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Abstract
Most recent learning algorithms for single image dehazing are designed to train with paired hazy and corresponding ground 
truth images, typically synthesized images. Real paired datasets can help to improve performance, but are tough to acquire. 
This paper proposes an unsupervised dehazing algorithm based on GAN to alleviate this issue. An end-to-end network 
based on GAN architecture is established and fed with unpaired clean and hazy images, signifying that the estimation of 
atmospheric light and transmission is not required. The proposed network consists of three parts: a generator, a global test 
discriminator, and a local context discriminator. Moreover, a dark channel prior based attention mechanism is applied to 
handle inconsistency haze. We conduct experiments on RESIDE datasets. Extensive experiments demonstrated the effec-
tiveness of the proposed approach which outperformed previous state-of-the-art unsupervised methods by a large margin.

1 Introduction

Haze is a traditional atmospheric phenomenon caused by 
small particles absorbing and scattering the light in the 
atmosphere. Images of outdoor scenes captured from hazy 
fields typically suffer from low contrast and poor visibil-
ity. As shown in Fig. 1, in sunny weather, the wavelength 
of visible light is much larger than size of air molecules; 
hence, the scattering is minimal, the final imaging effect is 
good, and the contrast between the target light and the back-
ground light is apparent. However when the air is humid, 
the combustion products, sea salt and other particles form 
aerosol particles in the air, thereby increasing atmospheric 
scattering and absorption. Furthermore, hazy images can 
significantly impact computer vision applications, includ-
ing object detection [30, 31], face detection [33, 34], and 

semantic segmentation [32, 39]. Hence, single image dehaz-
ing has gain increasing attention over the past few years.

The generation mechanism of atomized images needs to 
be accurately described to accurately process images during 
a haze. An atmospheric scattering model was derived by 
McCarney [1] in 1975 to describe the haze mechanism. Over 
the succeeding decades, several traditional methods [2–8] 
re proposed basing on this model. Single-image dehazing 
based on the atmospheric scattering model is an undercon-
strained problem that depends on an unknown depth and 
thus a highly ill-posed inverse problem. Therefore, tradi-
tional dehazing methods generally make additional assump-
tions and priors to restrict the model boundary and condi-
tions. However, these assumptions may lose effectiveness 
and damage the quality of recovered image.

Recently learning-based methods have been exten-
sively used in image dehazing [9–11, 14, 15, 35]. Despite 
great progress, these CNN-based methods heavily rely on 
large-scale paired datasets. Each sample consists of a hazy 
image and a corresponding synthesized haze-free image 
as ground truth. However, it is impractical to capture both 
the clear and corresponding hazy image of the same scene 
simultaneously. One way to solve this issue is few-shot 
learning which complete training from a handful of data 
rather than millions of data [42–46]. Another way to fix 
this problem is using generative adversarial network and 
its variants [12, 13, 18–20], among which models based 
on CycleGAN [21] is most prominent. However, these 
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unsupervised methods still fail to reach a high standard 
while undertaking image dehazing. Problems remain 
like color distortion, loss of image detail and incom-
plete dehazing particularly in thick fog images. Thus, an 
effective approach operated with unpaired hazy and clear 
images is necessary.

This paper proposes a generative adversarial network 
training with unpaired hazy and clear images and has 
achieved a state-of-the-art result compared to other unsu-
pervised methods. A cyclic consistent loss is not used 
in our model, making it easier to train and converge the 
model. This paper’s main contributions are as follow:

1. An end-to-end generative adversarial network train-
ing based on U-net architecture is proposed. We apply 
unsupervised hazy and clear images to train the model. 
Adversarial loss aside, we introduce perceptual loss to 
assess the differences between VGG features of hazy and 
dehazing images.

2. We adopt global–local discriminators. The global dis-
criminator looks at the entire image to evaluate its over-
all consistency, while the local discriminator only looks 
at small areas centered on the completion area to ensure 
the local consistency of the generated patches. A global–
local discriminator can help model to deal with spatially 
varying haze and generate cleaner images

3. We propose an attention mechanism inspired by dark 
channel prior to further process the sharply changing 
local area in the image. The dark channel map of hazy 
image is extracted and scaled to fuse with the features 
in the model. The proposed work is more robust and can 
better retain the details of images.

2  Related work

2.1  Single image dehazing

Prior-based methods are mainly based on prior assump-
tions to restore haze images, where atmospheric scattering 
models is widely used, as Eq. (1) shows. Where I(x) is the 
hazy image, J(x) is the clear image, t(x) is the transmis-
sion map, and A is the global atmospheric light which is 
a constant overall the image. Considering prior assump-
tions, the parameters of atmospheric scattering model can 
be established.

He [5] discovered dark channel prior (DCP), one of the 
most popular hand crafted dehazing features based on empir-
ical statistics of experiments on haze-free images. Dark 
channel prior assumes that the image patches of outdoor 
free images have low-intensity values in at least one channel. 
Zhu [8] developed a color attenuation prior, established a 
linear scene depth model for the hazy image, and supervised 
learning the model parameters. The assumptions and priors 
did not always hold, so they might fail in some instance.

With the latest progress of deep learning, several CNN-
based methods have been proposed. Cai [9] proposed a 
trained model DehazeNet to estimate the transmission map 
from hazy images. Ren [10] proposed MSCNN that could 
directly regress the dehazed images with a coarse-grained 
model and a fine-tuned model. This algorithm reformulated 
the atmospheric model to integrate the transmission matrix 
and atmospheric light into a single variate. Li et al. [11] pro-
posed AOD-Net, a light weighted linear model with dense 

(1)I(x) = J(x)t(x) + A(1 − t(x)).

Fig. 1  Comparison between 
haze and clear weather
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connection to recover the haze images. DCPDN [15] is also 
a U-net [40] architecture which estimate transmission map 
and global atmospheric light respectively. Deep-DCP [16] 
put forward a new loss function inspired by dark channel 
prior and trained the model unsupervised.

2.2  GAN

With the rise of GANs introduced by Goodfellow et al. [17], 
remarkable progress has been made in directly generating 
corresponding images end-to-end. Isola et al. [18] utilize 
the conditional generative adversarial network (CGAN) to 
complete the style transformation of paired images. GANs 
are also often used in dehazing. Visual Geometry Group 
Network (VGG) features was introduced by Li et al. [19]. 
The L1-regularized gradient of CGAN was used for image 
dehazing. To deal with the issue, a hazy image and the cor-
responding hazy-free image were used as a supervised input 
and label. However, synthesized hazy images have a domain 
shift to the real-world scene. Moreover, the characteristics 
of image depths and hazy areas may change frequently. So 
Engin et al. used CycleDehaze [20], an enhanced version 
of CycleGAN architecture which trained networks with 
unpaired images. CycleGAN [21] is even more challenging 
to train compare to GAN, and CycleDehaze outputs hazy-
free images with color distortions. The above methods allow 
the network itself to learn the inner characteristics of hazy 
and haze-free images to perform end-to-end transforma-
tion. Thereby resolving the relationship between hazy and 
haze-free features at a deeper level and improving the overall 
dehazing effect on the image. However, the limitations of the 
overall style migration of the GANs resulted in the model 
being unable to have smooth transition in areas without 
haze or with slight haze, neither unable to achieve different 
conversion degrees for areas with varying haze concentra-
tions. Thus this paper proposes an approach that trains an 
encoder-decoder architecture with no cyclic generator and 
no consistency loss. Specifically, it designs two discrimina-
tors rather than one to discriminate the quality of a generated 
image. A global discriminator scans the entire image and a 
local discriminator scans a patch input to get a high qual-
ity reconstruction. On this basis, this paper introduces the 
attention mechanism as a function of network, designing an 
attention map which can obtain satisfactory dehazing effects 
in various situations.

2.3  Proposed method

The haze area and concentrations are typically local and une-
ven, so we introduce an attention mechanism into the dehazing 
approach. Inspired by dark channel that can effectively reflect 
the area and concentrations, we put forward a dark-channel 
attention mechanism. When the scene’s depth gets deeper, the 
haze in the image gets heavier, while the value in dark-channel 
map gets larger. We introduce dark channel as attention map 
to focus on the specific areas in the images.

The proposed method employs an encoder-decoder archi-
tecture to generate dehazed images. Compared to CycleDe-
haze, it introduces only one generator without a cyclic con-
version process and is easier to train. So we call this model 
“SingleDehaze”. We introduce two discriminators to make 
a high quality reconstruction and a dark-channel attention 
map to focus on dehazing areas during transformation. The 
dark-channel attention map is enhanced with a coefficient γ to 
improve the adaptability during training.

2.4  Single GAN model

We adopt the architecture from Johnson et al. [22] as our gen-
erator G which is also used in CycleGAN. An overview of 
layers in network model architecture is listed in Table 1. The 
difference is there are two generators in CycleGAN while we 
have only one. Our goal is to learn a direct mapping from the 
hazy images domain X to the dehazed images domain Y, given 
training samples {xi}Ni=1 where xi ∈ X and {yj}Mj=1 where 
yj ∈ Y  . We denote the data distribution as x ∼ pdata(x) and 
y ∼ pdata(y) ). As shown in Fig. 1, our model includes a map-
ping G ∶ X → Y  and it’s discriminator D distinguishes 
between the dehazed image {G(x)} from {y} , where {x, y} 
refers to hazy and ground truth unpaired image set. We use 
LSGAN [41] loss as an objective:

where G tries to generate G(x) that look like haze-free 
images, while D aims to distinguish between dehazed image 
G(x) from unpaired ground truth samples y. D aims D(G(x)) 
to get close to 0, while G aims close to 1.

(2)
min
D

LossGAN(D) =
1

2
Ey∼pdata(y)

[
(D(y) − 1)2

]
+

1

2
Ex∼pdata(x)

[(D(G(x)))2],

(3)min
G

LossGAN(G) =
1

2
Ex∼pdata(x)

[(G(x) − 1)2],

Table 1  PSNR/SSIM results on 
SOTS datasets

Evaluation DCP DehazeNet AOD-Net CycleDehaze Deep-DCP Proposed method

PSNR 16.94 20.63 19.25 17.17 21.36 29.04
SSIM 0.7925 0.8495 0.8193 0.8103 0.8497 0.8705
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2.5  Attention mechanism

Attention mechanism [36, 37] has been extensively used in 
image transformation. To focus on objects of interests that 
require transformation, Mejja et al. [23] built an attention 
network based on CycleGAN and utilized an attention map 
to label objects. In the dehazing task, a problem exists in 
which haze is uneven. When the local effect is better, the 
overall effect typically biased, or some areas are ignored. To 
resolve this problem, we seek to find an attention map that 
is related to the haze concentration. Image intensity may be 
a simple choice. Inspired by dark channel prior by He et al., 
Chen et al. [24] use dark-channel feature in CycleGAN. They 
used the dark-channel map as transmission and restored the 
image with atmosphere scattering model. Eventually the 
mapping happened only at the last layer. In our case, we 
scale the dark-channel map to various sizes and produce an 
elementwise product with the features of each layer. Figure 2 
illustrate the process.

The dark-channel attention map is obtained as follows:

where Jdark is the original dark-channel method, Ω(x) is 
the area centered on x, and JC is the color channel. As the 
intensity of dark-channel is relatively low compare to hazy 

(4)Jdark(x) = min
y∈Ω(x)

(

min
c∈{R,G,B}

JC(y)

)

,

(5)darkattetion = min
{
� ∗ Jdark(x), 255

}
,

images. An enhancing coefficient � is thus trained to make 
the dark-channel more adaptable as Eq. (5) indicates.

The dark channel attention map is consecutively down 
sampled with maxpooling for four times to obtain the char-
acteristic maps of different scales, which are at2, at3, at4 
and at5, as shown in Fig. 2b. Then they are used as attention 
initialization factors in the decoder, multiplied by the feature 
map after maxpooling in the generative network encoder, 
and added to the up sampled feature map of the correspond-
ing scale in the decoder to complete the skip connection. 
Here the bilinear interpolation is used for up sampling. Then 
deconvolution is carried out to extract features to complete 
the latent and the original input as follows to obtain the final 
output.

2.6  Local discriminators

Iizuka et al. [25] introduced global–local discriminators in 
image completion and improve the restoration of low-res-
olution images. The downscaling and upscaling process in 
the generator network while dehazing can lead to a degrada-
tion of the image quality, so we build two discriminators to 
make full use of both context and local context. While train-
ing, the global discriminator takes the entire images rescaled 
to 320 × 320 as inputs. It consists of six convolution layers 
and ends with a 512-dimension fully-connected layer. All the 

(6)output = latent + attention × input.

Fig. 2  The proposed SingleDehaze model with local and global discriminators and attention mechanism. at represents the dark channel attention 
map. a Is the overall model. b Is the attention map scaling process. c Is the generator with attention mechanism
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convolutional layers employ a stride of 2 × 2 pixels to decrease 
the image resolution while increasing the number of output 
filters, and they use 3 × 3 kernels. The local discriminator 
has a similar architecture taking only a patch as input. These 
patches are 32 × 32 pixels randomly cropped from the entire 
images. Meanwhile, the local discriminator has five convolu-
tion layers and a 512-dimension fully-connected layer. The 
global and local discriminator each has an objective:

where y′ is randomly cropped patch from the unpaired 
ground truth, and G�(x) is the patch of G(x).

2.7  Loss function

Only generate adversarial loss is insufficient to recover all 
textural information, since the dehazing task is a pixel-level 
transformation. Various studies have shown the improve-
ment of the quality of dehazed images with the help of per-
ceptual loss [38], whether through supervised or unsuper-
vised methods. The external data and the pre-trained model 
render an evident increase on performance. Perceptual loss 
can preserve image structure by comparing the features at 
different level of VGG16, a pre-trained a classification net-
work. Perceptual loss function can be expressed as follows:

where ∅ is a VGG16 feature extractor from 3rd and 5th pool-
ing layers. x is the hazy image sample and z is the corre-
sponding clear image sample. Considering the illumination 
invariance of classification network, the hazy and dehazing 
images share the similar construction. We can see that the 
reconstructed image remain the content and spatial struc-
ture from the reconstruction of higher layers, but loses the 
exact color and texture. In our unsupervised model, the clear 
image sample corresponding to a hazy image does not exist. 
Hence we use the haze image and its corresponding dehazed 
image to formulate this modified perceptual loss. By experi-
ments comparison, we find it is also effective in this case. 
Our perceptual loss of the whole image and image patch are 
as follow:

(6)

min
Dglobal

Loss
global

D
=

1

2
Ey∼pdata(y)

[
(Dglobal(y) − 1)2

]

+
1

2
Ex∼pdata(x)

[(
Dglobal(G(x))

)2]
,

(7)

min
Dlocal

Loss
local

D
=

1

2
Ey∼pdata(y)

[(
Dlocal

(
y�
)
− 1

)2]

+
1

2
Ex∼pdata(x)

[
(Dlocal

(
G�(x)

)
)2
]
,

(8)Lossperceptual =
‖‖�(z) − �(G(x))‖‖

2

2
,

(9)Loss
global

perceptual
= ‖‖�(x) − �(G(x))‖‖

2

2
,

where x′ is the patch from x.
The overall loss objective is:

3  Experiments

In this section, we assess our models alongside various unsu-
pervised network models, including CycleGAN [21], pix-
2pix [18], and Mejjati et al. [23]. Furthermore, the proposed 
method is compared with traditional method DCP and some 
learning-based methods. Among them, CycleDehaze and 
Deep-DCP are unsupervised methods, while the others are 
supervised. We conducted the experiments on two datasets 
and analyzed the results. The indicators used to evaluate the 
models are the peak signal-to-noise ratio (PSNR), structure 
similarity (SSIM) [26].

3.1  Datasets and training settings

RESIDE (Realistic Single Image Dehazing) dataset [27] is a 
large-scale dataset that contains synthesized and real-world 
paired images of indoor and outdoor scene. RESIDE training 
set contains 5 subsets. They are ITS (Indoor Training Set), 
OTS (Outdoor Training Set), SOTS (Synthetic Object Testing 
Set), URHI (Unannotated Real Hazy Images), and RTTS (Real 
Task-driven Testing Set). We remove redundant images from 
the same scenes and selected 9000 hazy/real image pairs from 
OTS and 6000 indoor image pairs to train a model adapted 
to different scenes. During training, we take one image from 
haze domain and randomly take another image from haze-free 
domain to guarantee the two images are unpaired.

3.2  Implementation

Our generator is similar to the original CycleGAN architec-
ture. The difference is that we abandon one generator and the 
cycle-consistent loss to lower the difficulty of convergence 
and preserve only one generator during training. And we add 
three more modules into the network, namely dark-channel 
attention map, local discriminator and perceptual loss.

We used Pytorch framework for training and testing 
phases, and python to resize the images. During data aug-
mentation, we cropped the images b selecting crop sizes and 
pixel coordinates randomly. Then the crops were resized to 
320 × 320 and randomly flipped horizontally or vertically as 
the inputs of our network.

(10)Losslocal
perceptual

= ‖
‖�(x

�) − �(G�(x))‖‖
2

2
,

(11)
Loss = Loss

global

D
+ Losslocal

D
+ Losslocal

perceptual
+ Loss

global

perceptual
.
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We trained our model with 4 NVIDIA titan X graphics 
card. We performed around 200 epochs on each dataset 
in order to ensure convergence. Our testing time is about 
200 ms per image on Intel Core i7 CPU. We use the Adam 
optimizer with a learning rate of 0.0002. The learning rate 
was kept for the first 100 epochs and linearly decayed to zero 
over the next 100 epochs.

3.3  Experiments on synthetic datasets

We have conducted our algorithm on the benchmark SOTS 
dataset against state-of-the-art methods based on the hand-
crafted priors (DCP) supervised networks and unsupervised 
networks and illustrate the performance. Figure 3 illustrates 
the dehazing images of the above approaches on SOTS data-
set. DCP method can restore detail features of images. But it 
introduces halo artifacts in the edge area and a small amount 
of mist remains. Under the limitation of dark channel prior, 
the images get a serious color distortion on background of 
sky, so as much noises that cause textures and blocking arti-
facts. Furthermore, the color of shadows caused by fore-
ground is deepened, which makes a big difference with the 
clean images. Supervised networks like DehazeNet, AOD-
Net exhibit the obvious advantage in dehazing performance, 

however, remain insufficient defogging. CycleDehaze 
method is a classic trial to train with unpaired images with a 
cyclegan model, however the quality of dehazing images are 
unideal. Deep-DCP method can remove the dehaze clearly, 
while the overall color is dark, and image details are not 
well preserved. From the result, our algorithm can get higher 
quality of dehazing images with no obvious color distortion 
and more closer to the ground truth. Compared by zooming 
in, our results can clearly recover the detail of image.

The quantitative comparison of results are shown in 
Table 2. As demonstrated, the proposed method achieves 
the highest PSNR and SSIM values on SOTS datasets. In 
comparison with the start-of-the-art unsupervised dehazing 
method Deep-DCP, our method obtains an improvement of 
7.68Db and 0.02 in terms of PSNR and SSIM respectively 
on SOTS datasets.

Compared with the other five methods, the method in 
this paper has the best effect, the color is consistent with 
the original image, the overall contrast of the image is high, 
and the changing regions of the image can be well high-
lighted. The details in the image are more, the edges are 
more prominent and clearer. Compared with other dehazing 
methods based on traditional methods and deep learning, the 
proposed method is better in terms of dehazing performance, 

Fig. 3  dehazing images on SOTS datasets

Table 2  mAP results on RTTS 
Datasets

Evaluation Haze DCP DehazeNet AOD-Net DCPDN CycleDehaze Deep-DCP Ours

mAP 37.58 39.36 40.54 37.47 61.28 42.53 56.19 62.87
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color recovery and image brightness. Through subjective 
visual evaluation, it can give people a good visual effect and 
achieve a good purpose of dehazing.

3.4  Experiments on real images

To verify the effectiveness of the model proposed in this 
section for dehazing in real-world images, we conducted 
tests on the real task-driven data set RTTS. The RTTS test 
set contains 4322 haze images of real-world scenes, a data 
set designed based on the target detection task. Vehicles, 
pedestrians and other objects related to the traffic scene 
are labeled with bounding boxes. The test set is evaluated 
as follows: the defogged images restored by the defog-
ging algorithm were detected by using a Faster R-CNN 
model pre-trained on the VOC2007 dataset, and then the 

mean Average Precision (mAP) of detection is calculated. 
This evaluation method can directly reflect whether the fog 
image is helpful to the improvement of target detection. As 
shown in Table 3, both the DCPDN [15] algorithm with 
better performance and the algorithm in this paper use 
VGG16 to construct the perception loss, while the feature 
extraction network in Faster RCNN is the VGG16 network. 
Perception loss applied in the fog removal stage produces a 
similar effect to pre-training for the network. Notably that 
CycleDehaze's fog removal visual effect is relatively poor 
among the comparison algorithms for comparison in this 
paper. However, since it also uses perceptual loss in its 
training process, it actually outperforms some algorithms 
with better visual performance in task-driven evaluation 
of the RTTS test set. Figure 4 presents visual results of 
state-of-the-art algorithms on RTTS dataset. The dehazing 
images from our model tend to be sharper and brighter, 
while results from other methods suffer color distortion 
or haze residual.

3.5  Running time test

In computer vision system, algorithm execution efficiency 
is one of the important evaluation criteria of system per-
formance. As an image preprocessing technology, image 
defogging algorithm is often applied in some real-time 
applications, such as monitoring system, vehicle supervision 
system, automatic driving system, etc. Therefore, the time 

Table 3  Running time of different models

Method Platform Time(s)

DCP matlab 1.23
DehazeNet matlab 1.68
AOD-Net caffe 0.40
MSCNN matconvnet 3.05
CycleGAN tensorflow 2.28
Deep-DCP pytorch 0.52
Ours pytorch 1.13

(a)Haze (b)DCP (c)DehazeNet (d)AOD-Net (f)CycleDehaze (g)Deep-DCP (h)SingleDehaze(e)MSCNN

Fig. 4  visual results on RTTS dataset
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spent by the image defogging algorithm is a very important 
factor to consider. If it can provide a good visual effect in 
a relatively short time, the performance of the defogging 
algorithm is considered to be better.

To compare the real-time performance of the image 
defogging algorithm, we tested the average running time 
of different methods on the SOTS indoor composite image, 
where the image size was 512 × 512. The running time of 
the algorithm was tested with the same equipment configu-
ration. The experimental configuration is as follows: CPU 
ES-2678 v3@3.4 GHz, 48 core processor, 64G memory, 
GPU graphics card NVIDIA GTX 1080Ti. The following 
table shows the time (in seconds) taken by each algorithm to 
perform defogging on the original fog diagram. As shown in 
Table 3, except AOD-NET and deep-DCP, the method in this 
chapter is more efficient than other algorithms. Aod-net and 
deep-DCP models are smaller and sacrifice performance. 
In addition, aod-net is a model running on C++ platform, 
which also improves its operation efficiency.

3.6  Ablation study

3.6.1  Validity of loss function

This section analyzes the role of perceptual loss, local dis-
criminator and attention mechanism in the training pro-
cess on the SOTS dataset. We design three experiments by 
removing the components of local discriminator and dark 
channel attention, respectively. And compare the results with 
that of the complete model with global–local discrimina-
tor, dark channel attention and perceptual loss. As shown 
in Fig. 5, the first column is the results produced by Sin-
gleDehaze without dark channel attention. The second to 
fourth columns show the images from SingleDehaze with 
no perceptual loss, no local discriminator and no attention 
mechanism respectively. The last column is produced by the 
full SingleDehaze model. As presented Fig. 5, the network 
model with the best defogging effect can be obtained by 
combining the above three components. Due to an absence 
of constraint of perceptual loss, the transformed dehazing 
images suffer from a profound style loss. When local dis-
criminator or attention module is removed from the model, 
the restored image tend to contain local regions of under-
exposure, color distortion and artifacts. These local regions 
mainly appear in the sky or the road regions. In contrast, the 
dehazing images of full SingleGAN contain realistic color 

and eliminate most of the artefacts. The restoration in the 
sky region is stable and visually pleasing, demonstrating the 
proposed model produce images of better consistency. The 
metrics PSNR and SSIM are adopt to evaluate the quality 
of restored images of the above cases as well, as shown in 
Table 4. The results on the SOTS dataset also validate the 
effectiveness of global–local discriminator and dark channel 
attention mechanism. 

3.6.2  Ablation study

To better understand the contribution of jump connection to 
image defogging in network model, the network structure 
is improved.

The Ablation study was performed. Two models are 
trained to compare with the network structure proposed in 
this chapter: (1) remove the jump connection between the 
encoder and decoder in the generated network; (2) feature 
addition is adopted instead of feature series in the imple-
mentation of jump connection. As shown in Table 5, the 
recovery effect of the model with skip connection is better 
than that without skip connection. Because skip connections 
reuse features in the encoder, they help train the network. 
For the implementation of jump connection, the result of 
feature series is slightly higher than that of feature addition. 
Since feature addition will fuse features, which is a special 
form of feature series, although it will reduce parameters and 
computation, it will cause feature loss. Therefore, feature 
series is selected to realize jump connection in this chapter.

4  Conclusion

We proposed an unsupervised image dehazing network, 
which provides a training process using unpaired hazy and 
clear images. It is an end-to-end model that directly outputs 
dehazing images without the estimation of parameters of 
the physical model. We introduce a modified perceptual loss 
in adapt to this unsupervised manner without cyclic con-
sistency loss. The global–local discriminator and attention 
mechanism help improve the quality of the recovery images. 
We test the model on benchmark datasets and demonstrate 
the effectiveness of the method.
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(1)Hazy (3)Without local 
discriminator

(4)Without 
Attention

(5)SingleDehaze(2)Without 
perceptual loss

Fig. 5  Visual comparison from ablation study of SingleGAN. The 
images from left to right are samples as follows respectively: a hazy 
images, b results from SingleDehaze without perceptual loss, c 
results from SingleGAN without local discriminator, d results from 

SingleGAN without attention mechanism, e results from the final ver-
sion of SingleGAN. Images in b–d suffer from severe inconsistency 
and color distortion, while the final version that contains both local 
discriminator and attention mechanism gains the best visual effects

Table 4  Results of different models on SOTS dataset

Loss function PSNR SSIM

Without perceptual loss 28.87 0.8252
Without local discriminator 29.22 0.8714
Without attention mechanism 28.34 0.8241
SingleDehaze 29.24 0.8851

Table 5  Loss of network structure validity

Models PSNR SSIM

No skip connection 27.59 0.8173
Feature addition 28.68 0.8649
Skipping connection 29.24 0.8851
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Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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