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ABSTRACT This paper proposes a vision-based fire and smoke segmentation system which uses spatial,
temporal and motion information to extract the desired regions from the video frames. The fusion of
information is done using multiple features such as optical flow, divergence and intensity values. These
features extracted from the images are used to segment the pixels into different classes in an unsupervised
way. A comparative analysis is done by using multiple clustering algorithms for segmentation. Here the
Markov Random Field performs more accurately than other segmentation algorithms since it characterizes
the spatial interactions of pixels using a finite number of parameters. It builds a probabilistic image model
that selects the most likely labeling using the maximum a posteriori (MAP) estimation. This unsupervised
approach is tested on various images and achieves a frame-wise fire detection rate of 95.39%. Hence this
method can be used for early detection of fire in real-time and it can be incorporated into an indoor or outdoor
surveillance system.

INDEX TERMS Fire detection, gaussian mixture models, iterated conditional modes, k-means clustering,
markov random fields, optical flow.

I. INTRODUCTION

The fire and smoke detectors are an important part of fire-
fighting systems and are also widely used in monitoring
indoor buildings and outside environments. The conventional
detection systems use inbuilt sensors that do not issue the
alarm unless the particles reach the sensors to activate them.
To obtain high precision, the sensors must be distributed
densely nearby. Hence in real-world situations, these are
highly inefficient, and the delayed response may cost the
life of firefighters and other human lives. As an appropriate
alternative to conventional methods, vision-based fire and
smoke detection systems were introduced in the past few
years.

The vision-based systems either utilize the color informa-
tion of fire and smoke or it uses the dynamic motion fea-
tures [1], [2]. The classical approaches operated on RGB [3],
YCbCr [4], CIE L*a*b [5] or HSI [6] color spaces and the
image pixels were classified according to the appearance
model of the fire. But the use of color information gives
high false alarm rates due to similar colors present in the sur-
rounding environments. Another approach involving disorder
analysis and growth rate was used to minimize these false
alarms [7], [8]. Further, one of the most popular methods
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was wavelet analysis, which used various extracted features
for the detection process. The wavelet domain energy anal-
ysis was done to analyze the time-variant behavior of the
smoke [9]. To improve the performance, an Expectation-
Maximization based GMM model was obtained by training
the pixels of previously occurred events [10]. On the other
hand, [11] used a change detection algorithm by extracting
foreground pixels. Nevertheless, the system suffers heavily
from a change in illumination and hence requires fine-tuning
of the algorithm parameters. In [12], the optical flow vectors
were calculated based on the turbulence characteristics of
the smoke and were used to eliminate the background. Other
methods calculated the motion direction of smoke by assum-
ing grayscale invariance in the optical flow algorithm [13].
Several papers also modeled a Markovian process by con-
sidering the motion of the fire [1]. Later, Hidden Markov
models [14] were used to distinguish between the flame and
flame-colored objects. These models evaluated the spatial
color variations in flame to reach a final decision.

The state-of-the-art architecture of a fire/smoke detector
can be summarized in three steps such as pixel-wise clas-
sification of fire/smoke, region-based segmentation and the
analysis of these regions. In this paper, a comparative analysis
of different segmentation algorithms is done to find the appro-
priate one for fire and smoke detection. The experiments
are conducted on Infrared (IR) datasets available online.
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Moreover, different feature extraction methods such as opti-
cal flow, SIFT flow and divergence are also evaluated. The
feature vector is computed for each of the IR videos and it is
further passed on to various segmentation algorithms. In par-
ticular, the main methods used in the segmentation of fire
and smoke are K-Means Clustering [15], Gaussian Mixture
Models (GMM) [16], Markov Random Fields (MRF) [17]
and Gaussian Markov Random Fields (GMRF) [18]. Finally,
the confusion matrix and accuracy are computed to analyze
the efficiency of the system. This work is intended to dis-
criminate fire (meaning the fire flames present in the scene),
smoke and background in thermal imaging sequences.
The novelty of this approach is the following:

• It involves the fusion of intensity, divergence, and optical
flow-based features to obtain the most discriminative
features for segmentation. The divergence and optical
flow features are chosen since they calculate the flow
at a given point and the displacement of pixels from
one frame to another. Hence these motion features are
combined with the intensity values representing the vari-
ations in temperature to form themost significant feature
vector for segmentation. Flames, smoke and background
have different dynamic and thermal features, so they
form three different clusters. Therefore, the easiest way
to detect flames is to discriminate them from smoke and
the background.

• The cascading of the feature extraction with an MRF
framework for the segmentation of fire and smoke. The
main advantage of the proposed system is that it does
unsupervised learning by modeling the likelihood of the
data. The latent variable is already known and for this
experiment, it can have 3 values corresponding to fire,
smoke and background. Since these unsupervised algo-
rithms support pre-training, it can be used in real-time
for testing. Though various deep learning strategies are
currently used to obtain high performance; they are
supervised and hence require a large amount of labeled
data for training [19], [20]. In the case of real-time
firefighting scenarios, the availability of labeled data of
both fire and smoke is limited.

• The proposed system has low computational complexity
and less trainable parameters. It also requires lesser
training data to obtain high accuracy in segmentation.
Multi-spectral systems can be developed using these
algorithms by mixing IR and UV [21] data. Further,
the feature extraction also allows fusing information
from different sensors and hence by using this informa-
tion the fire, smoke, and background can be accurately
classified.

II. RELATED WORKS

Several state-of-the-art segmentation methods have been pro-
posed based on the characteristics of fire in different color
spaces. One of the earlier methods exploited the YCbCr color
space [4] whereas another method combined the saturation

channel of HSV with the RGB color space [2]. These tech-
niques were based on decision rules, which were further used
to define thresholds for segmentation. Similarly, in [22] a ref-
erence color model was introduced to represent smoke in the
RGB space. Another feature extraction method that was used
for texture analysis was Local Binary Patterns (LBP) [23].
It was used to identify the smoke regions by extracting the
blurred edges. Some works also utilized the fractal prop-
erty [24] to create the feature vector for smoke detection.
Another model utilized the probability-based thresholding
in the RGB color space [25]. The YUV and RGB color
spaces were also used together to develop a 3-D Gaussian
model [26].

Further, there are several methods of fire detection
based on motion features. Traditionally, background subtrac-
tion [27], [28] is done on consecutive frames to identify the
motion features whereas, in [29], [30], adaptive GMM was
also used formodeling the background. Later, the optical flow
was introduced to calculate the motion of smoke [31]. The
main disadvantage of these approaches was high computa-
tional cost and noise sensitivity. Apart from using the motion
and color features fire detection was also done by applying
wavelet transform [1]. In [14] both Wavelet transforms,
and Hidden Markov Model was combined to identify the
flame-colored pixels. But these algorithms perform well only
if the fire is in a close range with clear visibility. Hence the
detection of fire and smoke is still challenging due to vary-
ing lighting and diverse background. The general-purpose
cameras which capture RGB images fail to produce relevant
information during nighttime. Infrared (IR) images are highly
reliable for detecting fire during situations with inadequate
lighting because of the transparent nature of smoke. Hence
in [32], infrared (IR) images were utilized to distinguish
smoke from other smoke like objects. The IR images were
used to construct a mask for smoke and the efficiency of
smoke detection was enhanced by fusing thermal and visual
information. In [33], [34] a thresholding based method is
implemented to obtain binary images. Since the pixels with
high intensity corresponds to fire in IR images, this helps
to minimize the false alarm rates. Decision fusion [35]
was another method that utilized IR images for forest fire
detection. In [36], fire detection is done in IR images by
utilizing the brightness and motion features. Additionally,
a histogram-based segmentation is done to extract the target
regions. A comparative analysis of different algorithmswhich
uses video-based smoke detection for visible and infrared
images are presented in [37]. In the case of algorithms that
use infra-red images, the highest detection rate achieved was
91% [38]. Here the different methods also use a combination
of features to decrease the false alarm rate. Finally, the com-
parisons concluded that the IR images are more reliable in
smoke detection than the images in the visible range [28].

A few other works also fuse visual and IR data to improve
the robustness of the detection method [39]. Even though
these fusion approaches have been implemented, another
challenging problem is the optimization of the number
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FIGURE 1. Structure of the Proposed Methodology. The frames are first pre-processed to extract the features
(intensity, optical flow and divergence in the final algorithm). After this, a segmentation that uses a Bayesian
modeling is applied to the features of the pixels. K-Means, GMM, GMRF and MRF are the compared models. The
experiments show the superior performance of the MRF segmentation method.

of features. Our work implements a cascaded approach con-
sisting of multiple feature extraction and segmentation for
detecting fire and smoke in a computationally inexpensive
manner.

III. PROPOSED ALGORITHM

The proposed algorithm has two main stages, which are fea-
ture extraction and segmentation. The algorithm is depicted
in Fig. 1. The algorithm can be summarized as follows. The
first stage (labeled as feature extraction in the figure), consists
of obtaining different features of every pixel of the sequence
of P images. The first set of features is just the intensity of the
pixel, which represents the temperature. From the sequence of
P images, we extract the velocity field and assign a velocity
to each pixel in the sequence. This is an estimation of the
speed of the particles moving in the sequence of images.
Finally, from the velocity field, we compute its divergence
field. We use the magnitude of the velocity and divergence
as features. We also compute the SIFT flow features of
the images as additional features. The details of the feature
extraction methods are included in the following subsections.
The second stage of the algorithm (segmentation) is an unsu-
pervised segmentation of the pixels as a function of their
features. We compare a variety of methods that cluster the
data into different classes. Clustering methods can be seen
as the construction of a set of class conditional likelihood
functions for each of the possible classes. Using these like-
lihood functions and assuming a parametric prior for the
classes, parametric posterior probabilities given the observed
pixels can be proposed and then the parameters of both prior
and posterior are estimated. After this, the segmentation is
completed by deciding on the class of the pixel based on the
maximum value for those posteriors (maximum a posteriori
criterion). The clustering methods compared in this paper

are K-means, Gaussian Mixture Models (GMM) trained with
the Expectation- Maximization Algorithm (EM), Markov
Random Fields (MRF) and Gaussian Markov Random Field
(GMRF).

Apart from the probabilistic interpretation of these meth-
ods, a reason to choose Bayesian methods for clustering is
that they have no free parameters to adjust. The price to
pay for this advantage is that an assumption on the class of
the likelihood functions and the prior probabilities have to
be assumed. In three of the methods, we choose a Gaussian
assumption. K-means further assumes that the covariance is
proportional to an identity (isotropic). The MRF assumes
that the likelihood is a general Gibbs (exponential) form.
Other methods not exploiting the Markovian do not need a
probabilistic model, as the classical self-organizing map [40]
or they may present lower computational burden, as in the
case of Gradient descent K-means [41], but in exchange,
they have learning parameters and structure dimensions that
have to be cross-validated and this is why they haven’t been
considered in this paper.

A. FEATURE EXTRACTION

The first feature is the pixel intensity itself. The subse-
quent features (velocity, divergence, and SIFT features)
are computed using sequences of two consecutive images.
This feature extraction sequence is summarized below with
illustrative examples of the result of each one of the extracted
features.

1) OPTICAL FLOW

The first stage of feature extraction in the proposed algorithm
is optical flow computation. Our proposed fire detection
algorithm takes advantage of one of the visually detectable
characteristics of fire, i.e. motion. Here the motion estimation
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FIGURE 2. Left: A raw image frame with fire and smoke. Right: The quiver
plot of the optical flow vectors on that frame, represented as blue arrows.

of fire is done using the Horn-Schunck Optical Flow
method [42]. This algorithm makes use of the flow vectors
of moving objects over time to detect moving regions in
an image. It computes a 2-dimensional vector known as the
motion vector which indicates the velocities as well as the
directions of each pixel of two consecutive frames in a time
sequence. The algorithm is based on two approximations: The
intensity of a moving object is preserved between two frames,
and all objects in a frame will be present in the next frame.
If they are applied to the intensity I (x, y, t) of an image,

then one can state

I (x, y, t) = I (x + 1x, y + 1y, t + 1t) (1)

Using the Taylor series approximation on the above equation
and by assuming the movement to be small, we obtain the
following first order approximation:

I (x + 1x, y + 1y, t + 1t) = I (x, y, t)

+
∂I

∂x
1x +

∂I

∂y
1y +

∂I

∂t
1t + O(t) (2)

whereO is the bgf O Landau function. Combining equations
(1) and (2) gives expression

∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t
= 0 (3)

where Vx = 1x
1t , Vy = 1y

1t and e = − ε
1t . The constrained

Horn-Schunk optimization method minimizes the regulariza-
tion term

E(x, y, t) =

(

∂Vx

∂x

)2

+

(

∂Vx

∂y

)2

+

(

∂Vy

∂x

)2

+

(

∂Vy

∂y

)2

(4)

subject to the constraint in (3). Minimizing this term is equiv-
alent to minimize the variation of the velocities across space.
The details of this derivation can be found in [42]. Fig. 2
shows the optical vectors on a video frame with fire and
smoke. In general, it can be appreciated that the edges of
the fire have a higher velocity field, and the smoke has lower
values. Also, it can be observed that the core of the fire does
not show any velocity since the temperature is uniform and
constant across frames.

FIGURE 3. Left: Raw image. Right: Divergence of the velocity vector field.

2) DIVERGENCE

The next step of our algorithm is the computation of the
divergence of the velocity field. The divergence is defined
as the net amount of flux (represented by the velocity field)
entering or leaving a point. It is defined as positive when
there is a net quantity of flux leaving the point, otherwise
it is negative or zero. Given a vector field ED = VxEi + VyEj,
the divergence is computed as:

div ED = ∇ · ED =
∂Vx

∂x
+

∂Vy

∂y
(5)

Hence the measure of expansion or compression of an
object in the field is given by divergence. By applying diver-
gence, a clear contrast between widening and narrowing of
flow vectors can be visualized. As an example, Fig. 3 shows
the divergence operator applied to the velocity field of the
right panel of Fig. 2. The left panel of Fig. 3 shows a high
divergence in the edges of the fire and a lower divergence in
the areas with smoke. Since the surface of the fire is constant
across frames, the velocity field and hence the divergence,
are zero. Thus, both velocity and divergence are significant
of smoke and fire edges, but the inclusion of the intensity of
pixels needs to be added to detect the fire inside its edges.

3) SIFT FLOW

Besides the dynamic features computed above, SIFT features
are added to them to test whether they improve the classifica-
tion by adding information to the feature vector. This has been
added because, in the optical flow feature selection described
above, the main assumptions include brightness constancy
and velocity smoothness constraint.

Nevertheless, the pixel displacements in images of distinct
scenes can be larger than themagnitude of themotion vectors.
Thus, the assumptions used in classical optical flow may
not be strong enough. These issues are addressed using the
SIFT flow algorithm [43]. Primarily the SIFT descriptors are
extracted from each pixel location and these descriptors are
constant for the pixel displacement field. The SIFT descrip-
tors are brightness independent and view-invariant image
structures. Hence when there is significantly different image
content, matching these SIFT descriptors helps to estab-
lish meaningful correspondences across the images. These
descriptors can be used even when the pixel displacements
are as large as the image itself. But the smoothness of the
pixel displacement across images is still assumed since close
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FIGURE 4. Left: Raw image. Right: Visualization of the SIFT image by
projecting the SIFT vector into the 3D RGB space. The color-coding
scheme uses the first 3 principal components of the SIFT descriptor to
map into the principal components of the RGB space. Here the first
component is transformed into R+G+B, next into R-G and the last is
mapped into R/2+G/2−B. Similar pixel displacements are visualized
using similar colors [43].

by pixels tend to have similar displacements. Thus, the search
of the correlated SIFT descriptors across the images is for-
mulated as an optimization problem with a cost function as
follows:

E(w) =
∑

p

min
(

‖s1(p) − s2(p+ w(p))‖1, t
)

+
∑

p

η

(

|u(p)|+|v(p)|
)

+
∑

(p,q)∈ǫ

min
(

α|u(p) − u(q)|, d
)

+min
(

α|v(p) − v(q)|, d
)

(6)

The above function consists of a data term, displacement
term, and a smoothness term. The displacement vector at
pixel location p = (x, y) is given by w(p) = (u(p), v(p)),
ǫ corresponds to the spatial neighborhood of a pixel and
si(p) denotes the SIFT descriptor extracted at location p in
image i. The first term in the above objective function has an
L1 norm calculation to account for outliers in SIFT matching
whereas a thresholded L1 norm is used in the third term along
with the regularization parameter α to model discontinuities
in the pixel displacement field. Further, the optimization is
done using a dual-layer loopy belief propagation algorithm.
Here the smoothness term is decoupled and hence allows to
separate u and v during message passing [44]. Thus at one
iteration of the message passing the complexity is reduced
from O(n4) to O(n2). The distance transforms [45] is used
further to reduce the complexity since the functional form of
the objective function has truncated L1 norms.

B. SEGMENTATION

As stated before, the segmentation is performed by the use
of a clustering procedure. Once the clusters are estimated,
a procedure is applied to determine what are the most likely
cluster for each sample. Clustering algorithms are based on
a conditional probabilistic model of the observable data xi,
where the condition is its class. Thus each pattern xi has
an associate latent variable zi ∈ {1, · · ·K }. K-means abnd
GMM assume that the latent variables are independent and

that the observable data are conditionally independent, this is
∀i, j, p(xi|xj, zi = k) = p(xi|zi = k).

The models for K-means and GMM are usually repre-
sented by Gaussian functions. In K-means, the K class con-
ditionals are identical and isotropic. Thus, the observation
log-likelihood is proportional to the Euclidean distance of the
samples to the K means of the distributions. The posteriors
are simply approximated to 1 for the distribution with the
closest mean, 0 for the rest. GMM assumes variable covari-
ance matrices, which gives more flexibility to the model, and
the posteriors are computed using the Bayes theorem through
the data likelihood and the latent variable priors.
The MRF model [46]–[48] uses a likelihood for the data

identical to the GMM one, but it assumes that there is a
relationship between a pixel and its neighbors, so the latent
variables in the same image are remodeled using an undi-
rected graph. The algorithm is usually updated using the
Iterated Conditional Modes (ICM) method. The GMRF also
models the likelihood similarly and here the random variable
associated with a pixel is considered to be jointly Gaussian.
The methods are summarized below.

1) K-MEANS

K-means clustering [49] is an unsupervised learning algo-
rithm. It partitions the data points into K clusters and each
of the data points belongs to the cluster with the closest mean
value. Based on the feature similarity, the algorithm works
iteratively to assign each data point to one of K clusters. The
algorithm inputs the data set and the number of clusters K.
The initial estimates for K centroids are either generated ran-
domly or selected from the data set. Then it iterates between
two steps:

• Data assignment step: Here each centroid defines one of
the clusters. Based on the squared Euclidean distance,
each data point is assigned to its nearest centroid. Let
ci be the collection of centroids in set C, then each data
point x is assigned to a cluster K based on the following:

arg min
ci∈C

dist(ci, x)
2 (7)

• Centroid update step: The mean is calculated for all data
points assigned to a centroid’s cluster and thereby the
centroids are recomputed.

ci =
1

|Si|

∑

xi∈Si

xi (8)

where Si be the set of data point assignments for each ith

cluster centroid.

The algorithm iterates between these steps and it converge
when none of the data points change clusters and the sum of
the distances is minimized.

2) GAUSSIAN MIXTURE MODELS

A probabilistic model can be used in the representation
of normally distributed subpopulation in a dataset. Gaus-
sian mixture models [16] are such models that learn about
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the subpopulation without knowing which subpopulation a
data point belongs to. This constitutes a form of unsuper-
vised learning since the assignment of the subpopulation is
unknown. Themixture of Gaussians is represented as follows:

p(xi|µk , 6k ) =

K
∑

k=1

πkN (xi|µk , 6k ) (9)

N (xi|µk , 6k ) =
1

√

(2π)K |6k |
exp(−

1

2
(xi−µk )

T6−1
k (xi−µk ))

(10)

where xi denotes the observed variables. The mixture com-
ponent weights and the component mean and covariances
characterizes a Gaussian mixture model. In the multivariate
case µk denotes the mean whereas 6k corresponds to the
covariance matrix. For each latent variable zk , we define prior
probabilities πk . The total probability distribution normalizes
to 1 with the constraint that

∑K
k=1 πk = 1.

When the number of components K is known, expectation-
maximization is employed to estimate the parameters of the
mixture model. It is a numerical technique used in the estima-
tion of maximum likelihood. It is an iterative technique with
the property that with each subsequent iteration themaximum
likelihood of the data increases strictly. Hence it reaches a
local maximum at the end of the procedure. The expectation-
maximization consists of two steps. In the Expectation step,
the posterior probability γik that, each data point belongs to
each cluster is calculated using the current estimated mean
vectors and covariance matrices. While in the Maximization
step, the cluster means and covariances are recalculated based
on the probabilities calculated in the expectation step. The
steps are repeated until the algorithm converges, providing a
maximum likelihood estimate. Thus, the main algorithm is as
follows:

• Evaluation of the log likelihood after initializing the
means, covariances and the mixture component weights.

• E-step: Calculation of the posterior probability that the
data point xi belongs to component zk . Thus γik =
p(zk |xi, π, µ, 6)

γik =
πkN (xi|µk , 6k )
K
∑

k=1
πkN (xi|µk , 6k )

(11)

• M-step: Re-estimate the new parameter values using the
γik calculated in the E-step.

πk =

N
∑

i=1

γik

N

µk =

N
∑

i=1
γikxi

N
∑

i=1
γik

6k =

N
∑

i=1
γik (xi − µk )2

N
∑

i=1
γik

(12)

• Evaluation of the log likelihood function using the new
values of mean, covariance and mixture component
weights.

ln p(X |µ, 6, π ) =

N
∑

i=1

ln(
K

∑

k=1

πkN (xi|µk , 6k )) (13)

If there is no convergence,the E step is repeated and finally
using the fitted model density estimation and clustering is
done.

3) MARKOV RANDOM FIELD

In images, neighboring pixels exhibit similar properties such
as intensity, texture and color information. The Markov ran-
dom field (MRF) [50] is an undirected graphical model that
makes use of this contextual information and represent them
in probabilistic terms. Based on the Markov random field
theory, any digital image consists of a discrete set of pixels
that can be modeled using a set of random variables. The
site is a term that is used to denote every pixel in an image
and each site is given a label y which represents the intensity
value of a pixel. Let an M × N digital image be described
as S = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n} where S is a
rectangular grid. The relations between the sites in S are
defined using a neighborhood system and a set of sites in S
is said to be a clique C if every pair of sites in C is neighbors
to each other. Hence there exist two random fields; the label
random field y = {yi|si ∈ S} and the observable random field
x = {xi|si ∈ S}.
The main goal of segmentation [51] is to find the optimum

estimation of hidden field y from observed field x i.e., to esti-
mate the correct classification for each pixel. The MRF uses
the maximum a posterior probability estimation to minimize
the probability of misclassification.

ŷ = arg max
y

P(y|x) (14)

The Hammersley-Clifford theorem [52] states that any
MRF can be described by a probability distribution P(y)
which follows Gibbs form.

P(y) =
1

Z
e−

U (y)
T (15)

where P(y), Z and T denote the prior probability, normal-
ization constant and temperature parameter respectively. The
energy function U(y) can also be represented as follows.

U (y) =
∑

c∈C

Vc(y) (16)

where Vc(y) denotes the potential function. Here U(y) is the
sum of clique potentials Vc(y) over all possible cliques C.
It is also assumed that one pixel has at most 4 neighbors.
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Therefore the clique potential can be either singleton, dou-
bleton and other higher orders depending on the number of
neighbors. Thus a clique consisting of two neighboring pixels
is given as follows:

Vc(yi, yj) = βδ(yi, yj) (17)

where β is the coupling coefficient and when it increases the
regions becomes more homogenous.
The segmentation problem is solved using one of MRF’s

pixel labeling algorithm named Iterated Conditional Modes
(ICM) [53]. This algorithm iteratively optimizes a statisti-
cal criterion by approximating the Maximum A-Posteriori
(MAP) estimate. In the MAP approach, a posterior probabil-
ity measureP(y|x) andwe try to find optimal labeling x̂ which
maximizes this probability. It is also similar to minimizing
the posterior energy functionU (y|x). ICM is thereby a greedy
algorithmwhich tries to find a local minimum. For each pixel,
the algorithm initially provides an estimate of the labeling and
it chooses the label giving the largest decrease of the energy
function. The posterior energy U (y|x) is given by the sum of
the likelihood energy function and the prior energy function
as follows:

U (y|x) = U (x|y) + U (y) (18)

ICM, when compared with other approaches such as sim-
ulated annealing, doesn’t allow the temporary increase in the
potential function to obtain minimum potential. The ICM
algorithm can be summarized using the following steps.

• Initialize by assigning an arbitrary labeling y at step
n = 0.

• At step n, we find,

yn+1 = arg min
y

U (y|x) (19)

• Repeat the above step until convergence is obtained.

4) GAUSSIAN MARKOV RANDOM FIELD

A Gaussian Markov random field (GMRF) is an undirected
gaussian graphical model with values of the random field
at the nodes to be jointly Gaussian [54], [55]. GMRFs fit
nicely into a Bayesian framework since they are analytically
tractable. It is a continuously-valued random vector having a
multivariate Gaussian distribution of the following form:

p(y) ∝ exp(−
1

2
(y− µ)T6−1(y− µ)) (20)

where 6−1 = 3 is the the inverse covariance matrix. The
quadratic form of the exponent is given as follows:

yT3y =
∑

i

∑

j

yiyj3i,j (21)

There does not exist an edge between yi and yj in the model
when 3i,j = 0 and hence the neighborhood system is deter-
mined by the matrix 3. The nonzero pattern of 3 helps
to determine whether two nodes are conditionally indepen-
dent. Here 3 is sparse, that is 3i,j = 0 if and only if yi

andyj are conditionally independent. In practice, the GMRFs
are defined using the quadratic energy function [56] given
by:

U (y) =
1

2
yT3y− yT b (22)

where b ∈ R. In the application of Bayesian image pro-
cessing [57], consider the image to have a similar M × N

rectangular lattice structure as of MRFs. When a suitable
prior p(y) is chosen, the maximum a posteriori (MAP) is
estimated to find the optimal labels for segmentation using
the ICM labeling algorithm.

IV. EXPERIMENTS AND RESULTS

The proposed experimental framework reads a captured video
and extracts the frame. The dataset consists of 10 IR videos
with a total of 10754 frames. The data is collected from the
Kill the Flashover project conducted by the Fire Research
Division of NIST (National Institute of Standards and Tech-
nology) [58]. It is focused on demonstrating the dynamics
of fire behavior. All the videos are captured using an ISG
E380 thermal imager and have both fire and smoke in real-
time. The videos consist of both interior and exterior environ-
ments and hence serves as a generalized dataset. Each of the
videos is shot in a time duration varying between 1minute and
8 minutes. The thermal footages have a frame rate of 30 fps.
There are 3 videos of size 960 × 720, 4 videos which have
a resolution of 480 × 360 and the other 3 are 540 × 360,
640 × 358, and 1280 × 720 respectively.

Here the information extracted from the first 10 frames will
act as prior knowledge for the test images. Initially, the train-
ing is done using images with fire and smoke and the primary
step during this phase is feature extraction. The main features
used for experimentation are the intensity values of the image,
magnitude of motion vectors, SIFT flow features and the
divergence of the image. The intensity values are taken into
consideration since fire will be having a higher intensity value
compared to the smoke and background. The divergence of
the image is another feature that gives the amount of flow
passing through a surface surrounding a pixel. Additionally,
the SIFT flow features preserve spatial discontinuities and
it helps to compute pixel-wise SIFT features between two
images. The motion features from the frames are captured
by applying the Horn Schunck optical flow algorithm [59].
Let the intensity value at pixel of discrete coordinates x, y
and at time t be denoted as I (x, y, t). To calculate the optical
flow features the brightness constancy is assumed i.e. dI

d t = 0.
Further, by computation, a solution is obtained byminimizing
the regularization term in (4). The average velocity vectors u
and v are computed for each pixel in the image of sizeM×N .
After calculating the optical flow, we obtain its magnitude as
a feature from the first P frames, the feature vector becomes
M × N × P. The direction turns out not to be informative
because the fire is not always traveling up. Indeed, horizontal
velocity is often observed close to ceilings and turbulences
cause velocities in direction to the floor. The divergence of
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FIGURE 5. Sample segmentation using (a) K-Means (b) GMM (c) GMRF (d) MRF.

these P frames is calculated using (5), hence the size of each
feature vector becomes M × N × P. The intensity values
of the pixels are themselves used as a feature with the same
dimensions. Then these feature vectors are reshaped into col-
umn vectors. Assuming orthogonality of the feature vectors,
the column vectors corresponding to intensity, optical flow
and divergence are concatenated to obtain the final feature
matrix.
Further various clustering techniques are used to separate

the fire and smoke from the background. Thus these com-
puted feature vectors [60] are given as input to different
clustering techniques such as K-Means, GMM, MRF and
GMRF to segment the smoke and fire from the desired frame.
Each of these clustering algorithms [61] provides the indices
for the pixel values corresponding to each of the classes.
These pixel indices are mapped to the original frames to
perform segmentation of the region of interest. The final

classification of fire, smoke, and background are done based
on the intensity values belonging to those clusters. Hence
the labeling of the clusters is done by assigning the cluster
with the highest intensity values to fire, intermediate intensity
values to smoke and the cluster which has a lesser intensity to
the background. Further, the performance evaluation is done
by calculating the accuracy values for different algorithms.
But the classification accuracy alone is not sufficient to select
a model since it hides the details required to better understand
the performance of the model. Hence the confusion matrix
was computed to overcome the limitations of using only the
accuracy as a decision parameter for performance evaluation.
The estimation of the confusion matrix involved the manual
labeling of the test frames to obtain the ground truth. Here the
pixel-wise comparison is done between the segmented and
ground truth values to obtain a summary of predictions made
by the algorithm for each class.
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FIGURE 6. MRF segmentation using (a) Intensity feature (b) SIFT Flow feature (c) Optical flow feature (d) Divergence feature.

A. SAMPLE SEGMENTATION COMPARISON USING

DIFFERENT ALGORITHMS AND FEATURE VECTORS

Fig. 5 shows the segmentation results using different clus-
tering algorithms. The main features used for this experi-
mentation are the divergence, intensity, and the optical flow
values. The first row in Fig. 5 shows the K-means result. The
segmentation is poor for two reasons which are not indepen-
dent. First, the likelihood model assumed by this algorithm
is circularly symmetric, which does not seem to be very
accurate for this problem. Second, the posterior probabilities
are approximated by one for the posterior of the closest
cluster using Euclidean distance and zero otherwise. These
approximations are too strong for the distribution at hand,
as it is stated by the fact that the GMM model, which does
not have this restriction, produces covariance matrices that
are not diagonal. For the case of the GMRF, the most likely
explanation of the poor performance in some background
regions is that the Gaussian assumption is not adequate when

the Markovian behavior is assumed, which can be seen in
the third row of Fig. 5 for the segmentation of background
and fire. Hence it was observed that the cascaded system
using the feature vectors and MRF performs a more suc-
cessful segmentation of fire and smoke than the rest of the
algorithms. The rest of the segmentation algorithms misses
some pixels of inner parts of smoke and fire. The MRF
based approach was able to detect the smoke regions which
appear blurry and indistinguishable for the human eye. Hence
this prior information can be of paramount importance for
the first responders during real-time fire-fighting situations.
It is also evident that the proposed algorithm can disregard
the unwanted artifacts from the frames and only MRF can
capture both the static and dynamic properties of the area of
interest. The clear definition of the shape of fire and smoke
will help in further analysis such as classification of fire
as small, medium or large and thereby provide situational
awareness.
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FIGURE 7. MRF segmentation using (a) Intensity and optical flow features (b) Intensity and divergence features (c) Intensity, divergence and optical flow
features.

The contribution of different feature vectors in improving
the MRF based segmentation is shown in Fig. 6 and Fig. 7.
The first row of Fig. 6 illustrates theMRF segmentation using
only intensity as a feature vector. Whereas the second row
uses SIFT flow, the third row uses optical flow, the final
row uses divergence features. In case of Fig. 7 the first
row corresponds to MRF segmentation using the fusion of
intensity and optical flow features, the second row uses the
fusion of intensity and divergence features and the final row
uses the fusion of intensity, optical flow, and divergence as
the features. When MRF segmentation is applied directly to
the image intensity, it was found that their values are not
reliable in segmenting the background. Hence different fea-
ture extraction methods such as optical flow, SIFT flow and
divergence were employed for more accurate segmentation.
It was observed that SIFT flow showed the worst performance
in segmentation and hence it was discarded as a feature vector.
On the other hand, optical flow and divergence used velocity
vectors as features, and hence the dynamics of smoke and
the moving edges of the fire were extracted properly. The
main disadvantage of these features was that the segmented
background also includes the static portion of the fire, which
has a higher intensity than the background. Hence a feature
vector was constructed by concatenating intensity, optical
flow, and divergence features. It was observed that when
MRF based segmentation was performed on these feature

vectors, the smoke, fire, and background were segmented in a
more precise manner. The proposed approach is also tested in
video frames under different conditions and the segmentation
results are shown in Fig. 10.

B. CONFUSION MATRIX

The confusion matrix is an evaluation metric used widely for
the analysis of semantic segmentation. It is a square matrix
in which each row has instances of the true class and each
column has instances of the segmented class. Hence Cmn
represents the pixels of classmwhich are classified as class n.
Table 1 shows the comparative analysis of the confusion
matrix table for different methods. It can be seen that both
GMM andMRF based segmentation was able to segment fire
in a more accurate way than the other algorithms. In the case
of smoke MRF was able to perform the segmentation with
90% accuracy whereas the rest of the methods were unable
to distinguish accurately between background and smoke.
Further, Fig. 8 shows the final calculated accuracy from the
confusion matrix for the proposed methods. It can be seen
that the fusion of intensity, divergence, and optical flow fea-
tures boosts the performance of the segmentation algorithms.
In comparison to the other clustering algorithms, MRF based
segmentation provides the highest accuracy while using just
the intensity features and also when the feature fusion is
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TABLE 1. Confusion matrix for K-means, GMM, GMRF and MRF.

FIGURE 8. Accuracy of the different segmentation algorithms using just
intensity features and using fusion of intensity, optical flow and
divergence features.

applied. The overall accuracy of the proposed approach was
found to be 95.39%.

C. ACCURACY ANALYSIS FOR FEATURE SELECTION

The comparative analysis of different features for MRF seg-
mentation is now shown in Fig. 9. The best performance
is seen when the spatial, temporal and motion features are
extracted and used for segmentation. The optical flow, diver-
gence, and intensity features are combined to obtain an
overall accuracy of 95.39%. Nevertheless, when intensity
is combined with either optical flow or divergence features
there is a reduction in accuracy by 5-7%. When all the
3 features are combined it captures the static features of fire
and background as well as the randomness of smoke. The
main disadvantage of using the features individually is that
in the case of optical flow and divergence it extracts only
the velocity vectors and hence the background and fire are
not segmented properly. Further, when MRF segmentation is
performed on the intensity values it results in only 76.66%
accuracy due to lack of contrast between the desired regions.

D. RUN TIME ANALYSIS

The experiments were conducted on Intelr CoreTM

i7-7700HQ CPU @ 2.80Ghz with 16Gb of memory. Using
the MRF based approach the overall run time for a single
frame in a video is 3.04 seconds. The overall time complexity
was calculated by involving feature extraction, feature fusion,

FIGURE 9. MRF segmentation accuracy using different feature extraction
methods.

TABLE 2. Comparison of time complexities of different approaches.

model optimization for 10 iterations and unsupervised test-
ing. Few of the other video segmentation algorithms are
implemented in videos with much lower resolution and the
time complexity is about 355 seconds for 85 frames [62].
Even though some methods have a run time of 170 seconds
for an 85-frame video, it is obtained by using GPU with
high-end hardware specifications [63]. Hence for one of the
videos with 500 frames, it takes about 1500 seconds in a CPU.
The proposed method is currently implemented offline, and
it can be further optimized for parallel processing especially
during feature extraction and training.

Table 2 shows the comparison of overall time complexity
and test time for the various algorithms described in this
paper. It was found that the K-means method has the least
overall computational cost. But the accuracy of this algorithm
is poor compared to the rest of the methods. Meanwhile,
GMRF takes slightly more time for training and test. Though
GMM and MRF have similar time complexities, MRF was
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FIGURE 10. Different video frames and corresponding outputs using the proposed MRF based segmentation with intensity, optical flow, and divergence
features.

found to be the most efficient amongst the two algorithms
with an accuracy of 95.39%. In the case of MRF, a test takes
0.3 seconds, hence a real-time test for our hardware setup is
limited to sequences of 10 fps, but an optimized parallel setup
will perform the classification in a shorter time, leading to a
real-time classification for sequences of 30 fps.

V. CONCLUSION

This paper introduces a novel method for fire and smoke
characterization in IR images. This approach can perform
unsupervised testing in real-time and it can be trained par-
allelly in offline mode. The feature extraction methods pro-
posed for this problem are by using optical flow, divergence,
and intensity. Even though SIFT flow features were tested
but it did not give any significant improvement in segmen-
tation compared to the combination of the above feature
extractors. The unsupervised segmentation methods used for
the comparative analysis were K-Means, GMM, GMRF, and
MRF. It was found that MRF showed better performance in
the classification with a higher accuracy of 95.39%. It has
been tested visually and quantitatively that MRF was able
to distinguish fire, smoke, and background in a more precise
manner. Even though GMM was able to segment most of the
fire regions but it gave a much lower accuracy of 76% for
smoke segmentation. Thus, the fusion of information shows
results that outperform single feature-based methods. The
future work aims to use multispectral data from UV and

RGB sensors to make more accurate predictions for real-time
firefighting scenarios.Wewould also like to extend the exper-
imentation on dynamic and complex fire environments to test
the robustness of these approaches.
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[28] B. U. Töreyin, Y. Dedeoǧlu, and A. E. Çetin, ‘‘Contour based smoke
detection in video using wavelets,’’ in Proc. 14th Eur. Signal Process.

Conf., Sep. 2006, pp. 1–5.

[29] P. Piccinini, S. Calderara, and R. Cucchiara, ‘‘Reliable smoke detection
in the domains of image energy and color,’’ in Proc. IEEE 15th Int. Conf.
Image Process. (ICIP), Oct. 2008, pp. 1376–1379.
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