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Abstract
This paper proposes a new approach to unsupervised speaker
adaptation inspired by the recent success of the factor analysis-
based Total Variability Approach to text-independent speaker
verification [1]. This approach effectively represents speaker
variability in terms of low-dimensional total factor vectors and,
when paired alongside the simplicity of cosine similarity scor-
ing, allows for easy manipulation and efficient computation [2].
The development of our adaptation algorithm is motivated by
the desire to have a robust method of setting an adaptation
threshold, to minimize the amount of required computation for
each adaptation update, and to simplify the associated score
normalization procedures where possible. To address the fi-
nal issue, we propose the Symmetric Normalization (S-norm)
method, which takes advantage of the symmetry in cosine sim-
ilarity scoring and achieves competitive performance to that of
the ZT-norm while requiring fewer parameter calculations. In
subsequent experiments, we also assess an attempt to replace
the use of score normalization procedures altogether with a Nor-
malized Cosine Similarity scoring function [3].

We evaluated the performance of our unsupervised speaker
adaptation algorithm under various score normalization proce-
dures on the 10sec-10sec and core conditions of the 2008 NIST
SRE dataset. Using results without adaptation as our baseline,
it was found that the proposed methods are consistent in suc-
cessfully improving speaker verification performance to achieve
state-of-the-art results.

1. Introduction
In recent years, factor analysis-based approaches have achieved
the state of the art for text-independent speaker detection tasks.
In an effort to enhance the classical method of modeling speak-
ers using Gaussian Mixture Models (GMMs), methods devel-
oped in Joint Factor Analysis (JFA) present powerful tools to
better represent speaker variabilities and compensate for chan-
nel and, more generally, session inconsistencies [4]. It is, nev-
ertheless, extremely difficult to capture and characterize every
source of variability in just a single enrollment session [5]. In-
deed, having multiple enrollments of the same speaker over dif-
ferent sessions would help average out these sources of noise
and, ultimately, provide a better representation of the speaker
model. This motivates the ongoing investigation of speaker
model adaptation. Furthermore, it would be even better if these
additional enrollments could occur automatically - that is, with-
out a priori knowledge that the utterance actually belongs to the
target speaker. The setting in which we update speaker models
based on utterances processed during testing is the problem of

unsupervised speaker adaptation [6].
As it stands, JFA produces highly variable scores that re-

quire the application of score normalization techniques, such
as the ZT-norm, to show its performance gains [4]. Previous
work has shown that the application of these normalization tech-
niques in the unsupervised speaker adaptation scenario requires
a significant amount of additional computation with each adap-
tation update [5]. Recently, a factor analysis-based approach
to speaker recognition using just a cosine similarity metric be-
tween low-dimensional vectors proved highly effective [2]. Un-
like traditional JFA, this “Total Variability Approach” avoids
the joint estimation of separate speaker and session spaces and
factors, and is less reliant on the application of score normaliza-
tions [1].

In this paper, we utilize the speed and convenience of the
cosine similarity metric and develop an algorithm for unsuper-
vised speaker adaptation. We further propose a new score nor-
malization strategy that reduces the need for additional com-
putation after each adaptation update and, ultimately, simpli-
fies the entire procedure. The rest of this paper is organized as
follows. In Section 2, we describe the “Total Variability Ap-
proach” and its use of cosine similarity scoring. A new algo-
rithm for unsupervised speaker adaptation is developed in Sec-
tion 3, while Section 4 presents the simplified score normal-
ization strategy. In Section 5 we present the results of our ex-
periments, and then discuss the latest direction of progress in
Section 6 before concluding.

2. The Total Variability Approach
Classical JFA modeling defines respective subspaces for the
speaker and the channel factors, then estimates them jointly [2].
A more recent approach represents all the factors in a (single)
total variability space with no distinction made between speaker
and session subspaces [1]. The speaker- and session-dependent
supervector1 M is defined as

M = m+ Tw (1)

where m is the speaker- and session-independent supervector
commonly taken from a Universal Background Model (UBM)2,
T is a rectangular matrix of low rank that defines the total vari-
ability space, and w is a random vector with a normally dis-
tributed prior N (0, I). The components of w are referred to as

1A supervector is composed by stacking the mean vectors from a
GMM.

2A UBM is a large GMM trained to represent the speaker-
independent distribution of features [7].



the “total factors”, and w will be referred to as a “total factor
vector.”

2.1. Parameter Training and Estimation

We begin from scratch with a UBM Ω consisting of C Gaus-
sian mixture components defined in some feature space of di-
mension F . In this space, we train the total variability matrix T
by following a similar process to that of learning the eigenvoice
matrix of JFA and is fully detailed in [1]. The main difference
between the two is that in training the eigenvoice of JFA, all
recordings of a given speaker are considered to belong to the
same person, whereas in training T , each instance of a given
speaker’s set of utterances is regarded as having been produced
by a different speaker.

The total factor vector w is a latent variable whose poste-
rior distribution can be determined using Baum-Welch statistics
from the UBM [2]. Suppose our given utterance u is repre-
sented as a sequence of L frames u = {y1, y2, ..., yL}. Then
the relevant Baum-Welch statistics are

Nc (u) =

LX
t=1

P (c|yt,Ω) (2)

Fc (u) =

LX
t=1

P (c|yt,Ω) yt (3)

where c = 1, ..., C is the index of the corresponding Gaussian
component and P (c|yt,Ω) corresponds to the posterior proba-
bility of generating the frame yt by mixture component c. Now
for our purposes, we define the centralized first order Baum-
Welch statistics based on the mean of the mixture components
in the UBM:

F̃c (u) = Fc (u)−Nc (u)mc (4)

=

LX
t=1

P (c|yt,Ω) (yt −mc) (5)

where mc is the mean of mixture component c. The total fac-
tors vector for utterance u can be obtained using the following
equation:

w =
`
I + T tΣ−1N(u)T

´−1 · T tΣ−1F̃ (u) (6)

where N(u) is the diagonal matrix of dimension CF × CF

whose diagonal blocks are Nc(u)I , (C = 1, ..., C) and F̃ (u)
is a supervector of dimension CF × 1 obtained by concatenat-
ing all the centralized first order Baum-Welch statistics F̃c(u).
Here, Σ is a diagonal covariance matrix of dimensionCF×CF
that is estimated during the training of T . It models the residual
variabilities not captured by the total variability matrix T [8].

2.2. Inter-session Compensation

One marked difference between the total variability representa-
tion and JFA is that there is no explicit compensation for in-
tersession variability. Once the data has been projected into
the lower dimensional space, however, standard compensation
techniques can still be applied in a straightforward and compu-
tationally efficient manner. Upon experimentation with a vari-
ety of different methods, it was found that the best performance
can be achieved with a combination of Linear Discriminant
Analysis (LDA) followed by Within-Class Covariance Normal-
ization (WCCN). The following paragraphs will briefly summa-
rize this work; more details can be found in [2].

In order to better discriminate between classes, LDA looks
to define a new orthogonal basis (rotation) within the feature
space. In this case, different speakers correspond to different
classes, and a new basis is sought to simultaneously maximize
the between-class variance (inter-speaker discrimination) and
minimize the within-class variance (intra-speaker variability).
We define these axes using a projection matrix A composed of
the eigenvectors corresponding to the highest eigenvalues of the
general equation

Σbν = λΣwν (7)

where λ is the diagonal matrix of eigenvalues. The matrices
Σb and Σw correspond to the between-class and within-class
covariance matrices, respectively, and are calculated as follows:

Σb =

SX
s=1

(ws − w̄) (ws − w̄)t (8)

Σw =
SX

s=1

1

ns

nsX
i=1

“
w(i)

s − w̄s

”“
w(i)

s − w̄s

”t

(9)

where w̄s = 1
ns

Pns
i=1 w

(i)
s is the mean of the total factor vec-

tors w(·)
s for each speaker s with ns corresponding to the num-

ber of utterances for that speaker, and S is the total number of
speakers.

The idea behind WCCN [9] is to scale the total variability
space by a factor that is inversely proportional to an estimate
of the within-class covariance matrix. This has the effect of
de-emphasizing directions of high intra-speaker variability and
thus makes for a more robust scoring operation. The within-
class covariance matrix is estimated using the total factor vec-
tors from a set of development speakers as

W =
1

S

SX
s=1

1

ns

nsX
i=1

“
Atw(i)

s − w̃s

”“
Atw(i)

s − w̃s

”t

(10)

where A is the LDA projection matrix as described previously,
w̃s = 1

ns

Pns
i=1A

tw
(i)
s is the mean of the LDA-projected total

factor vectors w(·)
s for each development speaker s, ns corre-

sponds to the number of utterances for the respective speaker,
and S is the total number of development speakers. We use the
Cholesky decomposition of the inverted matrix, W−1 = BBt,
whose application can be viewed as scaling the total variability
space by B. The result of applying both LDA and WCCN is a
new vector w′, denoted

w′ =
BtAtw

‖BtAtw‖ (11)

where w is extracted from (6) and the normalization operation
‖BtAtw‖ is performed in anticipation of the cosine similarity
scoring to be discussed in the following section. From now on,
we will use w′ exclusively to refer to the total factor vectors.

2.3. Cosine Similarity Scoring

The simple cosine similarity metric has been applied success-
fully in the total variability space to compare two supervectors
for making a speaker detection decision [2]. Given two total
factor vectors generated by (6) via the projection of two su-
pervectors in the total variability space and the compensation
for inter-session variabilities as in (11), a target w′target from a



known speaker and a test w′test from an unknown speaker, the
cosine similarity score is given as

score
`
w′target, w

′
test
´

=

`
w′target

´t
(w′test)

‖w′target‖‖w′test‖
(12)

=
`
w′target

´t `
w′test

´
(13)

≥
< θ (14)

where θ is the decision threshold and (13) is the simple dot
product. We can neglect the normalization in (12) since the
w′(·) were already normalized in (11). This scoring function is
considerably less complex than the log likelihood ratio (LLR)
scoring operations used in JFA [10].

3. Unsupervised Adaptation
Introducing additional data in a model adaptation procedure has
the effect of averaging out sources of noise, such as session
variabilities, that might otherwise have an adverse effect on the
model itself. In the single-utterance speaker enrollment sce-
nario, the initial representation of a speaker may be strongly af-
fected by the channel’s characteristics; thus, an adaptation pro-
cedure that can incorporate additional data of the same speaker
(from either a different channel or the same one) would, for the
most part, improve and strengthen the model’s representation
of the speaker. In the case of unsupervised adaptation, how-
ever, even before an adaptation procedure can be carried out, a
decision must be made as to whether or not the test utterance be-
longs to the hypothesized speaker. Care must be taken in mak-
ing this decision, as the inclusion or exclusion of the utterance
in adaptation will affect all subsequent decisions and results for
the hypothesized speaker model.

3.1. Previous Work

A recursive procedure for progressive model adaptation in a
JFA-based speaker verification system was proposed in [5].
Whenever new adaptation data is available, the proposed al-
gorithm computes the posterior distribution of the speaker-
dependent hyperparameters using the current hyperparameters
as a prior. Using LLR scoring, the method sets a fixed, pre-
defined adaptation threshold to decide whether or not to adapt
the speaker model using a given test utterance. Additionally, an
“adaptive T-norm score normalization” method was introduced
to combat the observed drifting of T-normalized scores caused
by additional adaptation updates.

While the work in [5] saw many promising results, the in-
crease in computational complexity associated with both calcu-
lating the posterior distributions of the hyperparameters and re-
computing the adapted speaker model’s Z-norm parameters af-
ter each adaptation update is not negligible. Furthermore, even
though most of the parameters for the adaptive T-norm pro-
cedure can be pre-computed offline, the overhead cost is still
rather significant, especially in the case of ZT-normalization
where each T-norm model requires the computation of its re-
spective Z-norm parameters. Lastly, the success of the results
in [5] was largely dependent on the choice of adaptation thresh-
old, which is difficult to determine a priori.

Our proposed approach is motivated by the following
desiderata:

• To have a simple and robust method of setting the adap-
tation threshold; for example, setting it to be the same

as the optimal decision threshold3 of some development
dataset.

• To minimize the amount of computation necessary dur-
ing each unsupervised adaptation update.

• To simplify the score normalization procedures wherever
possible.

3.2. A New Approach

The recent “Total Variability Approach” and the simplicity of
its cosine similarity score motivates the development of an algo-
rithm for unsupervised speaker adaptation that is simple, direct,
and efficient: Let Ws = {w′s} denote the set of of total factor
vectors pertaining to the identity of known speaker s such that
w′s denotes the vector extracted from the initial enrollment utter-
ance. Let t′i, i = 1, ..., k denote the total factor vector extracted
from the test utterance for each of k tests. We define a fixed
decision threshold θ (based on the optimal decision threshold
as previously mentioned) and the following averaging function
based on the cosine similarity score defined in (13):

s̃coreN

`
Ws, t

′
i

´
=

1

‖Ws‖
X

w′
s∈Ws

scoreN

`
w′s, t

′
i

´≥
<θ (15)

where scoreN is some normalized version (e.g. Z-, T-, ZT-norm,
etc.) of the cosine similarity score in (13) and ‖Ws‖ denotes
the cardinality of the set Ws. If s̃coreN ≥ θ, then the test utter-
ance t′i, as well as its relevant score normalization parameters,
is added to Ws and the decision is confirmed.

The low dimensionality of the total factor vectors in the to-
tal variability space allows for convenient storage in memory
and a lower computation cost, while the symmetry in the func-
tion s̃core(·) nicely allows for a fixed threshold. Section 6 will
further discuss the ideas for future work in the design of this
function.

4. Score Normalization
This section discusses the details of score normalization per-
taining to unsupervised speaker adaptation. In particular, it has
been observed that application of ZT-norm in a JFA-based sys-
tem achieves the best results [4]. The details of this implemen-
tation are described further in [1] and [11], but in summary, ZT-
norm can be seen as the combination of applying the Z-norm
followed by the T-norm, thus respectively compensating first
for interspeaker variability and then for intersession variability.

To make these notions more explicit, we will briefly review
each score normalization procedure, discuss the parameter up-
dates that need to occur during unsupervised adaptation, then
describe our proposed simplifications to this problem.

4.1. Procedures

Score normalization methods are applied to reduce the variabil-
ity of the decision scores. These techniques are applied based
on the assumption that the distribution of target speaker and im-
postor scores follow two distinct normal distributions [1]. That
is, given a total factor vector w′s obtained from the enrollment
of speaker s and a set of total factor vectors Ss = {w′j} cor-
responding to target speaker s, the scores between w′s and the
elements {w′j} are assumed to follow a normal distribution with
mean µs and variance σ2

s . Similarly, given a set of total factor

3The optimal decision threshold is usually set based on the results
of tests without speaker model adaptation.



vectors I = {u′k} extracted from a set of impostor utterances,
the scores between w′s and the elements of I are assumed to
follow a normal distribution N

`
µZ(s), σ2

Z(s)
´
. Both of these

score distributions are dependent on the target speaker, how-
ever, which means that without some form of global normaliza-
tion scheme, a decision threshold will need to be set for each
individual speaker.

The purpose of zero normalization (Z-norm) is to scale and
shift the distribution of scores between a target speakerw′s and a
set of impostor utterances I to the standard normal distribution.
For some arbitrary test utterance t′i and target speaker w′s, we
have

scoreZ

`
w′s, t

′
i

´
=

score (w′s, t
′
i)− µZ(s)

σZ(s)
(16)

where score (w′s, t
′
i) is calculated as in (13). The parameters

µZ(s) and σZ(s) for a given speaker s can be computed prior
to testing as follows:

µZ(s) =
1

‖I‖
X

u′
k
∈I

score
`
w′s, u

′
k

´
(17)

σz(s) =

vuut 1

‖I‖
X

u′
k
∈I

(score (w′s, u
′
k)− µz(s))2 (18)

where ‖I‖ denotes the cardinality of the set of impostor utter-
ances. The Z-norm procedure allows for the finding of a univer-
sal decision threshold that is independent of the target speaker
s.

As Z-norm applies to every speaker model, we can perform
an analogous procedure on every test utterance. Known as test
normalization (T-norm) [11], the total factor vector t′j extracted
from test utterance j is scored against a set of impostor models
M = {v′k} to obtain the parameters µT (j) and σT (j) below:

µT (j) =
1

‖M‖
X

v′
k
∈M

score
`
v′k, t

′
j

´
(19)

σT (j) =

vuut 1

‖M‖
X

v′
k
∈M

`
score

`
v′k, t

′
j

´
− µT (j)

´2 (20)

The T-normalized score between some arbitrary target speaker
w′r and the test utterance t′j is similar to (16):

scoreT

`
w′r, t

′
j

´
=

score
`
w′r, t

′
j

´
− µT (j)

σT (j)
(21)

The T-norm addresses the problem of session variability and
acoustic mismatch between speaker enrollment and testing con-
ditions [11].

Combining the Z- and T-norm procedures has been shown
to improve performance in speaker verification tasks [1]. To do
so, we compute Z-norm parameters for all speakers, including
those in the set of impostor models M = {v′k}. Then to com-
pute the T-norm parameters for test utterance t′j , we continue
to use (19) and (20) but change the function score

`
v′k, t

′
j

´
to

scoreZ

`
v′k, t

′
j

´
so as to use the Z-norm parameters of v′k.

4.2. ZT-Norm Parameter Updates

In the unsupervised adaptation procedure described in Sec-
tion 3.2, if a test utterance t′i is accepted into the set of
speaker total factor vectors Ws (renamed t

′(s)
i = t′i for

clarity), then in the subsequent trial involving t′j , the eval-
uation of s̃coreZT

`
Ws, t

′
j

´
will involve the calculation of

scoreZT

“
t
′(s)
i , t′j

”
, and the corresponding ZT-normalization

will require an appropriate Z-norm parameter corresponding to
t
′(s)
i . As such, whereas the approach in [5] requires us to pre-

compute Z-norm parameters for each adapted T-norm model
and then re-compute the Z-norm parameters of the updated
speaker model after each adaptation step, our procedure de-
scribed above only requires the offline computation of Z-norm
parameters for each test utterance ti in addition to the standard
Z-norm parameters for each speaker model and the standard T-
norm parameters for each test utterance.

To summarize, we can simply pre-compute the Z-norm pa-
rameters for each potential element of the set of speaker total
factor vectors Ws = {w′s, t

′(s)
a , t

′(s)
b , ...} in addition to pre-

computing the T-norm parameters for each test utterance t′i. Af-
ter these pre-computations, no other normalization-related com-
putations are necessary during verification trials.

4.3. Symmetric Normalization

The nature of the Total Variability Approach is to apply factor
analysis as a method to extract speaker-relevant features. In-
deed, we can see that the extraction of total factors from an en-
rollment or test utterance follows the exact same process. Fur-
thermore, by the nature of the cosine similarity metric, the scor-
ing between any two total factor vectors is symmetric, which
suggests that there is really no distinction to be made between
a Z-norm impostor utterance u′ and a T-norm impostor model
v′. As such, for any given speaker model or test utterance, we
should be able to associate a set of score normalization param-
eters that are determined by some universal procedure. After
defining this procedure, we will propose a slight modification
to the cosine similarity scoring function that can apply these
parameters in symmetric fashion.

In the symmetric normalization procedure (S-norm), we de-
fine ΛImp = {IImp

S
MImp} to be the union of the original

list of impostor utterances and a list of impostor models. For
each test utterance t′i, i = 1, ..., k and each initial speaker en-
rollment utterance w′j , j = 1, ..., n, its respective S-norm pa-
rameters are the mean and standard deviation of the scores be-
tween the given utterance (i.e. t′i or w′j) and all the elements of
ΛImp. Now, just as ZT-norm applies the Z-norm to the speaker
model w′s and a T-norm to the test utterance t′i, the application
of S-norm similarly applies the normalization parameters from
both the speaker model w′s and the test utterance t′i as follows:

scoreS

`
w′s, t

′
i

´
=

score (w′s, t
′
i)− µws

σws
+

score (w′s, t
′
i)− µti

σti
(22)

where µws, σws are the S-norm parameters of w′s and µti, σti

are the S-norm parameters of t′i. In the implementation of the
unsupervised adaptation algorithm, the function (15) used to
combine scores, s̃coreS(·, ·), is modified by replacing every in-
stance of scoreN (·, ·) with scoreS(·, ·) as above.

The simplicity introduced by the S-normalization exploits
the use of total factor vectors as features that describe the
speaker for any given utterance, enrollment or test. The result
is a universal procedure for calculating S-norm parameters and
a correspondingly simple method for score normalization.



4.4. Normalized Cosine Similarity

We have nearly come full circle with the story of score normal-
ization. It began with the introduction of Z- and T-norm pro-
cedures, which were combined into a more powerful and com-
plex ZT-norm procedure. In the spirit of simplifying this pro-
cedure for the sake of parameter updates during unsupervised
adaptation, we introduced the S-norm procedure. Thus the only
remaining step in the puzzle is the ultimate simplification: to
remove the need for score normalization procedures altogether.

In [3], the authors analyze the effect of score normalization
techniques in the cosine similarity metric and obtain a new, ex-
tended cosine similarity scoring function that does not require
normalization parameters to be pre-computed for any utterance.
The score normalization is instead incorporated into the cosine
similarity function itself by the following form:

score
`
w′s, w

′
t

´
=

(w′s − w̄′imp)
t
(w′t − w̄′imp)

‖Cw′s‖ · ‖Cw′t‖
(23)

where the calculation of the matrix C and vector w̄′imp are de-
tailed in [3].

5. Experiments
5.1. Setup

Our experiments were run on cepstral features extracted ev-
ery 10ms using a 25ms Hamming window. We used 19 mel-
frequency cepstral coefficients along with the log energy to cre-
ate 20-dimensional feature vector, which was then subjected to
feature warping [12] using a sliding window three seconds in
length. From here, delta and delta-delta coefficients were cal-
culated every five frames to finally produce 60-dimensional fea-
ture vectors.

Table 1 shows the list of corpora and their respective roles
in the creation of our system. Our gender-dependent UBM con-
sisted of 2048 Gaussians (1024 per gender) and the rank of the
total variability matrix T was chosen to be 400, while the LDA
projection matrix A was of rank 200. We used 1200 impostor
utterances to determine the relevant Z-norm parameters and 250
impostor models for T-norm. As previously described, the pa-
rameters for S-norm and the normalized cosine similarity were
estimated using the union of the Z- and T-norm impostor sets.

The columns of Table 1 denote the LDC releases of the fol-
lowing corpora:

• S-2 - Switchboard-2, Phases II and III;

• Cell - Switchboard Cellular, Parts 1 and 2;

• NIST2004 - 2004 NIST4 SRE5 data;

• NIST2005 - 2005 NIST SRE data;

• Fisher - Fisher English Database.

5.2. Results

We carried out our experiments using the female part of the
2008 NIST SRE dataset, focusing on the condition where train-
ing and testing are done on 10 seconds of speech (10sec-
10sec condition). We used the optimal a posteriori decision
threshold from the 2006 NIST SRE dataset as our fixed deci-
sion/adaptation threshold for testing. To determine this thresh-
old, we computed all relevant test scores from the 2006 NIST

4NIST: National Institute for Standards and Technology
5SRE: Speaker Recognition Evaluation

S-2 Cell NIST 2004 NIST 2005 Fisher
UBM X X X X
T X X X X X
A (LDA) X X X X
W (WCCN) X X
Z-norm X X X
T-norm X
S-norm X X X X
Norm-Cos X X X X

Table 1: List of corpora and their respective uses.

SRE dataset without the use of speaker model adaptation, then
picked the decision boundary that minimized the Detection Cost
Function (minDCF). This threshold was fixed as both the deci-
sion and adaptation threshold during the testing of our system
on the 2008 NIST SRE data.

Our baseline systems used LDA, WCCN, and cosine simi-
larity scoring as described in Section 2, as well as some form
of normalization, but without model adaptation of any kind.
We compared the performances of the proposed unsupervised
adaptation algorithm (Section 3.2) under the use of ZT-norm, S-
norm, and normalized cosine similarity with those of the base-
lines. The testing procedure and unsupervised adaptation up-
dates were done in accordance with the NIST SRE protocol [6].

English Trials All Trials

EER (%) minDCF EER (%) minDCF
Baseline,
ZT-norm

12.45% 0.0575 16.55% 0.0726

Adapted,
ZT-norm

12.01% 0.0534 15.83% 0.0709

Baseline,
S-norm

12.01% 0.0585 16.96% 0.0708

Adapted,
S-norm

11.13% 0.0563 16.16% 0.0701

Baseline,
Norm-Cos

11.42% 0.0573 15.83% 0.0673

Adapted,
Norm-Cos

10.68% 0.0560 15.42% 0.0660

Table 2: Comparison of results (10sec-10sec condition) be-
tween our proposed method of unsupervised adaptation with
various normalization procedures and the respective “base-
line” approach (without adaptation).

Table 2 shows the results of the initial experiment on the
10sec-10sec condition with the female part of the 2008 NIST
SRE data. These results are given according to an Equal Error
Rate (EER), which corresponds to the point at which the False
Rejection rate is equal to the False Acceptance rate, and the
minimum value of the Detection Cost Function (minDCF) that
was set by NIST during the 2008 SRE. We can see that, for the
English Trials, the best EER of 10.68% is obtained by unsuper-
vised adaptation using the normalized cosine similarity, while
the best minDCF of 0.0534 is obtained by the the use of ZT-
norm with unsupervised adaptation. In evaluating All Trials,
the best EER of 15.42% and minDCF of 0.0660 are both ob-
tained via unsupervised adaptation using the normalized cosine
similarity.

The volatile nature of the 10sec-10sec condition can, in



some cases, lead to results that inaccurately represent a system’s
capabilities. To ensure the reliability of our results and to fur-
ther confirm the effectiveness of our unsupervised adaptation
algorithm and score normalization methods, we tested the sys-
tems on the standard core condition (1conv-1conv) as offered
by the 2008 NIST SRE, in which training and testing are each
done on an entire conversation (approx. 2.5min) of telephone
speech. Table 3 details the results of this experiment.

English Trials All Trials

EER (%) minDCF EER (%) minDCF
Baseline,
ZT-norm

3.17% 0.0129 5.72% 0.0316

Adapted,
ZT-norm

3.17% 0.0129 5.34% 0.0287

Baseline,
S-norm

3.44% 0.0148 5.71% 0.0285

Adapted,
S-norm

3.17% 0.0130 5.44% 0.0260

Baseline,
Norm-Cos

3.41% 0.0127 5.21% 0.0248

Adapted,
Norm-Cos

3.17% 0.0107 4.83% 0.0229

Table 3: Comparison of results (1conv-1conv core condition)
between our proposed method of unsupervised adaptation with
various normalization procedures and the respective “base-
line” approach (without adaptation).

Indeed, we can see once again that our best results are
achieved using the normalized cosine similarity with unsuper-
vised adaptation. A notable observation can be made for En-
glish Trials under ZT-norm, where our system achieves the ex-
act same results with and without adaptation. While this may
seem a bit odd, we rest assured realizing that the system with
unsupervised adaptation does, at the very least, perform better
under All Trials.

6. Discussion
While the performance of the cosine normalization method
rather eclipses all the other results, we can, nevertheless, make
a number of interesting observations:

• The unsupervised adaptation method we propose is suc-
cessful in improving performance, regardless of the nor-
malization procedure. Our results are consistent with the
notion that unsupervised adaptation (with an appropri-
ately chosen threshold) should be at least as good as -
though hopefully better than - the baseline method with-
out adaptation.

• The simplified S-norm approach performs competitively
with the more complicated, traditional ZT-norm ap-
proach.

• That the best result was ultimately obtained using the
cosine normalization demonstrates that we have indeed
come full circle in our study of score normalization
procedures. At first, these procedures were introduced
and enhanced to improve performance, then simplified
and finally replaced with a normalization method that
does not require any model-/utterance-dependent pre-
computations or parameter updates after each adaptation.

When we introduced the unsupervised adaptation algorithm
in Section 3.2, we mentioned how the symmetry in the function
s̃core(·), as seen in (15), nicely allows for a fixed threshold. This
can be a bit limiting, however, as such a score function treats ev-
ery total factor vector in the set of vectorsWs as equally impor-
tant; yet in reality, the only vector that unequivocally belongs to
speaker s is the initial enrollment w′s. Indeed, the presence of
a false-alarm decision (where a test utterance t′j is incorrectly
admitted into {W ′s}) will have an adverse effect on all subse-
quent tests. It would be better if s̃core(·) could combine cosine
similarity scores in a way that takes into account the proximity
of each admitted test utterance to the initial enrollment vector
w′s. Thus, we have begun experimenting with the following
weighted average:

ŝcoreN

`
Ws, t

′
i

´
=

1P
i ai

‖Ws‖X
i=1

ai · scoreN

`
w′i, t

′
i

´
(24)

where the score weight ai = score (w′i, w
′
s) is the cosine sim-

ilarity score without the application of any normalization pro-
cedures. We can see that ai ∈ [−1, 1] and, by definition of the
original cosine similarity score in (13), ai = 1 if wi = ws.

There are other ways to determine the respective ai. One
possibility is to weight the scores by the order in which test ut-
terances are admitted: let ai = f(i), where i denotes the ith

utterance accepted for adaptation. In the beginning, having ad-
mitted no other utterances, it would make sense for ŝcoreN (·, ·)
to be conservative with the amount of weight placed on the
scores produced by the first few test utterances adapted into
the model. As more test utterances are admitted, however, the
adapted model is, in theory, obtaining a better and better rep-
resentation of the speaker. Thus, we would be more and more
likely to believe in the model’s decisions and, subsequently, in-
crease the weight of the scores produced by test utterances ad-
mitted later. At some point during testing, we could even go
back and refine our set of vectors Ws and discard the total fac-
tor vectors that were incorrectly admitted.

Aside from the score-combining function s̃core(·), another
parameter that can be tuned is the decision/adaptation thresh-
old. We need not restrict our choosing of the threshold to be
the optimal a posteriori decision threshold of the development
data set (without adaptation). The threshold could instead be
chosen as the one that provides the best unsupervised adapta-
tion performance in the development data. It is also possible to
have different thresholds for decision (θD) and adaptation (θA),
where it might make sense to set θD as the optimal a posteriori
decision threshold (without adaptation), and then choose a more
conservative θA > θD . That is, a test utterance t′j may gener-
ate a score θj such that θD ≤ θj < θA. The system, being
forced to make a decision, might choose to confirm the hypoth-
esis speaker, but then decide not to adapt t′j into the speaker’s
set of total factor vectors for fear of a false acceptance adversely
affecting the outcome of subsequent trials.

Our experiments with these ideas have not yet yielded re-
sults that are significant improvements from those shown in Ta-
bles 2 and 3. We intend for this line of work to be continued
in the future; there are plenty of opportunities and possibilities.
For now, we stand by the methods proposed in this paper as ef-
fective measures to both simplify and improve the approaches
to text-independent speaker verification.



7. Conclusion
In this paper, we tackled the problem of unsupervised speaker
adaptation in the context of Total Variability and the cosine sim-
ilarity metric. By taking advantage of the low dimensionality of
total factor vectors as well as the simplicity and symmetry of
cosine similarity scoring, we described an algorithm for unsu-
pervised speaker adaptation that is simpler and more efficient
than a previous approach using JFA. In an effort to keep unsu-
pervised adaptation procedures as straightforward as possible,
we also proposed the S-norm score normalization method that
is a direct simplification of the traditional ZT-norm procedures.
Ultimately, the best solution requires no score normalization pa-
rameters or any additional procedures; the normalization is sim-
ply integrated into a Normalized Cosine Similarity score func-
tion. This method of score normalization, used alongside the
unsupervised adaptation algorithm, achieves state-of-the-art re-
sults in both the 10sec-10sec and 1conv-1conv conditions of the
2008 NIST SRE.
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