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Abstract

Supervised approaches to single-channel speech

separation rely on synthetic mixtures, so that the

individual sources can be used as targets. Good

performance depends upon how well the syn-

thetic mixture data match real mixtures. How-

ever, matching synthetic data to the acoustic prop-

erties and distribution of sounds in a target do-

main can be challenging. Instead, we propose

an unsupervised method that requires only single-

channel acoustic mixtures, without ground-truth

source signals. In this method, existing mixtures

are mixed together to form a mixture of mixtures,

which the model separates into latent sources. We

propose a novel loss that allows the latent sources

to be remixed to approximate the original mix-

tures. Experiments show that this method can

achieve competitive performance on speech sepa-

ration compared to supervised methods. In a semi-

supervised learning setting, our method enables

domain adaptation by incorporating unsupervised

mixtures from a matched domain. In particular,

we demonstrate that significant improvement to

reverberant speech separation performance can be

achieved by incorporating reverberant mixtures.

1. Introduction

Audio perception is fraught with a fundamental problem:

individual sounds are convolved with unknown acoustic re-

verberation functions and mixed together at the acoustic sen-

sor in a way that is impossible to disentangle without prior

knowledge of the source characteristics. It is a hallmark of

human hearing that we are able to hear the nuances of differ-

ent sources, even when presented with a monaural mixture

of sounds. Significant progress has been made on extracting

estimates of each source from single-channel recordings,
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using supervised deep learning methods. These techniques

have been applied to tasks such as speaker-independent

enhancement (separation of speech from nonspeech inter-

ference) (Huang et al., 2014; Weninger et al., 2015) and

speech separation (separation of speech from speech) (Her-

shey et al., 2016; Isik et al., 2016; Yu et al., 2017).

These approaches have used supervised training, in which

ground-truth source waveforms are considered targets for

various loss functions. Deep clustering (Hershey et al.,

2016) is an embedding-based approach that implicitly repre-

sents the assignment of elements of a mixture, such as time-

frequency bins of a spectrogram, to sources in a way that is

independent of any ordering of the sources. In permutation-

invariant training (Isik et al., 2016; Yu et al., 2017), the

model explicitly outputs the signals in an arbitrary order,

and the loss function finds the permutation of that order

that best matches the estimated signals to the references, i.e.

treating the problem as a set prediction task. In both cases

the ground-truth signals are inherently part of the loss.

A major problem with supervised training for source sep-

aration is that it is not feasible to record both the mixture

signal and the individual ground-truth source signals in a

real acoustic environment, because source recordings are

contaminated by cross-talk. Therefore supervised training

has relied on synthetic mixtures created by adding up iso-

lated ground-truth sources, with or without a simulation

of the acoustic environment. Although supervised training

has been effective in training models that perform well on

data that match the same distribution of mixtures, they fare

poorly when there is mismatch in the distribution of sound

types (Manilow et al., 2019), or in acoustic conditions such

as reverberation (Maciejewski et al., 2018). It is difficult

to match the characteristics of a real dataset because the

distribution of source types and room characteristics may

be unknown and difficult to estimate, data of every source

type in isolation may not be readily available, and accurately

simulating realistic acoustics is challenging.

One approach to avoiding these difficulties is to use acoustic

mixtures from the target domain, without references, di-

rectly in training. To that end, weakly supervised training

has been proposed to substitute the strong labels of source

references with another modality such as class labels, visual

features, or spatial information. In (Pishdadian et al., 2019)
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class labels were used as a substitute for signal-level losses.

The spatial locations of individual sources, which can be

inferred from multichannel audio, has also been used to

guide learning of single-channel separation (Tzinis et al.,

2019; Seetharaman et al., 2019; Drude et al., 2019). Visual

input corresponding to each source has been used to super-

vise the extraction of the corresponding sources in (Gao

& Grauman, 2019), where the targets included mixtures

of sources, and the mapping between source estimates and

mixture references was given by the video correspondence.

Because these approaches rely on multimodal training data

containing extra input modalities, they cannot be used in

settings where only single-channel audio is available.

We propose a novel unsupervised training framework that

requires only single-channel acoustic mixtures. This frame-

work is related to permutation-invariant training (PIT) (Yu

et al., 2017), in which the permutation used to match source

estimates to source references is relaxed to allow summation

over some of the sources. In our proposed mixture invariant

training (MixIT), instead of single-source references, we

use mixtures from the target domain as references, form-

ing the input to the separation model by summing together

these mixtures to form a mixture of mixtures. The model

is trained to separate this input into a variable number of

latent source estimates, such that the separated sources can

be remixed to approximate the original mixtures.

Contributions: (1) we propose the first purely unsuper-

vised learning method that is effective for audio-only single-

channel speech separation and find that it can achieve com-

petitive performance with supervised methods; (2) we pro-

vide extensive experiments with cross-domain adaptation to

show the effectiveness of MixIT for adaptation to different

reverberation characteristics in semi-supervised settings.

2. Relation to previous work

Discriminative source separation models generate synthetic

mixtures from isolated sources which are also used as train-

ing targets. Early methods posed the problem in terms

of time-frequency mask estimation, and considered restric-

tive cases such as speaker-dependent models, and class-

specific separation, e.g. speech versus music (Huang et al.,

2014), or noise (Weninger et al., 2015). However, more

general speaker-independent speech separation, and class-

independent universal sound separation (Kavalerov et al.,

2019; Tzinis et al., 2020) are now addressed using methods

such as deep clustering (Hershey et al., 2016) and PIT (Yu

et al., 2017). These frameworks handle the output permu-

tation problem caused by the lack of a unique source class

for each output. Recent state-of-the-art models have shifted

from mask-based recurrent networks to time-domain convo-

lutional networks (Luo & Mesgarani, 2019). MixIT follows

this trend and uses a signal-level discriminative loss. The

framework can be used with any architecture; in this paper

we use a modern time-convolutional network. Unlike super-

vised approaches, MixIT can use raw-mixtures as references

and enable training directly on target-domain mixtures for

which ground-truth source signals cannot be obtained. Previ-

ous methods proposed domain adaptation schemes by using

adversarial training to learn domain-invariant intermediate

network activations (Ganin et al., 2016; Tzeng et al., 2017)

or train student and teacher models to predict consistent sep-

arated estimates from supervised and unsupervised mixtures

(Lam et al., 2020). In contrast, MixIT not only works under

purely unsupervised settings, but it also enables a seamless

semi-supervised scheme to train a single network with both

supervised and unsupervised losses.

Similar to MixIT, (Gao & Grauman, 2019) uses mixtures of

mixtures (MoMs) as input, and sums over estimated sources

to match the target mixtures, using the co-separation loss.

However, this loss does not identify correspondence be-

tween sources and mixtures, since that is established by

the supervising video inputs, each of which is assumed to

correspond to one source. In MixIT this is handled in an

unsupervised manner, by finding the best correspondence

between sums of sources and the reference mixtures without

using other modalities, making the proposed methods the

first fully unsupervised separation work using MoMs.

Also related is adversarial unmix-and-remix (Hoshen, 2019),

which separates linear image mixtures in a GAN framework,

with the discriminator operating on mixtures rather than

single sources. Mixtures are separated, and the resulting

sources are remixed to form new mixtures which are pushed

to match the distribution of the original inputs. The authors

reported good separation results on image mixtures, but

their method failed on audio mixtures. In contrast, MixIT

avoids the difficulty of saddle-point optimization associated

with GANs and works well on audio mixtures. MixIT uses

MoMs and relies on generalization to work on single mix-

tures while unmix-and-remix has the advantage of being

trained with the original mixtures. However, unmix-and-

remix could be combined with MixIT in future work.

3. Method

We generalize the permutation-invariant training framework

to operate directly on unsupervised mixtures, as illustrated

in Figure 1. Formally, a supervised separation dataset is

comprised of pairs of input mixtures x =
∑N

n=1 sn and

their constituent sources sn ∈ R
T , where each mixture

contains up to N sources with T time samples each. Without

loss of generality, for the mixtures that contain only N ′ < N
sources we assume that sn = 0 for N ′ < n ≤ N . An

unsupervised dataset only contains input mixtures without

underlying reference sources. We assume that the maximum

number of sources present in any mixture is known.
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(a) Supervised permutation invariant training (PIT).
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(b) Unsupervised mixture invariant training (MixIT).

Figure 1: Overview of (a) PIT separating a two-source

mixture into up to four sources and (b) MixIT separating a

mixture of mixtures into up to eight sources. Arrow color

indicates best match between estimates and references.

3.1. Permutation invariant training

In the supervised case we are given a mixture x and its

corresponding sources s to train on. The input mixture x is

fed through a separation model fθ with parameters θ. The

model estimates M sources: ŝ = fθ(x) ∈ R
M×T , where

M = N is the maximum number of sources co-existing in

any given mixture drawn from the supervised dataset. The

supervised separation loss can be written as:

LPIT (s, ŝ) = min
P

M
∑

m=1

L (sm, [Pŝ]m) , (1)

where P is an M ×M permutation matrix and L is a signal-

level loss function. There is no predefined ordering of the

source signals. Instead, the loss is computed using the

permutation which gives the best match between ground-

truth reference sources s and estimated sources ŝ.

The loss function between a reference y ∈ R
T and estimate

ŷ ∈ R
T is the negative thresholded signal-to-noise ratio:

L(y, ŷ) = −10 log10
‖y‖2

‖y − ŷ‖2 + τ‖y‖2
, (2)

where τ = 10−SNRmax/10 acts as a soft threshold that

clamps the loss at SNRmax. This threshold prevents ex-

amples that are already well-separated from dominating the

gradients within a training batch. We use SNRmax = 30.

3.2. Mixture invariant training

PIT requires knowledge of the ground truth source signals

s, and therefore cannot directly leverage unsupervised data

where only mixtures x are observed. MixIT overcomes this

problem as follows. Consider two mixtures x1 and x2 are

drawn without replacement from an unsupervised dataset

where each one is comprised of up to N underlying sources

(any number of mixtures could be used, but here we use two

for simplicity). The mixture of mixtures is formed by adding

them together: x = x1+x2. The separation model fθ takes

x as input, and estimates M = 2N latent source signals.

In this way we make sure that the model is always capable

of estimating enough sources for any x. The unsupervised

MixIT loss is computed between the estimated sources ŝ

and the input mixtures x1, x2 as follows:

LMixIT (x1,x2, ŝ) = min
A

2
∑

i=1

L (xi, [Aŝ]i) , (3)

where L is the same signal-level loss used in PIT (2) and

the mixing matrix A ∈ B
2×M is constrained to the set of

2×M binary matrices where each column sums to 1. Thus,

each latent source ŝm can only be used once, and is assigned

to either x1 or x2. MixIT minimizes the total loss between

mixtures x and remixed latent sources Aŝ by choosing the

best match between sources and mixtures (analogous to PIT).

In practice, we optimize over A using an exhaustive O(2M )
search, although more efficient methods are possible.

There is an implicit assumption in MixIT that the sources

are additive, and that they are independent of each other in

the original mixtures x1 and x2, in the sense that there is no

information in x about which sources belong to which mix-

tures. The two mixtures x ∈ R
2×T are assumed to result

from mixing unknown sources s∗ ∈ R
P×T using an un-

known 2×P mixing matrix A∗: x = A∗s∗. If the network

could infer which sources belong together in the references,

and hence knew the mixing matrix A∗ (up to a left per-

mutation), then the M source estimates, ŝ ∈ R
M×T could

minimize the loss (3) without separating all the sources (i.e.,

by under-separating). That is, for a known mixing matrix

A∗, the loss (3) could be minimized, for example, by the

estimate ŝ = C+A∗s∗, with C+ the pseudoinverse of a

2 × M mixing matrix C such that CC+ = I, at A = C,

since Cŝ = CC+A∗s∗ = x. However, if the sources

are independent, then the network cannot infer the mixing

matrix that produced the reference mixtures. Nevertheless,

the loss can be minimized with a single set of estimates,

regardless of the mixing matrix A∗, by separating all of the

sources. That is, the estimated sources must be within a mix-

ing matrix B ∈ B
P×M of the original sources, s∗ = Bŝ,

so that (3) is minimized at A = A∗B, for any A∗. Hence,

the lack of knowledge about which sources belong to which

mixtures encourages the network to separate the sources as

much as possible. Note that when M > P , the network can

produce more estimates than there are sources (i.e., over-

separate). In this work, semi-supervised training may help

with this, and future work will address methods to penalize

over-separation in the fully unsupervised case.
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3.3. Semi-supervised training

When trained with M isolated reference sources, i.e. with

full supervision, the MixIT loss is equivalent to PIT. Specif-

ically, input mixtures xi are replaced with ground-truth

reference sources sm and the mixing matrix A becomes an

M ×M permutation matrix P. This makes it straightfor-

ward to combine both losses to perform semi-supervised

learning. In essence, each training batch contains p% unsu-

pervised mixtures, for which we do not know the constituent

sources and use the MixIT loss (3), and the remainder su-

pervised examples, for which we use the PIT loss (1).

4. Experiments

Our separation model fθ consists of a learnable convolu-

tional basis transform that produces mixture basis coeffi-

cients. These are processed by an improved time-domain

convolutional network (TDCN++) (Kavalerov et al., 2019),

similar to ConvTasNet (Luo & Mesgarani, 2019). This net-

work predicts M masks with values between 0 and 1 and the

same size as the basis coefficients. The M separated wave-

forms are produced by overlapping and adding the masks

elementwise multiplied with the coefficients. A mixture

consistency projection (Wisdom et al., 2019) is applied to

constrain separated sources to add up to the input mixture.

See Appendix A for architecture and training details.

Separation performance is measured using scale-invariant

signal-to-noise ratio (SI-SNR) (Le Roux et al., 2019). SI-

SNR measures fidelity between a signal y and its estimate

ŷ within an arbitrary scale factor:

SI-SNR(y, ŷ) = 10 log10
‖αy‖2

‖αy − ŷ‖2
, (4)

where α = argmina‖ay − ŷ‖2 = yT ŷ/‖y‖2. Generally

we report SI-SNR improvement (SI-SNRi), which is the

difference between the SI-SNR of each source estimate after

processing, and the SI-SNR obtained using the input mixture

as the estimate for each source. In our evaluations, mixtures

can contain fewer than the M sources output by the model.

To handle this, we zero-pad the references to M sources,

permute these references to match the separated sources,

and average SI-SNRi over non-zero references.

For speech separation experiments, we use the WSJ0-2mix

(Hershey et al., 2016), sampled at 8 kHz or 16 kHz, and

Libri2Mix (Cosentino et al., 2020) datasets, sampled at 16

kHz. We also employ the reverberant spatialized versions of

WSJ0-2mix (Wang et al., 2018) and a reverberant version

of Libri2Mix we created. Both datasets consist of utter-

ances from male and female speakers drawn from either

the Wall Street Journal (WSJ0) corpus or from LibriSpeech

(Panayotov et al., 2015). Reverberant versions are created

by convolving utterances with room impulse responses gen-

erated by a room simulator employing the image method

(Allen & Berkley, 1979). WSJ0-2mix and the train-360-

clean split of Libri2Mix provide 30 hours and 364 hours of

training mixtures, respectively. Note that for WSJ0-2mix

individual source utterances are drawn with replacement.

We sweep the amount of supervised versus unsupervised

data for both the anechoic and reverberant versions of WSJ0-

2mix. The proportion p of unsupervised data from the same

domain is swept from 0% to 100% where supervised train-

ing uses the PIT separation loss (2) between ground-truth

references and separated sources, and unsupervised train-

ing only uses the mixtures using MixIT (3) with the same

separation loss (2) between mixtures and remixed separated

sources. In both cases, the input to the separation model is

a mixture of two mixtures. For training, 3 second clips are

used for WSJ0-2mix, and 10 second clips for Libri2Mix.

We try two variants of this task: mixtures that always contain

two speakers (2-source) such that MoMs always contain four

sources, and mixtures containing either one or two speakers

(1-or-2-source) such that MoMs contain two to four sources.

Note that the network always has four outputs. Evaluation

always uses single mixtures of two sources. To determine if

unsupervised data can help with domain mismatch, we also

consider using supervised data from a mismatched domain,

by incorporating supervised anechoic data (from the same

task) when using the MixIT loss on reverberant mixtures and

vice versa. This simulates the realistic training scenario for

sound separation systems, where real acoustic mixtures from

a target domain are available without reference waveforms

and synthetic supervised data must be created to match the

distribution of the real data. It is difficult to perfectly match

the real data distribution, so synthetic supervised data will

inevitably have some mismatch to the target domain.

The results on anechoic and reverberant WSJ0-2mix and

Libri2Mix are shown in Figure 2. First, notice that reverber-

ant data is more challenging to separate because reverber-

ation smears out the spectral energy of sources over time,

and thus all models achieve lower performance on rever-

berant data. Two-source mixture trained models tends to

do less well compared to the 1-or-2-source variants. One

difference with the 1-or-2-source setup is that the model

observes some inputs that have two sources, which matches

the evaluation. Another difference is that as references, the

1-source mixtures act as supervised examples.

Notice that for both anechoic and reverberant data, com-

pletely unsupervised training with MixIT (rightmost points)1

achieves performance on par with supervised training (left-

most points) with 1-or-2-source mixtures. For 2-source

mixtures, unsupervised performance is worse by up to 3 dB

1The rightmost matched and mismatched points use identical
training data since no supervision is used. Small performance
differences reflect randomness in model initialization and training.
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Figure 2: Sweeping proportion of matched unsupervised training examples with matched or mismatched supervised

examples on WSJ0-2mix 8kHz (left), WSJ0-2mix 16kHz (middle), and Libri2Mix (right). The leftmost points in each plot

correspond to 100% supervision using PIT, and the rightmost points are fully unsupervised using MixIT.

compared to fully or semi-supervised on anechoic data,

while performance is more comparable on reverberant data.

However, even a small amount of supervision (80% unsu-

pervised) dramatically improves anechoic SI-SNRi. When

the supervised data is mismatched, adding a small amount

of unsupervised data (10%) from a matched domain dras-

tically improves performance: using mismatched anechoic

supervised data and matched reverberant unsupervised data,

we observe boosts of 2-3 dB for 2-source mixtures on all

datasets. For 1-to-2-source mixtures, performance increases

by about 6 dB on WSJ0-2mix and 2.5 dB for Libri2Mix.

Although our primary focus is on less supervised learning,

MixIT models are competitive on anechoic datasets with

state-of-the-art approaches that do not exploit speaker iden-

tity information. Fig. 2 includes the best reported numbers

for 8 and 16 kHz WSJ0-2mix (Luo et al., 2020; Pariente

et al., 2020), and Libri2Mix (Cosentino et al., 2020).

4.1. Discussion

The experiments show the effectiveness of MixIT and that

unsupervised domain adaptation always helps: matched

fully unsupervised training is always better than mismatched

fully supervised training, often by a large margin. To the

best of our knowledge, this is the first single-channel purely

unsupervised separation method which obtains comparable

performance to state-of-the-art supervised approaches.

In some of the experiments reported here, the data prepara-

tion has some limitations. The WSJ0-2mix data have the

property that each unique source may be repeated across

multiple mixture examples, whereas Libri2Mix uses unique

sources in every mixture. Such re-use of source signals is

not a problem for ordinary supervised separation, but in the

context of MixIT, there is a possibility that the model may

abuse this redundancy. In particular in the 1-or-2 source

case, this raises the chance that each source appears as a

reference, which could make the unsupervised training act

more like supervised training. However, the unsupervised

performance on Libri2Mix, which does not contain redun-

dant sources, parallels the WSJ0-2mix results and shows

that if there is a redundancy loophole to be exploited in

some cases, it is not needed for good performance.

An ultimate goal is to evaluate separation on real mixture

data; however, this remains challenging because of the lack

of ground truth. As a proxy, future experiments may use

recognition or human listening as a measure of separation.

5. Conclusion

We have presented MixIT, a new paradigm for training sep-

aration models in a completely unsupervised manner where

ground-truth source references are not required. On a speech

separation task, we demonstrated that MixIT can approach

the performance of supervised PIT, and is especially helpful

in a semi-supervised setup to adapt to mismatched domains.

More broadly, MixIT opens new lines of research where

large amounts of previously untapped in-the-wild data can

be leveraged to train sound separation systems.
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A. Separation model architecture

In Table 1, we describe the separation network architecture

using a TDCN++ (Kavalerov et al., 2019). As compared to

the original ConvTasNet method (Luo & Mesgarani, 2019),

the changes to the model include the following:

• Instead of global layer norm, which averages statistics

over frames and channels, the TDCN++ uses instance

norm, also known as feature-wise global layer norm

(Kavalerov et al., 2019). This mean-and-variance nor-

malization is performed separately for each convolution

channel across frames, with trainable scalar bias and scale

parameters.

• Additional skip-residual connections from the outputs

of earlier residual blocks to the inputs of the later resid-

ual blocks. A skip-residual connection includes a trans-

formation in the form of a dense layer with bias of the

block outputs and all paths from residual connections are

summed with the regular block input coming from the

previous block. Note that all dense layers in the model

include bias terms.

• A scalar scale parameter is multiplied after each dense

layer stage, which is an over-parametrization trick that

improves convergence. The scale parameters for the sec-

ond dense layer in layer i are initialized using exponential

decay in the form of 0.9i. All other scales are initialized

to 1.0. This initial scaling controls the contribution of

each block into the residual sum. It also causes the initial

blocks train faster and the later blocks to train slower,

which is reminiscent of layer-wise training.

As mentioned in the text, we also apply a mixture consis-

tency projection (Wisdom et al., 2019) to the resulting sepa-

rated waveforms, which projects them such that they sum up

to the original mixture. This projection solves the following

optimization problem to find mixture consistency separated

sources ŝ given initial separated sources s separated by the

model from a mixture x:

minimize
ŝ∈RM×T

1

2

∑

m

‖ŝm − sm‖2

subject to
∑

m

ŝm = x.
(5)

The projection operation is the closed-form solution of this

problem:

ŝm = sm +
1

M
(x−

∑

m′

sm′), (6)

which is differentiable and can simply be applied as a final

layer to the initial separated sources s.

B. Training details

For each task, we train all models to 200k steps, evaluating a

checkpoint every 10 minutes. For evaluation on the test set,

we select the checkpoint with the highest validation score.

As mentioned in the text, all models are trained with batch

size 256 with the Adam optimizer (Kingma & Ba, 2015)

using a learning rate of 10−3 on 4 Google Cloud TPUs (16

chips).

C. Ablations

In order to evaluate the contribution of different components

of the proposed model we compare several variations trained

on WSJ0-2mix with two-source mixtures: disabling mixture

consistency, and varying SNRmax. Performance is reported

on the validation set after 200k training steps.

Mixture consistency We observed modest improvement of

0.5 dB SI-SNRi by incorporating mixture consistency (6)

versus not.

SNR threshold Performance is not very sensitive to

SNRmax as long as it is 20 dB or larger, as shown in Table 2.

Zero source loss For speech separation tasks using 1-to-

2-source mixtures, the separation model needs to be able

to output near-zero signals for “inactive” source slots. For

separated signals that align to all-zeros reference source, we

tried using a variation on the negative SNR loss function

(2), where the mixture signal x instead of the source signal

s is used to determine the soft-thresholding, where we still

set τ corresponding to SNRmax of 30 dB:

L0(s = 0, ŝ,x) = 10 log10
(

‖ŝ‖2 + τ‖x‖2
)

, (7)

which means the loss will be clipped when the power of

the separated signal drops 30 dB below the power of the

mixture signal.

For WSJ0-2mix, where the models are trained on mixtures

of 1-to-2-source mixtures, and evaluated on single mixtures

from the validation set. Using the additional zero source

loss results in a SI-SNRi of 14.3 dB, while not using it leads

to a SI-SNRi of 15.9 dB. Thus, incorporating L0 decreases

SI-SNRi, and we did not use this loss to train our models.

D. Audio examples

Audio demos for speech separation on anechoic and

reverberant WSJ0-2mix 16 kHz and Libri2Mix are provided

at https://universal-sound-separation.

github.io/unsupervised_speech_

separation/.

https://universal-sound-separation.github.io/unsupervised_speech_separation/
https://universal-sound-separation.github.io/unsupervised_speech_separation/
https://universal-sound-separation.github.io/unsupervised_speech_separation/
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Table 1: Separation network with TDCN++ architecture configuration. Variables are number of encoder basis coefficients

N = 256, encoder basis kernel size L, which is 40 for 16 kHz data and 20 for 8 kHz data, number of waveform samples T ,

number of coefficient frames F , and number of separated sources M .

Module name Operation Output shape Kernel size Dilation Stride

Waveform Input T × 1 – – –

Encoder Conv F ×N 1× L×N 1 L/2
Coeffs Intermediate F ×N – – –

Initial bottleneck ReLU F ×N – – –

Dense F × 256 N × 256 1 1

i-th separable dilated

conv block (x32)

Input F × 256 Previous block output

+ sum of skip-residual inputs

Dense F × 512 256× 512 – –

with skip-residual

connections b/w blocks:
i � i+ 1,

0 � 8, 0 � 16, 0 � 24,

8 � 16, 8 � 24,

16 � 24,

Scale F × 512 1× 1 – –

PReLU F × 512 – – –

Instance norm F × 512 – – –

Depthwise conv F × 512 512× 3× 1 2mod(i,8) 1

PReLU F × 512 – – –

Instance norm F × 512 – – –

Dense F × 256 512× 256 – –

Scale F × 512 1× 1 – –

Final bottleneck Dense F × 256 512× 256 – –

Perform masking Dense F ×M ·N 256×M ·N – –

Sigmoid F ×M ·N – – –

Reshape F ×M ×N – – –

Multiply F ×M ×N Multiply with F × 1×N coeffs

Decoder Transposed conv T ×M L×N × 1 1 L/2
Separated waveforms Output T ×M – – –

Table 2: SI-SNRi in dB as a function of SNRmax for unsu-

pervised MixIT on WSJ0-2mix 2-source mixtures.

SNRmax 10 20 30 40 50

SI-SNRi 13.1 13.8 13.7 13.6 13.7


