηt ∈ Λt. The set of labels is denoted byΛx =
Λc × Λt and the number of classesLx = LcLt. Obviously,



Nat-23(128× 128) texture(11.9%, 4) color(8.1%, 5) text. layer(4.3%, 4) col. layer(2.6%, 5) combined(2.9%, 5)

Nat-8(128× 128) texture(30.1%, 6) color(6.7%, 5) text. layer(5.8%, 5) col. layer(2.6%, 5) combined(2.7%, 5)

monkey(224×224) texture (2) color (2) texture layer (2) color layer (2) combined (2)

Fig. 2. Misclassification rate and estimated number of classes of color only, texture only, and combined models

not all of these labels are valid for a given image. There-
fore the combined layer model also estimates the number
of classes and chose those pairs of texture and color labels
which are actually present in a given image. The energy
functionU(η) =

∑
s∈Sx (Vs(ηs) + ρcV c(ψs, η

c
s) + ρtV t(φs, η

t
s))+

α
∑
{s,r}∈C δ(ηs, ηr) whereVs(ηs) denotes singleton ener-

gies,V c(ψs, η
c
s) (resp.V t(φs, η

t
s) denotes inter-layer clique

potentials. The last term corresponds to second order intra-
layer cliques which ensures homogeneity of the combined
layer.α has the same role asβ in the color layer model and
δ(ηs, ηr) = −1 if ηs = ηr, 0 if ηs 6= ηr and 1 ifηc

s = ηc
r

and ηt
s 6= ηt

r or ηc
s 6= ηc

r and ηt
s = ηt

r. The idea is that
region boundaries present at both color and texture layers
are preferred over edges that are found only at one of the
feature layers. Inter-layer interactions are as follows:

V c(ψs, η
c
s) =

∑

{s,r}∈C6
WrD

c(ψr, η
c
s)

whereDc(ψr, η
c
s) =| Gc(f̃ c

r , ψr)−Gc(f̃ c
s , ηc

s) | (see Eq. (2)).
V t(φs, η

t
s) andDt(φr, η

t
s) are defined in a similar way us-

ing texture features. At any sites, we have a clique be-
tween two layers containing 6 sites (the set of these inter-
layer cliques is denoted byC6), which implements 5 inter-
layer interactions: Sites interacts with the corresponding
site on the other layer as well as with the 4 neighboring
sites two steps away (see Fig. 1).Wr is the weight of the
clique {s, r} ∈ C6. We assign higher weight (0.6) to the
corresponding site whereas smaller weights (0.1 each) to
the other 4 neighboring sites. The latter 4 sites help to en-
sure homogeneity on the combined layer. Note thatDc and
Dt corresponds to the difference of the first order potentials

at the corresponding feature layer. Clearly, the difference is
0 if and only if both the feature layer and the combined layer
has the same label. If the labels are different then it is pro-
portional to the energy difference between the two labels.
ρc (resp.ρt) controls the influence of the inter-layer cliques
on the combined layer. A higher value will increase the im-
portance of the information coming from the corresponding
feature layer. Note that we have a similar weight (γc, γt) at
the feature layers. The difference of these weights balances
the influence of the feature layers to the combined layer vs.
combined layer to the feature layers. Therefore, depending
on the value ofρt (resp. ρc), we can increase (γ > ρ) or
decrease (γ < ρ) the influence of a feature layer to the com-
bined layer without changing the influence of the combined
layer to a feature layer. We found this an important issue in
the case of the texture layer.

2.3. Parameter Estimation

To control the number of classes, we add the following term
to the energy function of each layer:R((10Nωs)

−3+P(L)).
(10Nωs)

−3 penalizes small classes (Nωs is the percentage
of the sites assigned to classωs), whileP(L) includes some
prior knowledge about the number of classes. Currently
this is expressed by a log Gaussian term (similar to the one
in Eq. (2)) with mean valuêL (basically an initial guess)
and varianceσ (confidence in the initial guess).R is sim-
ply a weight of this term, we set it to0.5 in our tests. We
also have to estimate the Gaussian parameters of each class.
This is done using an adaptive segmentation scheme similar
to [10]: every 10 iteration, we simply recompute the mean



values and covariance matrices based on the current label-
ing. Initial estimates at feature layers are obtained via mean
shift clustering [11].

3. EXPERIMENTS

The proposed algorithm has been tested on a variety of syn-
thetic and real images. The computing time (including both
parameter estimation and segmentation) was 3-10 minutes
(depending on size and number of classes) on a Pentium
III 933. We also compare the results to unsupervised tex-
ture only and color only segmentation (basically a monogrid
model similar to the one defined for the feature layers but
without inter-layer cliques). The number of classes, mean
vectors and covariance matrices have been estimated dur-
ing the segmentation process. Hyper-parameters have been
trained on a small subset of images:α = 1.0, β = ξ = 10.0,
γc = γt = 1.5, ρc = 0.5, andρt = −0.3. These values
have been found to provide satisfactory results onall test
images. The values ofβ and ξ are not crucial, basically
any value between 2 and 15 provides good segmentations.
γ andρ values need slightly higher accuracy. Note that by
settingρt < 0 andρc > 0, we decrease the influence of the
texture layer and increase the influence of the color layer on
the combined layer. This is necessary because texture fea-
tures (due to filtering and blurring) have weaker spatial lo-
calization. Hence, we give a higher weight to the color layer
so that edges will be localized correctly while region ho-
mogeneity (where color layer is slightly weaker, especially
in textured regions) is still maintained. Fig. 2 shows some
segmentation results together with the measured misclassi-
fication rate. Clearly, the multi-layer model provides sig-
nificantly better results and a more accurate estimate of the
number of classes compared to color only and texture only
segmentations.Nat-23shows an image with 4 different tex-
tures and 5 different colors. We can see, that our method
provides accurate segmentations and it is also able to detect
the right number of classes on all layers. Note that the com-
bined layer produces slightly higher misclassification rates
(≈ 0.3%) than the color layer. This is due to sharper bound-
aries on the color layer (texture has weaker spatial resolu-
tion and the combined layer is directly influenced by the tex-
ture layer). We have also compared our results to those re-
ported in [2] and found them equally good. One example is
themonkeyimage but more results are available on our web-
site (www.cs.ust.hk/˜kato/research/icip2003/ ).

4. CONCLUSION

We have proposed a new unsupervised multi-layer MRF
segmentation model which successfully combines color and
texture features and estimates associated model parameters.

However, the model is not restricted to these features, it can
be applied to multi-cue segmentation in general.
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