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Unsupervised Speaker Recognition Based on
Competition Between Self-Organizing Maps

Itshak Lapidot (Voitovetsky), Hugo Guterman, and Arnon Cohen

Abstract—We present a method for clustering the speakers from
unlabeled and unsegmented conversation (with known number of
speakers), when no a priori knowledge about the identity of the
participants is given. Each speaker was modeled by a self-orga-
nizing map (SOM). The SOMs were randomly initiated. An itera-
tive algorithm allows the data move from one model to another and
adjust the SOMs. The restriction that the data can move only in
small groups but not by moving each and every feature vector sepa-
rately force the SOMs to adjust to speakers (instead of phonemes or
other vocal events). This method was applied to high-quality con-
versations with two to five participants and to two-speaker tele-
phone-quality conversations. The results for two (both high- and
telephone-quality) and three speakers were over 80% correct seg-
mentation. The problem becomes even harder when the number
of participants is also unknown. Based on the iterative clustering
algorithm a validity criterion was also developed to estimate the
number of speakers. In 16 out of 17 conversations of high-quality
conversations between two and three participants, the estimation
of the number of the participants was correct. In telephone-quality
the results were poorer.

Index Terms—Competitive learning, segmentation, self-or-
ganizing maps (SOMs), speaker recognition, temporal data
clustering, vector quantization (VQ).

I. INTRODUCTION

T
HIS paper describes a system for unsupervised speaker

recognition (otherwise known as “speaker segmenta-

tion”), based on the piecewise-dependent-data (PDD) clustering

method. Most speaker recognition problems have been solved

by using supervised methods. A survey of issues and methods

regarding supervised speaker recognition can be found in

[1]–[3]. A training data for each speaker is given a priori and

a model of each speaker is produced. Supervised methods

have been applied for speaker identification and verification,

for example, for entering computers or security sites by vocal

passwords. A less common problem is unsupervised speaker

recognition (speaker segmentation), in this case, no training set

is given and the data is unlabeled. Since no labeled training data

is available, the unsupervised training is performed by initially

clustering the data into different clusters where each cluster,

is assumed to represents a different speaker. Unlike most

clustering approaches where each vector is associated with a

specific cluster, here a sequence of vectors has to be associated
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with the same cluster. We name this case PDD clustering.

Unsupervised speaker recognition has many applications; the

most common of which is probably that of audio browsing [4],

[5].

Most PDD clustering problems, unlike the unsupervised

speaker recognition problem, try to separate the signal into

several stationary models (such as AR models). However,

a stationary model cannot describe a speaker and therefore

another approach must be taken. In the approach that was

used in this research, every speaker cluster was described by a

Code-Book . An algorithm was developed to train all the

s, such that every represented a different speaker. Then

an iterative competitive algorithm between all the was

applied. Each was created using a Kohonen self-organizing

map (SOM) [6], [7]. The convergence of the algorithm, in terms

of distance minimization, was proved and a validity criterion

was developed to determine the number of speakers in a given

conversation.

The complexity of a speaker recognition problem depends

on the population size and the duration of the speech segment.

Furthermore, supervised speaker recognition problems depend

on whether they are text-dependent or text-independent, on

whether the set is closed or open, and on whether the problem

is to identify or to verify the speaker. In the unsupervised

case, knowledge or lack of knowledge about the boundaries of

each speech segment influences the problem’s complexity. In

addition, speaker recognition problems depend on the signal

bandwidth (the telephone line bandwidth), environmental

noise, whether or not a real time problem is involved, and

the equipment in use, such as the speed and resolution of the

sampler, the microphone type, etc.

PDD clustering has many applications in time-signals

including speaker recognition [4], [5], [8]–[18], machine

monitoring [19], switching chaos [20]–[22], prediction of

systems output [21], clustering of EEG signals [22], and music

clustering [23]. Similar methods have also been applied in

other areas, such as protein modeling [24].

PDD clustering must be used when there is a successive

dependence between a group of data vectors. An additional

problem of PDD clustering is to determine the point of change

between the segments (each segment belongs to a different

cluster). Clustering algorithms are applied in the time domain

and in the feature space as well. Sometimes the transitions

between the models are not sharp (e.g., one model appears

before the end of the previous one) which is known as drifting

dynamics [22]. In this case, it is necessary to find the transients

and to give membership weights to each cluster at every time

point.

1045-9227/02$17.00 © 2002 IEEE
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Many approaches have been applied for PDD clustering, e.g.,

the Dendrogram [8]; the vector quantization (VQ) algorithms

[9], [10], the expectation–maximization (EM) algorithm [4], [5]

and [11], HMM [12]–[15], [19], [24], [25], hidden Markov net-

work (HMnet) VQ [16], neural networks (NNs) [17], [18],

[20]–[23], maximum a posteriori (MAP) probability estimation

[25], and fuzzy logic [26], [27].

Additionally to the PDD clustering method a validity criterion

to estimate the number of clusters (speakers), , is suggested.

For this criterion we define a conditional distance between two

s. The distance depends not only on the s but on the input

vector as well [18].

The system we present gets as input an unsegmented and un-

labeled conversation, with unknown number of speakers. The

output is the estimation of the number of the participants, ,

segmentation of the conversation and labeling according to the

clusters that were estimated.

Preliminary results were already presented in [17], [18].

Specifically, in [17] the principles of the basic segmentation

algorithm were presented and the system was tested with a

reduced data set. In [18] a method or criteria for the determi-

nation of the number of speakers was described and tested. In

this paper the complete segmentation system was presented

and its performance truthfully evaluated. The proposed system

was tested with on data from two Hebrew databases. The first

database was high quality, recorded at an acoustic room. This

database includes conversations between two to five speakers.

The second database includes telephone-quality two-speaker

conversation. Different aspects of the system are discussed and

a comparison with other segmentation systems is presented.

II. SYSTEMS DESCRIPTION

In general, given a conversation the goals are to estimate the

number of participating speakers, , and to cluster the conversa-

tion into clusters. Fig. 1 shows the block diagram of the PDD

clustering algorithm (where is given). First the procedure for

distortion-based-models will be presented in Section II-A. In

Section II-B a proof of the systems’ convergence will be pre-

sented (a detailed proof is given in [28]). The validity criterion

is presented in Section II-C. A description of Kohonen SOM that

is used as distortion-based-models is given in Section II-D. The

description of the entire system is summarized in Section II-E.

Section II-F describes the adjustment of the system to unsuper-

vised speaker recognition task.

Fig. 1. Piecewise-dependent-data system (R given).

A. Distortion Measure-Based Model Clustering Algorithm

The goal of the algorithm is to cluster the input data into

clusters. The assumption is that the switching points between

the segments are all known (the switching points refer to the

boundary between two adjacent segments), so the clustering

algorithm can be defined as follows. The PDD consists of

vectors, . These vectors are partitioned

into segments, (1) according to the

switching points. The segments have to be clustered into

clusters, i.e., two vectors that belong to the same segment must

be clustered to the same cluster. Each cluster is defined by a

distortion-measure-based model. A is created, for each

model, using VQ algorithm. Every , is of size , and it

presents the th cluster shown in (2) at the bottom of the page,

where is the union of all the codewords

that belong to .

(1)

(2)
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The initiation of the process is performed by randomly as-

signing equal number of segments to all s ( -segments

that partitioned to at the beginning). Each model is trained

using the data assigned to it during the partitioning. After the

training the regrouping process is applied. The distortion be-

tween each segment and each model is calculated and the new

segment attribution is given according to the minimal distortion.

The regrouping process produces a new partition and the models

is retrained again. After iterations the partition will be

(3)

and the code-books are

(4)

The VQ training can use any VQ algorithm, such as the LBG

[29], SOM [7], fuzzy C-means [30], etc.

After the retraining the data regroup again by checking which

best fit every according to a given distance mea-

sure and a new partition is produced,

(5)

where is the distance between th segment and th

at the th retraining.

The system has to be retrained according to the new partition,

and the termination condition is met when

(6)

Hence, an iteration of the process is defined as follows:

1) Retrain the models with the new partition achieved by the

previous iteration.

2) Regroup the data using (5).

3) Test for termination: if the termination criterion is met,

exit; if not return to 1).

At the end of this iterative procedure, the system provides

models, for the clusters.

Different termination conditions can be applied. In the

present work the following termination criterion was applied:

Number of segments that change their assignment

Total number of segments

B. Algorithms’ Convergence Proof

The algorithm that was presented in Section II-A described

the iterative training procedure. It is necessary to know if this

process converges. In this subsections a general proofs for the

convergence of the process will be given when each model is a

VQ (more detailed proof can be found at [28]).

Given segments, , it is required to

separate them into clusters. Every , with size, presents

the th cluster.

To proof the convergence of the proposed algorithm the ap-

plied VQ algorithm (e.g., LBG [29] or SOM [7]) must converge

at least to a local minimum.

After the th iteration the partition of the data between the

models will be according to (3), where is the data set

associated with the th model at the th iteration, and the

at the th iteration is (note

that is the code-book that was produced using the previous

partition ).

The initial partition can be chosen randomly or in some

other way.

Let the distance between and be . The

distance between and is

(7)

and the minimal distance between the segment that belongs to

from all the s is

(8)

If after the th iteration, the overall distance is calculated with

the old partition be , and after the regrouping (new partition)

. It is easy to show that the next inequality holds

(9)

In other words, there exists a better partition of that gives

a lower distance . If the new partition is chosen, then the

previous VQ is not optimal because it was trained according

to the other partition. It can be seen that from the th to

th iteration the overall distance do not increase. The iterative

process will stop when

(10)

In this case there is no change in the partition between the two

consecutive iterations.

C. Validity Criterion

In a good clustering the intracluster distance should be small

while intercluster distance should be large. It is therefore logical

to define the validity of a given partition to be proportional to the

ratio between clusters’ intradistances and intercluster distance.

Lets be the unknown number of clusters, ,

where and are some given bounds of . The estimated

number of clusters will be the one that minimizes a certain va-

lidity criterion.

Let

—the number of segments that belong to the th cluster.

—the number of vectors in the th segment.

—an input vector of ; .

—the distance between and .

—the distance between and given

.
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If is the closest codeword of the to , and

is the closest codeword of to , is the Eu-

clidean distance between and

(11)

From Fig. 2, it can be seen that is not the distance

of the closest codeword of and . In other words

can be named as conditional distance between

and given .

The contribution of the th cluster to the validity coefficient,

, will be define as

(12)

The validity coefficient of the clusters partition will be a sum

of all the contributions,

(13)

To estimate the number of clusters it is needed to find

. The estimated number of clusters will be

(14)

One of the most popular ways to reduce the number of clus-

ters is multilevel dendrogram cutting [8], [11]. In this method

the algorithm starts with a large number of clusters. At each

stage the algorithm finds the two closest clusters and merges

them. The process continues until the final number of clusters is

achieved. The assumption of this method is that if two clusters

have been merged they cannot be separated again.

In this work, clusters are not merged but rather reduced. The

reduction of cluster cause to the data of the reduced cluster to

be divided among the other clusters according to minimal dis-

tance between each segment and all the remaining models, i.e.,

not all the segments of the reduced cluster are added to the same

model. Two ways were checked for cluster reduction. The first

is the “knock one cluster out” method. Each time a cluster was

knocked out, regrouping process of its segments was applied,

and total segmentation distortion was calculated. The cluster

that was removed is the one whose removal caused the smallest

distortion. The second method was to choose the one with the

minimum speech duration and regroup its segments. There were

no differences in the validity or clustering results, but the second

method proved to be much faster. As the second method was

much faster all the results are related to the use of the second

approach of model reduction.

The validity coefficients were calculated as follows. First,

the data was clustered into clusters and (13) was employed

to calculate . Then, one cluster was reduced applying the

cluster reduction algorithm above described. The clusters

were retrained, and the validity coefficient was calculated again.

This process of cluster reduction, retraining, and validity coef-

ficient calculation continue until the number of clusters reaches

Fig. 2. The distance between two codebooks as a function of the input vector.

(the minimum number of clusters allowed). Equation (14)

was used to estimate the number of clusters.

D. Kohonen SOM

In this work, the algorithm that was applied for producing the

VQ of each model, was SOM [6], [7]. The SOMs’ structure can

be seen in Fig. 3. The training algorithm of the SOM says that

if the winner neuron to a given input at iteration is than it

is necessary to adapt not only the winner neuron but also all the

neurons in its neighborhood, . The area of the lateral inter-

action is called the neuron’s neighborhood and the winner

neuron index is .

The learning algorithm of the Kohonen SOM as applied here

is presented below.

Let , be

the training data set, and let ,

be the SOM’s neurons. The

unsupervised training algorithm is:

1) Initiate the neurons’ weights with “small” random values.

2) Randomly choose a vector, , from the training data set.

3) Find .

4) Update the SOM by updating the neurons

at the iteration :

if

if
(15)

is an updating function, at iteration .

5) If the number of iterations is equal to ten times the number

of training input vectors, exit; if not return to step 2).

and are monotonically nonincreasing functions.

Usually the training process consists of two phases. The first is

the “fast training” phase, which involves about 10% of the entire

training process. In this phase, and start from a

high value and decrease very quickly. In the second phase (the

tuning phase), and are small and decrease slowly

to zero. The number of iterations employed was ten times the

number of training input vectors .
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Fig. 3. Kohonen SOM.

E. The Complete System

The entire process can be described as follows:

1) Determine the minimal number of cluster, , and max-

imal number .

2) Set . Randomly and equally divide the segments

between the models as initial training data.

3) Cluster the data for clusters, using Kohonen SOM as

clusters model.

4) Save the segmentation, labeling, and calculate the validity

coefficient.

5) If —find (minimal validity coefficient) and use

the segmentation and labeling. Else—set and

return to step 3).

F. Adjustment to Unsupervised Speaker Recognition

For the PDD clustering that was described in Section II-A,

it was necessary to know the start and end points of each seg-

ment. In reality this information is not available. For this reason

we cut the data into segments of fixed length (this length was

defined empirically and described in the first experiment). This

fact cause some of the segments to split between two or more

clusters (speakers or speaker and nonspeech event). Addition-

ally to increase the resolution of the segmentation the segments

were overlapping one each other (75% overlapping).

In each conversation the data includes, in addition to speech

data, nonspeech events as silence, chair movement, coughing,

etc. For this purpose additional cluster was created for non-

speech events.

The general block diagram of the clustering system of

speaker conversation is shown in Fig. 4. The preprocessing

of the sampled data includes pre-emphasize HPF. The filtered

data was framed into 15 ms frames with 10 ms overlapping

(5 ms frame rate). Each frame was multiplied by a Hamming

window and the feature extraction of the speech data was

performed. The features were twelfth-order LPC based cepstrum

and twelfth-order del-cepstrum coefficients, and the mean

absolute values of accumulated 50 ms frames were calculated

for speech/nonspeech evaluation. Preliminary segmentation of

speech and nonspeech data was performed by thresholding the

absolute value feature. The threshold level was set at 3% of the

maximum for high-quality speech and 1% for telephone data.

These levels were determined experimentally. Although setting

Fig. 4. General description of the unsupervised speaker classification system.

a higher level for high-quality speech might seem illogical,

it can be justified by the fact that in high-quality data, the

variance of the speech amplitude is much lower than that of

telephone speech.

The initial conditions for the system were determined as

follows: all segments classified by the crude speech/nonspeech

classifier as nonspeech were used to train the nonspeech

network. Segments crudely classified as speech segments were

randomly and equally divided and used to train the speaker

models.

III. EXPERIMENTS AND RESULTS

The speech database employed in this research is composed
of Hebrew conversations. The data was recorded in two ways:
the first method was to record the conversations in an acoustic
room (Table I). Nine males and one female took part in these
conversations. The sampling parameters were 16 kHz sampling
rate, 12 bits/sample, 50 Hz–7.8 kHz antialiasing filter. The
second data set consisted of telephone quality conversations.
Twenty-four male speakers participated in 12 two-speaker
conversations. The data was sampled with 8 kHz sampling rate,
12 Bits/Sample, 0–3.8 kHz antialiasing filter. The SNR was
approximately 35 dB and 25 dB for high- and telephone-quality
conversations, respectively.

Clustering conversations between four and five participants,
mostly, produced very poor results. The low performance of
the clustering might be related to the nonuniform distribution
of the data between the participants. The distribution of the
speech data between the speakers is described in Table II.
Other factors that might have affected the clustering results are
the amount of nonspeech data and its structure (e.g., silence,
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TABLE I
HIGH–QUALITY CONVERSATIONS

laughter, chair movements, and simultaneous speech that was
included in the nonspeech data), and the length of the speech
segments (Table II).

In this section, we present the results of the experiments.
Some of the results of these experiments have already been pub-
lished [17], [18]. Five experiments were performed in order to
test the ability of the SOM-based system to cluster two to five
speakers, and to evaluate the validity criterion. The experiments
are summarized in Table III. Each experiment had at least five
repetitions.

Experiment no. 1: The goal of this experiment was to test

the ability of the SOM to cluster two speakers, and to

determine the optimal SOMs’ size and speech segment

duration for clustering. For this experiment, two-speaker

high-quality conversations were employed. The silence

segments were removed and the clustering was produced

by using only speech data. The length of the conversations

varied between 79 to 198 s and the speech duration

between 72 to 180 s (the rest of the data was nonspeech).

The worst ratio between the speakers’ speech duration

was 33/59 for a conversation of 92 s duration. The shortest

speech duration of a speaker for one conversation was

32 s.

The system performances were tested with segments

that were 0.25 s, 0.5 s, 0.75 s and 1 s in length. The sizes

of the SOMs that were used were 3 5, 5 6, 5 8 and

6 10.

In this work a sliding window with constant length (con-

stant segment length) was employed. Therefore, we could

not assure that all the frames in a given segment belonged

to the same speaker. A segment that contains data either

from more than one speaker or speech and nonspeech data

was defined as a splitting segment.

Six out of the 12 high-quality conversations were used

for this experiment. The results for all the conversations

were quite similar and were not affected by the SOM size

or segment length. Clustering errors are summarized in

Table IV.

The results in the table show the following: 1) the error

rate at the splitting segment is higher than for the non-

splitting segments; 2) the error rate of the short segments

(0.25 s) is much higher than in long segments when small

SOM is applied as speakers model (see results of a 3 5

SOM). If the SOM is large (see results for a 6 10 SOM)

there were no difference in the error rate; and 3) as the seg-

ments became shorter, the appearance of the splitting seg-

ment became more rare, and therefore the influence of the

splitting segments decreased.

One problem with segments of 0.25 s was the time of

convergence. It took 80–300 iterations while only 25–50

iterations were needed for 0.5-s segments.

Until this point the shortest conversation was 72 s in

length. In order to explore the influence of conversation

length on the clustering performances, first 60 s, 50 s, and

40 s length were used in that order. The results for 0.25-s

segments always had over a 30% error rate. For 0.5-s seg-

ments error rate was less than 10% for 60 s and 50 s con-

versations, and less than 15% for 40 s length. Note that the

errors include split segments.

Because of the time of convergence and the large error

for short conversations using 0.25-s segments, the chosen

segment length for the next experiment was 0.5 s.

Experiment no. 2: The goal of this experiment was to

examine the performance of the clustering algorithm

using high-quality conversations, using the SOM size and

segment length determined in the first experiment ( was

assumed to be known). All the high-quality conversations

included nonspeech segments were used for training and

error evaluation. An additional SOM was used to represent

the nonspeech model. A description of the clustering

system can be found in Section II-F. The number of

speakers is assumed to be known.

The preliminary automatic segmentation of the

speech/nonspeech algorithm was employed. An empirical

threshold was found but it turned out to be not very

accurate. A comparison between 60 s of preliminary

speech/nonspeech segmentation, final segmentation, and

manual segmentation is shown in Fig. 5. It can be seen

that the improvement is very impressive. Because the

segments were half a second in duration it is possible that

some may contain speech and nonspeech. The resolution

of the SOM segmentation was half a second, and since

manual segmentation can change at each point some of

the errors observed might be attributed to finite resolution.

a) Two speakers: For the high-quality data conversa-

tions (between two males), the error rate was always

less than 6.0%. An example of the confusion matrix

is given in Table V. Three of the conversations were

between a male and a female, for which the error rate

was approximately 4.3%.

b) Three speakers: Conversations between three

speakers always converged and the results were not

worse than 15%.

c) Four speakers: All the clustering results of four

speakers (conversations 2–6 in Table II) do not

converged to meaningful clusters, except for the

first conversation. The clusters share the data of

several speakers or one speaker occupies more than

one model. Table II shows that the most uniformly

divided data is found in the first and the fifth con-

versations. The amount of data per speaker was at

least 60 s. Two other factors that affected the clus-

tering performance were the amount of nonspeech

data (including simultaneous speech data) and the

average segment length (see Table II). The average

segment length was at least a second longer in the
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TABLE II
DISTRIBUTIONS OF FOUR- AND FIVE-SPEAKER CONVERSATIONS (SPK.—SPEAKER, SIM.—SIMULTANEOUS)

TABLE III
SOM-BASED EXPERIMENTS

first conversation than in the other conversations. As

the duration of the speech segments became shorter,

more split segments participated in training the

models, which caused degradation in the models’

fit to the correct parameters (i.e., split segments

cannot accurately train any model). In summary,

wrong clustering can occur for several reasons:

nonuniform data distribution, a small amount of

data per speaker, the presence of nonspeech data

(particularly simultaneous speech), and short seg-

ments.

The fourth speaker of the fifth conversation was a

female. She and the first speaker each got one model.

The other two models were mixed and belonged to

the other two participants. Clustering for three clus-

ters yielded one male model, one female model, and

one mixed model of the remaining speakers with

10% interference by the first male and the female.

The data of the mixed cluster was clustered again for

two clusters and the results had about 80% accuracy.

d) Five speakers: As in the four-speaker case, the con-

versations had many nonspeech segments including

simultaneous speech and a comparatively short

average segment length. The eighth conversation

was highly nonuniformly distributed (see Table II).

The results were not good in that usually more than

one speaker belonged to one model, and because of

the large amount of nonspeech data, that covered

different places in the feature-space (e.g., silence

and simultaneous speech), more than one model

described the nonspeech data.

As can be seen, it is very difficult to record a spon-

taneous conversation that includes more than three

participants such that the data will be “close” to a

uniform distribution. The speaker who talks most of

the time will usually be separated from the others,

and at the same time will occupy more than one

model.

In this experiment the error rate was found to be

less than 6% and 15% for two and three speakers,

respectively. Only one conversation out of six con-
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TABLE IV
EXAMPLE OF SEGMENTATION RESULTS (EXPERIMENT 1) AS A FUNCTION OF THE SEGMENT LENGTH. THE MEAN AND THE STANDARD DEVIATION (STD IN

PARENTHESIS) VALUES ARE PROVIDED

verged to a meaningful clustering for four speakers

while the system never converged to meaningful

clustering for five speakers.

Experiment no. 3: The goal of this experiment was to test

the validity criterion using high-quality conversations.

The conditions were similar to the previous test but the

number of speakers was unknown (suppose to be between

two to six speakers). The criterion for estimating the

number of speakers and the cluster reduction algorithm

were described in Section II-C.

When the clustering was checked for the correct number

of speakers, the results were the same as in experiment 2.

As the clustering results had no effect on the estimation of

the number of speakers, the results of the clustering are not

presented here but can be seen in the results of the second

experiment. Only the validity results will be presented for

this experiment.

Fig. 6 show the results of the validity functions for two

and three speakers. All the validity functions for a two-

participant conversation present a minimum value for the

right number of speakers, i.e., two speakers [Fig. 6(a)].

For three participants, four out of five validity functions

received the minimal value for three-speakers, and in one

case [Fig. 6(b)] the minimum value was reached for four

speakers. The value for three speakers was very close to

the four-speaker value (0.6051 and 0.5937 for three and

four speakers, respectively).

It is important to mention that at the end of each training

process of the system, the validity value was calculated and

one model was removed. Each model was a SOM and con-

sisted of 60 neurons (60 s), i.e., the new clustering, for

speakers, was done with a smaller number of s

so the overall distortion increased. Despite the increase in

the distortion, the validity value can still decrease. Fig. 7(a)

shows the distortions as a function of the number of iter-

ations in one of the conversations between three partici-

pants. The vertical dashed lines indicate the places where

a cluster was removed, and the number in each zone is

the number of models that were trained. It is clear that the

distortion increased after each model reduction. Fig. 7(b)

shows that the validity minimum was achieved at three

clusters although the distortions of four, five, and six clus-

ters were lower than in the three-model case, i.e., the inter-

Fig. 5. Two-speaker high-quality conversation segmentation
(speech—1/nonspeech—0. (a) “Energy” threshold segmentation. (b) After
SOM training segmentation. (c) Manual segmentation.

cluster distance in the three-model case was much larger

than in the four, five and six model cases.

Experiment no. 4: The goal of this experiment was to

cluster telephone-quality conversations ( was assumed to

be known). For this experiment, the clustering algorithm

was applied to telephone-quality conversations between

two participants. The duration of the conversations was

two minutes.

The clustering results showed that eight (out of a total

of 12) conversations converged approximately to a 6%

weighted error. An example of the clustering results of

a telephone-quality conversation is presented in Table V.

Four conversations (out of the 12) did not converge. These

four conversations were examined by a human listener

and were found to be of low quality. In fact one of the
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(a)

(b)

Fig. 6. The validity functions. (a) Twelve high-quality conversations between
two speakers. (b) Five high-quality conversations between three speakers.

(a)

(b)

Fig. 7. (a) Distortion as a function of the iteration number and cluster number
in the conversation between three participants. (b) Validity as a function of the
number of clusters.

conversations was judged by the listener as a conversation

between three, rather than two speakers.

An algorithm for three speakers (plus nonspeech) for

these conversations was applied. The results yielded one

nonspeech model, one model mostly (at least 70% of the

data that clustered to the model) that belonged to one

speaker, and one model that belonged to another speaker.

Fig. 8. Validity graphs. (a) Eight telephone-quality conversations that
converged well. (b) Four telephone-quality conversations that did not converge
well.

TABLE V
TWO-MALE CONVERSATION CONFUSION MATRIX OF HIGH-QUALITY

AND TELEPHONE-QUALITY CONVERSATIONS

The additional model was either a second nonspeech

model, a simultaneous speech model, second model for

one of the speakers or a model that contained data of both

speakers.

Experiment no. 5: The goal of this experiment was to test

the validity criterion on telephone-quality data. The clus-

tering algorithm was applied to telephone quality conver-

sations together with the validity criterion. Similar to high

quality clustering the validity process did not affect the

clustering quality.

The results of this experiment are presented in Fig. 8.

Fig. 8(a) shows that the validity function of the eight con-

versations converged well when the number of speakers

was known. In five cases the number of speakers were

correctly estimated as two; in the other three cases the

minimum value of the validity function was situated at

the three-speaker place (marked with arrows). In two of

the wrong cases the validity coefficients for two and three

clusters were very close. For the other four conversations

[Fig. 8(b)] the validity function minimum value was for

three speakers. This experiment confirmed the results ob-

tained in the previous experiment.
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IV. CONCLUSION

In this work a time-series clustering approach, based on an
iterative process with competition between SOM models was
investigated.

Unsupervised speaker recognition task seems to be very
difficult task. It is probably due to the fact that, to begin with,
the amount of information about the speaker in speech signal is
relatively low, as compared to the information on the message.
Without a priori labeled information it is difficult to model the
speakers. The fact that in the general segmentation problem the
number of speakers is unknown makes the problem extremely
difficult. To achieve good clustering results we first had to
determine the optimal size of the models to represent a speaker
and the shortest segment length to derive sufficient statistic
of the speaker. Shorter segments enable better segmentation
resolution. The experiments showed that SOM of size 6 10 is
sufficient for speaker modeling. For short conversations (about
60 s for two-speaker conversations) segments of half-second
were needed.

After the segments length and models size were defined, the
algorithm was applied for high-quality conversations between
two to five participants and for two-speakers telephone-quality
conversations. For two- and three-speakers high-quality data
conversations and for two-speakers telephone-quality data, the
results were usually good (more than 80% success). For four
and five speakers, only one conversation of four speakers con-
verged correctly. This was the only conversation were the data
was approximately homogeneously divided among the partici-
pants, the average segment length was more than 3 s, there was
almost no simultaneous data, and there was small amount of
nonspeech data. This shows that the algorithm is sensitive to the
amount of data of every cluster, especially when the data is over-
lapping and, as well as to the amount of noise (nonspeech and
simultaneous speech data). Therefore, it might be necessary to
develop an effective speech/nonspeech and simultaneous speech
detector.

A validity criterion was suggested. The validity estimation
never affected the quality of the clustering in two- and three-
speaker high-quality conversation the estimation of the number
of clusters was correct except for one three-speaker conversa-
tion. In telephone-quality eight out of 12 conversations were
correctly clustered. In this conversations five out of eight con-
versations the number of clusters was correctly estimated. In
three conversations the number of speakers was estimated as
three instead of two speakers.

In order to compare the performance of the proposed
approach to existing algorithms, a systematic review of the
available literature was made. Four articles describing sev-
eral algorithms appeared to be relevant for the comparison
[12]–[15]. The algorithms cover different variations of HMM.
Due to the different databases and the lack of information about
the performed evaluations, only a very crude comparison could
be made in the present study. It was found that in all these
works all the conversations were at least 90 s. The results were
similar to the reported here but in all the cases the algorithms
were very sensitive to the initial conditions. The research of
Cohen and Lapidus [14] and [15] was the only one done on the
same telephone-quality database and the results were similar.

To conclude, it can be said that half-second segments can
be sufficient duration for unsupervised speaker recognition,
and SOM of size 6 10 can accurately model each speaker.
If the data is not highly nonuniformly distributed between
the speakers a correct clustering can be performed, and the
number of speakers can be well estimated, in high- and tele-
phone-quality conversations.
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