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Abstract

We describe an unsupervised method to segment objects

detected in images using a novel variant of an interest point

template, which is very efficient to train and evaluate. Once

an object has been detected, our method segments an im-

age using a Conditional Random Field (CRF) model. This

model integrates image gradients, the location and scale of

the object, the presence of object parts, and the tendency of

these parts to have characteristic patterns of edges nearby.

We enhance our method using multiple unsegmented images

of objects to learn the parameters of the CRF, in an iterative

conditional maximization framework. We show quantitative

results on images of real scenes that demonstrate the accu-

racy of segmentation.

1. Introduction

Keypoint based object templates are efficient and ac-

curate [6, 7, 14, 12], and can be used to localize objects.

This paper presents a novel model that integrates a keypoint

based template into a random field to achieve unsupervised

object segmentation. We show that the information gener-

ated while learning the template is rich enough so that seg-

mentation can be learned without supervision. In particular,

coherence of edges within the frame of reference of a part

in the template and across the training examples is a strong

cue for segmentation.

Towards this, we extend the template based object model

introduced in [14] to estimate scale. We introduce a new

unsupervised edge model that aids in the segmentation of

the object. This model encodes object boundaries in the

local coordinate system of the parts in the template.

We integrate the template and image gradient informa-

tion into a Conditional Random Field model. To the best of

our knowledge, it is the first attempt to unite keypoint-based

object models with random field segmentation, in an unsu-

pervised setting. We learn the CRF using an iterative mech-

anism, alternating between estimating segmentation and
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parameters, imposing coherence among the unsegmented

training images. The final detection-segmentation system is

fast, and can tolerate large intra class variations. Both quan-

titative and qualitative results on real images demonstrate

that this iterative procedure produces good segmentations.

Object dependent segmentation. There has been ex-

tensive work recently on model driven object segmentation

in images. Kumar et al. [11] use a Bayesian approach to

integrate a layer based object model with Markov Random

Fields. While this method produces good segmentations,

it is very demanding of training data, requiring a video for

each category, and also cannot tolerate large intraclass vari-

ations. Winn et al. [21] use a Conditional Random Field

based model to segment and handle multiple objects with

occlusion. Training the model requires already segmented

images. Leibe et al. [12] use a supervised part based model

to resolve conflicting segmentation of objects in images.

Their model uses only keypoint features and not image tex-

ture information. Levin and Weiss [13] present a super-

vised framework for learning bottom-up and top-down cues

simultaneously. Borenstein et al. [2, 1] present a formu-

lation to integrate top-down and bottom-up cues for unsu-

pervised segmentation, using image fragments. Winn et al.

[20] present a pixel based deformable object model that uses

color cues for segmentation. The model in [16] presents an

algorithm to segment and detect people, using a superpixel

representation. Carbonetto et al. [4] integrate a bag of key-

points model with a CRF to output a per superpixel con-

fidence map of object localization, but no segmentation of

the object. Russell [17] et al. learn object classes as a topic

model with superpixels as features. He et al. use a mixture

of CRFs [9] to obtain a per superpixel labeling of object

classes. Many of these works pose the final segmentation

estimation problem as a graph cut energy minimization [3].

2. Object Model

We extend the generative template model of [14] to scale

invariance and introduce new learning algorithms. An im-

age is represented as a set of F features {fj}
F
j=1, described

by their location in the image (f lj) and appearance (faj ). The

model generates the image by first choosing an object con-
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figuration oc = (ol, os), where ol is the object location,

and os is the object scale. Conditioned on the object con-

figuration, the model produces features independently. For

each feature the model chooses a part i ∈ {1, . . . , P} with

probability πi. This conditional independence assumption

makes inference very efficient in comparison to a fully con-

nected constellation model [6]. The part i generates the fea-

ture appearance faj from a multinomial distribution pAi (faj )

with parameter hi on a dictionary of patches, and location

f lj from a Gaussian pLi (f lj |oc) ∼ N (µi ·(os)−ol,Σi ·(os)
2).

The mean and variance of this distribution are corrected for

the scale of the object. The variance term also compensates

for the fact that smaller objects tend to produce lower num-

ber of feature detections. In addition, there is a background

part with uniform distribution in location.

Let us denote by ωij the event that the feature fj was

generated by part i. This is a binary random variable. By

the above discussion, we have
∑

i ωij = 1,∀j. We thus

have p(fj |ωij = 1, oc) = pLi (f lj |oc)p
A
i (faj ).

The features {fj}
F
1 in an image make up the set v

of observed variables. The set of parameters is Θ =
({µi,Σi}

P
i=1, {hi, πi}

P+1
i=1 ). The object configuration, oc,

together with part-feature associations, ωij’s, are the set h
of hidden random variables. Thus, the complete data likeli-

hood is

P objΘ (h, v) =
∏

j,i

{

piL(f lj |oc)p
i
A(faj )πi

}[ωij=1]
P (oc) (1)

where [expr] is 1 if expr is true, and P (oc) =
P (ol)P (os). We assume that ol and os are a priori uni-

formly distributed across their respective domains.

Learning: In appendix A we introduce and analyze two

variational approximations to learn this object model in an

efficient way. One (H-EM) is a hybrid which uses Expecta-

tion Maximization to estimate the location distribution and

point estimates to determine the scale of the object. The

other (H-V) is a hybrid which uses a mean-field approxima-

tion for location instead.

Template Evaluation: To estimate the configuration of

the object, we need to maximize the posterior likelihood

p(ol, os|{fj},Θ) with respect to (ol, os).

3. Object Segmentation

The model described in the previous section can detect

and estimate the location and scale of the object, as well as

the assignment between features in the image and parts of

the object. Given a set of unsegmented images, this infor-

mation can help rectify them both globally (i.e. location and

scale of object) and locally with respect to each part of the

model. In this way, by matching several unsegmented im-

ages we can compensate for the lack of supervision; we can

learn boundaries of object and segment (i.e. label regions as

belonging to the object, or background). We approach the

problem in an iterative fashion, first segmenting the objects

based on the current parameter estimates, and then updat-

ing the parameters to match the segmentation in the whole

stack of images.

Motivated by [16], we use a superpixel representation

obtained by oversegmenting the image into R = 50 re-

gions using the normalized cuts algorithm [18]. The su-

perpixel representation not only is computationally advan-

tageous due to small number of nodes, but also is percep-

tually relevant. In addition, computing features over super-

pixels allows for capturing more global phenomena when

compared to interaction between only adjacent pixels. The

main drawback of superpixels is that their boundaries may

not align with the object boundaries.

For the object segmentation task, i.e. labeling superpix-

els in the image as belonging to object or background, we

incorporate the following information:

1. Object location and scale estimates provided by the ob-

ject model (M ) to localize the object in the image,

2. Shape and extent of the object for which we introduce

a) Model Edge response (mE), which captures the lo-

cations of edges with respect to a local reference frame

given by the model, and b) Object/Part Overlap (mO),
which captures the extent of overlap of each part in the

model with the inside of the object. We explain these

below in Sec. 3.1 and 3.2.

3. The location of image edges (IE) with respect to the

object edges estimated by the model.

To integrate all this information, we use a random field
model. With each superpixel v in the image I , we associate
a binary label lv which takes a value of 1 if v lies inside the
object and 0 if it is in the background. The random field
model is then expressed for the graph G = (V, E), where V
is the set of all superpixels in the image and E is the set of
all pairs of neighboring superpixels, as follows:

log(P ({lv}|I)) + logZ(λM , λE , IE) =
❳
v∈V

φ(lv|mE ,mO)⑤ ④③ ⑥
Model Unary

+
❳

{v,u}∈ E

�
λM ψM (lv, lu|mE)⑤ ④③ ⑥

Model Edge Interaction

+λE ψE(lv, lu|IE)⑤ ④③ ⑥
Image Edge Interaction

✁
. (2)

where, φ(lv|mE ,mO) is a local estimate of the probability

that v is in the object. Superpixels that belong to the object

tend to include features assigned to the object mO as well

as model inferred edges mE . The interaction terms tend to

separate superpixels when both model inferred edges ψM
and image edges ψE align. Z is the normalization term.

3.1. Model edge mE

The template model in Sec. 2 only accounts for the

local appearance of the object, and not its boundaries.
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Figure 1. Computation of per part mean edge response. We

obtain the dominant edges as the boundaries of normalized cut al-

gorithm. Top row shows the detected feature locations overlaid

on the normalized cut segmentation for the training images. Bot-

tom row shows edge response computed centered in the feature

frame of reference. Weighted average of these give the per part

mean edge response as shown by the final figure. This procedure

is described in section 3.1

Here we propose a novel mechanism to enhance the model

for encoding object boundaries. Given the set of training

images, we can infer the configuration of objects in them,

and the assignments between features in the image and

parts in the model. We expect that in the local coordinate

frame of each model part, object edges will be consistent,

while background edges will not. This suggests that a

model for edge generation can be added to each part.

In addition to the local appearance of a feature, part i
now also generates a local edge response, as a Gaussian
with mean edge response µep

i , for a point p centered at

the feature location f lj . Assume that the observed dominant

edge response for the nth image is given by en(p). Also as-
sume that the parameters θ of the model have been learned,
and object configuration (ôl, ôs) has been inferred. Then,
µepi can be estimated as

µep

i =
❳

n,j

αn
ijen((p− f l

j)/ôs), αn
ij , P (wn

ij = 1|ôl, ôs, fn
j ) (3)

i.e., an average of the feature centered edge responses scaled

by the estimated scale ôs, weighted by the posterior of part i
generating that feature αij . The entire process is depicted in

Fig. 1. We use normalized cuts segmentation with R = 10
regions as the image edge response during learning.

Given a new image, the (local) per feature inferred edges

are aggregated over the entire image to produce a map

of model edges on the image mE . This edge generation

process is illustrated in Fig. 2 . Note that this edge response

is independent of the actual edges in the image. We usemE

to define both the unary and interaction terms in our model

(Eq. (2)).

3.2. Overlap between features and object mO

Each part in the object model has a position and extent in

location described by its mean location and variance. Due to

this extent, a part can generate features that lie completely

inside the object, or on its periphery. For instance, consider

Figure 2. Template based segmentation. Top left image shows

an original face image with the estimated configuration of the ob-

ject using the keypoint model. Top right image shows the model

based edge response computed using locally rectified template

edges weighted by votes from image keypoints. Note that this

does not depend on the edges of the image itself, which are en-

coded by the superpixels. Bottom left image shows the superpixel

graph. The width of edges here represents the total interaction

terms (λMψM (lu, lv|mE) + λEψE(lu, lv|IE)). The final seg-

mentation is shown in bottom right image.

an airplane model: window features usually lie completely

inside the airplane, while wing, tail and specially landing

gear features tend to overlap to a lesser extent.

Thus for each part i, we introduce an object-part overlap

parameter qi ∈ [0, 1], which denotes the fraction of extent

of a feature lying inside the object, given that the feature

is generated by part i. Note that this information is vital

for using a keypoint template based model for segmenta-

tion, since the object model does not explicitly model each

pixel’s probability of lying inside the object. This is another

novel contribution of this paper.

3.3. Unary potential φ

Using these parameters, we can compute a unary per

pixel classifier by averaging over the observed features as

P (lv|mO) =
1

Av

∑

p∈v

1

Np

∑

i,j

(qi)
lv (1− qi)

(1−lv)αijδp∈fj

(4)

where, Np is the total number of features which include

pixel p (i.e.
∑

j δp∈fj
), Av is the number of pixels in su-

perpixel v and αij is the posterior of part i given feature

fj and inferred location and scale of the object, as defined

in Eq. (3). Pixels where no features exist are given equal

probabilities of belonging to object and background.

Since consistent model edges should only lie on the

boundary or inside that object, a model edge response in

a superpixel should indicate the presence of an object. Con-

sidering this, we choose to estimate P (lv = 1|mE) as the

mean of the normalized object model edge response inside

superpixel v.



We define the unary term φ in the random field (Eq. (2))
as a weighted average of these estimates as follows:

φ(lv|mE ,mO) = log(γP (lv|mE) + (1 − γ)P (lv|mO))

3.4. Interaction Terms ψ

The presence of a strong inferred model edge at the

boundary between neighboring superpixels u and v indi-

cates that they might have different labels. We compute the

interaction potential between superpixels ψM in Eq. (2) as

the inverse of the integral of model edge response across the

boundary between u and v for lv 6= lu and zero otherwise.

The image edge dependent term ψE is motivated by the

fact that image edges should align with object boundaries.

We thus want to penalize two neighboring superpixels hav-

ing different labels if there is no image edge between them.

We compute ψE as the normalized-cut cost (sum of intra

region affinity as defined in [18] for both superpixels over

inter region affinity between superpixels) for lv 6= lu and

zero otherwise.

3.5. Inference and parameter estimation

Since we do not use supervised training data with ground

truth segmentations for training, Q = {qi}
P
1 is not known

a priori and needs to be estimated. We learn these parame-

ters in an iterative fashion. We first segment all training im-

ages, labeling every superpixel as object or background. We

then fix the labels and reestimate the parameters, pooling

information from all training images simultaneously. The

procedure stops when no segmentation of training images

changes for one iteration.

Inference: Given the parameters, the globally optimal

labeling that maximizes the log likelihood in Eq. (2) can

be posed as a min-cut problem on the graph G [3]. The

solution to this problem is very fast.

Parameter Estimation: Given the segmentation, we

adopt a piecewise approximation [19] to the normalization

term Z, which is a bound that decouples the unary and in-

teraction potentials. Consider a set of N training images In

with object model inferred mE , mO, and assumed labels

{lnv }
R
v=1, where n = 1 . . . N . Then the piecewise approxi-

mation is

logZ≤log(
P

{lv} exp
P

v φ(lv|mE ,mO)) + (5)

log
P

{lv} exp
{P

{u,v}∈E(λMψM (lu,lv|mE)+λEψE(lu,lv|IE))
}

Since φ(·) is a log probability, the first term in above ex-

pression is zero, and thus this upper bound is independent

of Q. Using eq. 2 and 3.3, the parameter estimate becomes

Q← argmax
qi

∑

n,v

log

(

γP (lnv |mE) + (1− γ)
∑

i

qiβ
n
vi

)

(6)

where βvi = 1
Av

∑

p∈v
1
Np

∑

j αijδp∈fj
.

Figure 3. Effect of overlap between parts and object. (Top

images): Before learning the overlap between parts and object

(Q), object area is overestimated. This is because features on the

boundary of the object result in regions close to the objects being

assigned to it during segmentation. (Bottom images): After reesti-

mation, the problem is diminished. All images are taken from test

sets. The superpixel representation is shown in red and the final

segmentation is shown in green. The brightness of the estimated

background superpixels is diminished to aid visibility. This figure

is most easily interpreted when viewed in color.

Lower bounded using Jensen’s inequality; maximizing

this gives qk ←
∑

n,i l
n
vβ

n
ik/
∑

n,i β
n
ik.

This iteration between the estimation of labels lnv (seg-

menting the images) and parameters Q can be seen as akin

to learning with partially labeled data. The term P (lv|mE),
which does not depend on Q, biases the search toward

meaningful local maxima (figure 3).

4. Experiments and Results

We test our algorithm on standard datasets [6]. Each cat-

egory has an object image dataset and a background dataset.

The scale-saliency keypoint detector [10] is used to extract

F features from each image in the dataset. The SIFT [15]

representations of features in the object images are clus-

tered into representative vectors. The appearance of each

feature is vector quantized using this dictionary. We train

the hybrid-EM (H-EM) and hybrid-Variational (H-V) mod-

els using P = 30 parts and NxNy = 238. We initialized

the appearance and location of the parts using randomly se-

lected features in the training set. The stopping criterion

used is the change in the free energy Fe (c.f. appendix A).

Template performance: The median equal error rate

detection performance for 10 random test/train splits (50%

training/50% testing) of the dataset for each category of

both inference algorithms (Airplanes: H-EM: 96.6, H-V:

96.5, Motorbikes: H-EM: 97.1, H-V: 97.1, Faces: H-EM:

98.8, H-V: 98.7) is significantly better than the constellation

model [6] and comparable to the best performing discrimi-

native approach [5]. The H-V model has virtually the same

performance as the H-EM, but is more than 50 times faster,

converging in less than 5 minutes for hundreds of training

images.

Qualitative segmentation results are shown in figure

4 on gray-scale images for the Caltech faces, airplanes,

motorbikes, and Caltech 101 cars test sets. Images in

these datasets have large intraclass variations in appearance.



Faces Airplanes Cars Motorbikes

Tot Obj Bg Tot Obj Bg Tot Obj Bg Tot Obj Bg

Best 97.2 92.2 98.4 96.2 77.4 98.6 96.9 89.3 98.0 89.6 85.6 92.2

Algorithm 92.4 67.1 99.1 93.1 75.9 95.9 95.1 87.0 96.1 83.1 79.8 88.9

Table 1. Segmentation performance for different datasets. The measures used are percentage of total correctly classified pixels (Tot),

percentage of object pixels classified as object (Obj), and percentage of background pixels classified as background (Bg). We compare

the performance of segmentation achieved by the CRF against the best possible performance given the superpixels. To compute the best

possible segmentation, a superpixel is assigned to the object if more than 50% of its area is inside the object. Even for an unsupervised

approach, performance is close to the optimal, with the possible exception of the faces dataset. The reason is that due to high variability,

hair is not learned to be included inside the object (see figure 4).

There are many images for which it is difficult to segment

the gray-scale object without a model. We use γ = 0.5 and

λM = λE = 10/3 for our experiments.

Quantitative segmentation results: Table 1 shows the

performance of the algorithm on the test sets in terms of

correctly labeled pixels after the CRF parameter learning.

The performance measures are 1) Total performance, the

percentage of correctly classified pixels, 2) Object perfor-

mance, the percentage of object pixels classified as object,

and 3) Background performance, the percentage of back-

ground pixels classified as background. For instance, for

100% object performance means that the estimated segmen-

tation always encloses the ground truth segmentation, but

the segmentation might overestimate the object. Hence this

does not mean perfect segmentation. The results are com-

pared with ideal (best) results, which are obtained by la-

beling all superpixels with > 50% overlap with the ground

truth as object. Even for an unsupervised approach, perfor-

mance is close to the optimal, with the possible exception

of the faces dataset. Hair tends to change from subject to

subject, and therefore the algorithm learned a low value for

object/part overlap qi for the hair parts (figure 4). As a re-

sult, face segmentations do not include hair for most images

(and thus the background performance is better than the ‘op-

timal’). This behavior can be expected in an unsupervised

framework.

5. Conclusion

We present a novel framework for integrating keypoint-

based template object models with segmentation, in an

unsupervised fashion. We enhance a generative object

model, and introduced very efficient learning algorithms.

We extend the object model to produce boundary informa-

tion based on keypoint features independently of the actual

edges in a given image. We feed this all this information

into a random field model and introduce an iterative para-

meter reestimation. The result is very good segmentation

even for images with very low object-background contrast.

Future Work: One of the main drawback of the current

model is that the information flows in one way from object

model to segmentation. We are working on a new model

for multiple object detection/segmentation where the object

model proposes several candidate configuration and feeds

the information into the random field, which solves both

the detection and segmentation problems simultaneously.
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A. Learning as Variational Inference

Learning the model from a set of images of an object cat-

egory involves estimating the parameters Θ of the model.

The background distribution parameter (hP+1) is estimated

from the background dataset; this distribution is fixed be-

fore estimating Θ. Obtaining the maximum likelihood es-

timate for Θ involves maximizing the likelihood of PΘ(v),
for which no closed form solution exists. Many algorithms

for iterative inference such as EM, ICM, BP can be viewed

as instances of variational inference [8]. Variational infer-

ence involves minimizing free-energy Fe with respect to an

approximation Q(h) to the posterior distribution PΘ(h|v).
Let DKL be the K-L divergence, then Fe is defined as

Fe(Q,Θ)
.
= DKL

{

Q(h)
∣

∣

∣

∣PΘ(h|v)
}

− logPΘ(v)

=

∫

h

Q(h) log
Q(h)

PΘ(h, v)
dh (7)

EM update: Minimizing Fe without restrictions on

Q(h) = Q(ωij |ol, os)Q(ol)Q(os) leads to E step of the EM

algorithm, with Q(h) = PΘ(h|v). This can be viewed as

taking expectation with respect to the hidden random vari-

ables. Thus the complexity of the approach is the dimension

space of the hidden variables. Let us assume, for simplicity,

that the object center takes values on a Nx×Ny grid on the

image, and scale takes values on a grid of size Ns. Then

the complexity of the approach is O(FPNxNyNs). Unlike

[6], this is linear in the number of features per image F , and

parts in the model P . However, as we include more types

of 2D transformations, this number explodes.

Variational (mean-field) update: Another possi-

ble approach is to minimize Fe restricting Q(h) =
Q(ωij)Q(ol)Q(os). This assumption basically makes the

assignments (ωij) conditionally independent of the object

configuration oc given the observations. Following [14],

this makes inference much faster, as the complexity is now

O(FP ) +O(NxNy) +O(Ns).
ICM (point estimate) update: Complexity can be re-

duced even further if we consider oc to be continuous vari-

ables and restrict Q(ol) = δo∗
l

and Q(os) = δo∗s . Mini-

mizing Fe now involves finding the most likely ocnew as a

function of the data, parameters and previous iteration esti-

mate of ocold. This makes inference even faster (O(FP )),
and we do not constrain the solution to lie on the grid, but

as the search space is more limited, the approach is prone to

local minima.

Hybrid EM update: In experiments we observed the

model is much better behaved in scale (see figure 5), as it

has only one minimum, than in location, where there are
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Figure 5. Model behavior in scale. The green ellipses represent

the distribution in location of object parts of the model superim-

posed on the image according to the estimated object scale and

location (black dot). The dots show the detected feature loca-

tions. Blue features are associated by the model to the object, and

red features to the background. Last column plots negative log

likelihood vs. the scale estimate for the images in the other two

columns. There is only one local minimum, thus the use of point

estimates for scale.

multiple local minima. Thus we consider a hybrid approach

with EM updates for Q(wij |oc) and Q(ol) and a point esti-

mate update of Q(os). The updates of the parameters are:

µi ←

P
n,j,ol

αn
ijol

on
s (fnl

j
−ol)

P
n,j,ol

αn
ijol

Σi ←

P
n,j,ol

αn
ijol

(on
s )2(fnl

j
−ol)(fnl

j
−ol)

T

P
n,j,ol

αn
ijol

−µiµ
T
i

hi ←

P
n,j,ol

αn
ijol

fa
j

P
n,j,ol

αn
ijol

Here, αnij,oc = Qn(ol)Q
n(ωnij |ol, os), and superscript n

represents the attributes for the n-th training image. Maxi-

mization with respect to the object scale leads to solving the

following quadratic equation

a(ons )
2 + b(ons ) + c = 0, where (8)

a = −
P

i,j,ol
αn

ijol
(fnl

j −ol)
T Σi(f

nl
j −ol)

b =
P

i,j,ol
αn

ijol
µT Σi(f

nl
j −ol)

c =
P

i,j,ol
αn

ijol

It can be easily shown that the above quadratic has

a unique positive solution, which forms the update of

the object scale. The complexity of these updates is

O(FPNxNy), equal to that of the non-scale invariant ver-

sion [14].

Hybrid Variational update: We consider variational

(mean-field) updates for Q(wij) and Q(ol) and a point

estimate update of Q(os). The updates of the para-

meters vary from the hybrid EM approach only in that

αnij,oc = Qn(ol)Q
n(ωnij). The complexity of these updates

is O(FP +NxNy), equal to that of the non-scale invariant

variational approach of [14]. We further refine the result-

ing model by applying point estimate updates, to remove

the conditional independences introduced by the variational

updates.


