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ABSTRACT

A general approach to speaker adaptation in speech recog-
nition is described, in which speaker differences are treated
as arising from a paramterised transformation. Given some
unlabelled data from a particular speaker, we describe a
process that maximises the likelihood of this data by esti-
mating the transformation parameters at the same time as
refining estimation of the labels. The technique is illus-
trated using isolated vowel spectra and phonetically moti-
vated linear spectrum transformations and is shown to give
significantly better performance than non-adaptive classifi-
cation.

1. INTRODUCTION

Speaker adaptation systems recently reported in the litera-
ture ([3], [6]) have concentrated on finding transformations
which map (in some sense) a representation of the speech
of a new speaker (spectral, cepstral, LPC etc.) to that of
a reference speaker. The transformations are computed to
optimise this mapping and take no account of the data be-
ing speech. We have been experimenting with models for
speaker adaptation based on acoustic- phonetic principles
following the methods originally described by Hunt [4].
In contrast to most current methods, which require known
samples of speech from the new speaker, we describe a
process that uses unlabelled utterances from an unknown
speaker to update estimates of “speaker parameters” at the
same time as deciding the labels of the utterances. Such
unsupervised speaker adaptation is advantageous in situa-
tions in which it would be impractical (or at least undesir-
able) for the new speaker to recite a known text. So far
we have dealt with the problem of labelling sets of vowel
spectra from an unknown speaker;this task is related to the
problem of identifying a single polysyllabic word from an
unknown speaker, a task at which humans are highly com-
petent.

2. THE MODEL

We use a model which supposes that speech from a given
speaker can be explained as the application of a trans-
formation T (whose parameters q are characteristic of
the speaker), on the parameters pi,p2,.-.-pN of ‘proto-
type’ sound classes, which might represent sub-word units,

whole words or phrases etc. The likelihood of the observa-
tions given sound class ¢ and speaker parameters ( is:

P(x|T(q) ©pc) (1

where @ represents the action of the transformation T(q)
upon the prototype.We shall also represent this likelihood
as:

P(x | pc,q) ()

The complete stochastic model includes the processes that
generate the speaker parameters (, the sound classes p and
the observations x.

2.1. Model Estimation

Suppose we are given a set of labelled training-data {x;}.
The likelihood of observing all this data, for given model
and speaker parameters, is given by:

L=]]P(xi|pe;as) 3)

where ¢; is the sound-class and s; the speaker number of
the i’th example. Maximum likelihood estimates of the pa-
rameters of the models and the transformation are found by
optimising L over the p’s and q’s simultaneously.

2.2. Transformation Estimation from Unlabelled Data

Now suppose that we are presented with a set of unlabelled
data from a single speaker, uj,up,...,uy. Given a set of
prototypes, we would like to label the data, but we should
use the fact that the same (unknown) value of q applies to
all the data. We find the speaker transformation parameters,
{, which maximise the likelihood of the observations when
we do not know the classes:

X
d=armaxt! = argnar, [[P(u |0

=1

X N
argmaxq [ 1Y P(w | pina)  (4)

I=1i=1

where P(u; | q) is the total posterior likelihood of u;, and
we have assumed equal prior probabilities for the classes.
The most likely labellings are then

¢ = argmaxe, P(u; | pe,, ), I=1,2,....,X. (5

Proc. IEEE Conf. on Acoustics, Speech and Sig. Proc., Glasgow, 1989, pages 294-297



In practice we maximise the log of L/

]ogL' = Zlogzp(ul | Pcla(I) (6)
] i

using the derivatives with respect to the p’s and q’s.

3. EXPERIMENTAL DATA

We have begun our experiments by using examples of in-
dividual vowel spectra from different speakers, because
much of the inter- speaker acoustic variation is contained
within the vowels and using isolated spectra dispenses with
the need for time alignment procedures.The data consisted
of a single example of each of 11 vowels from 30 speakers
(15 male, 15 female). Each (RP) speaker spoke the follow-
ing /hVd/ words:

heed hoard hid
hood head who’d
had hudd hard
heard hod

The vowel spectra were obtained by processing the digi-
tised utterances using the SRUbank filterbank analysis fa-
cility [1] to produce a 27-channel log-amplitude spectrum
vector every 10 ms. The frames corresponding to the
steady-state portion of the vowel were excised and aver-
aged to form a single 27-dimensional vector representing
the spectral cross-section of the vowel. Each vector was
normalised by subtracting the average value over its com-
ponents from each component.The dataset was nominally
divided into a training-set of speakers 1-16 (8 male, 8 fe-
male) and a test-set of speakers 17-30. The 11 sound-class
models used here were 27-dimensional Gaussian densities
with a common diagonal covariance matrix:

27 ((x(k) — 2
P(x|p) = %eXp l— )y () — 1)) (k;(k)ﬁé(k)) ] )

k=1

where z is a common normalising factor. In the baseline
system (without transformations), the means of the proto-
types y; were the sample means m; of each vowel-class
across the training-set speakers and the variances o;(k)?
were the sample variances averaged across the classes.

4. THE SPECTRUM-BIAS
TRANSFORMATION

The simplest speaker transformation we used (the “spec-
trum-bias model”’)supposes that a vowel spectrum of class
i from a particular speaker jis generated by “filtering”’the
prototype spectrum of class i with a fixed spectrum shape
&/ characteristic of the speaker.Since log-amplitude spectra
were used in these experiments, the transformation of the
class means is purely additive.The best estimate of the pro-
totype mean vector y; for class i is then the training-set
mean vector m; and the model takes the form:

P(lelaqj) = P(X|mi76i76j)

1 2 (x(k) — m;(k) — 8/ (k))?
=;e>«p<—z<” (k) ()))

k=1

Given X labelled examples from a particular speaker, the
maximum likelihood estimate of d is then:
1 X

o= % Z(Xcz' —m) (3)

i=1

where ¢; is the class of the i’th example. Hence & = the
average distance between the speaker’s vowel spectra and
the corresponding means, a result which accords with intu-
ition. The model was tested on the training-set data. Re-
sults are given in Table 1 below:

No of errors (176 tests)
No adaptation 20
Spectrum-bias adaptation 13

Table 1: Comparison of no adaptation and spectrum-bias
adaptation on training- set

4.1. The spectrum-bias model on unlabelled data

Assuming we are given a set of unlabelled data from a
single speaker, uj,u,...,uy, differentiating the log like-
lihood of the data given the model (equation 6) with re-
spect to the unknown speaker transformation parameters

dand setting to zero gives:
N
w— Y wim; ©)
i=1

N
where the w;;’s are weights( ), wy = 1) derived from
I=1

a 1
§=—
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_ P(u|m;,5;,0)
ka(ul | mk76k76)
In practice we use a smoothed version of this posterior dis-

tribution over classes,by introducing a factor, T,which is
analogous to the “temperature” in simulated annealing:

Wi :P(Cl=i|ul,8) (10)

P G, )T
wy = (| mii,9) - (1)
Y P(w | mg,64,8)7

When T = 1, the weights are the probabilities derived from
the normalised posterior likelihoods. However, T — 0 has
the effect of driving the weight of the most likely class to
1 and the others to 0, which is equivalent to assigning u; to
the most likely class. Conversely, as T — oo, the weights
of each class become equal.To test this unlabelled adapta-
tion/classification process, X vowel spectra were picked at
random (without replacement) from the 11 available for a
particular test-set speaker, & was estimated using equation
9 and applied to the X spectra, the spectra were classified
and the accuracy noted.This process was repeated for all
ways of choosing X vowels from 11, for X =1,2,...,11
and for all speakers in the test-set. Fig 1 shows the recog-
nition accuracy as a function of X (averaged over all ways
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Figure 1: Unsupervised adaptation (using spectrum-bias
model) at 3 different “temperatures”

of choosing X from 11 and over all 14 test- set speakers)
for 3 different ‘temperatures’: Fig 1 shows the beneficial
effect of smoothing the likelihoods: as the number of vow-
els used for parameter estimation increases, the optimum
value of T increases and the resulting percentage accuracy
also increases. The curve marked ‘T = 0’ was made by
assigning each uy to its most likely class.

5. THE SPECTRUM SHIFT-AND-BIAS
TRANSFORMATION

A slightly more sophisticated model of inter-speaker spec-
trum differences takes into account the fact that, if the spec-
trum is measured on an appropriate scale, differences in
realisations of the same vowel between speakers can be
at least partially explained by sideways shifts of the spec-
trum [2]. An appropriate frequency-scale is the Bark scale,
whose characteristics are approximated by the SRUbank
filter-set. Given a filterbank representation of the vowel
data, the following model represents a vowel produced by
a particular speaker as a shifted and biased version of the
corresponding vowel prototype:

For a given speaker (j),the prototype for a given sound-
class (i) is modified as follows:

ul = Ay +& (12)

where A is the 27 x 27 tridiagonal matrix:

B v
a B vy
o B vy (0]
A= )
0 a By
a B

Notice that the o, 3,7 do not depend on the channel num-
ber k, so that the shift is assumed to be the same throughout

Channel number

k—1 k k+1
Prototype vowel

spectrum

Speaker’s vowel
spectrum

O

Figure 2: A model for vowel spectrum production incorpo-
rating shift and bias
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Figure 3: Comparison of unsupervised adaptation perfor-
mance using spectrum-bias model and spectrum shift-and-
bias model.

the spectrum and there are only 3 more parameters to esti-
mate than in the spectrum-bias model.If a =y=0,B =1,
the model reduces to the simpler spectrum-bias model.As
sideways shifts of the spectrum are allowed in this model, it
is clear that the best estimate of the prototype vowel spec-
trum means g; may no longer simply be the sample mean
spectrum for each class. Prototype mean spectra were es-
timated from the training-set by applying a nonlinear opti-
misation technique (conjugate gradient method with an ap-
proximate line search [5]) to maximise the likelihood of the
training-data. Given these prototype mean spectra, o, 3,y
and 0 for a test-set speaker were estimated from unlabelled
data by least-squares fitting using the likelihood-weighting
techniques described in section 4.1.A comparison of results
using the spectrum shift- and-bias model and the simpler
spectrum bias-model, both at their optimum ‘temperatures’
is given in Fig 3: When the number of unlabelled vowel
spectra available for parameter estimation is fewer than 4,
there is no advantage in using the shifting model, but the



shift-and-bias model is clearly superior when more than 4
are used.

6. CONCLUSIONS

We propose a model-based approach to speaker adaptation
and have shown that two simple models (based on work by
Hunt) are useful in explaining differences in vowel spectra
between talkers. An exciting possibility demonstrated by
this work is that, given some unlabelled utterances from a
speaker, it is possible to estimate some parameters charac-
teristic of the speaker whilst simultaneously labelling the
utterances. Moreover, it has been shown that recognition
accuracy is improved by this process. So far, we have con-
fined ourselves to simple linear transformations of spec-
tra,but the theory is quite general. The principles presented
here have also been cast in terms of feed-forward non-
linear networks and error back-propagation, which opens
up the possibility of much more general, non-linear, dis-
criminants and speaker transformations. To test the viabil-
ity of the models, we also confined ourselves to isolated
vowel spectra data. Extension of the techniques to whole
word hidden Markov models should be straightforward and
is the next immediate goal.
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