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Abstract. This paper addresses the problem of real-time
speaker segmentation and speaker tracking in audio content
analysis in which no prior knowledge of the number of speak-
ers and the identities of speakers is available. Speaker seg-
mentation is to detect the speaker change boundaries in a
speech stream. It is performed by a two-step algorithm, which
includes potential change detection and refinement. Speaker
tracking is then performed based on the results of speaker seg-
mentation by identifying the speaker of each segment. In our
approach, incremental speaker model updating and segmental
clustering is proposed, which makes the unsupervised speaker
segmentation and tracking feasible in real-time processing.
A Bayesian fusion method is also proposed to fuse multiple
audio features to obtain a more reliable result, and different
noise levels are utilized to compensate for background mis-
match. Experiments show that the proposed algorithm can re-
call 89% of speaker change boundaries with 15% false alarms,
and 76% of speakers can be unsupervised identified with 20%
false alarms. Compared with previous works, the algorithm
also has low computation complexity and can perform in 15%
of real time with a very limited delay in analysis.

Keywords: Audio content analysis – Audio indexing –
Speaker segmentation – Speaker change detection – Speaker
tracking

1 Introduction

Speaker recognition, including both speaker identification and
verification [1,7], has been widely researched in recent years.
In these existing speaker recognition systems, it is supposed
that the input speech belongs to one of the known speakers.
However, in many applications, such as in a real-time conver-
sation or news broadcasting, the speech stream is continuous
and there is no information about the beginning and end of
the speech segment of a speaker. Therefore, if we need to
index speech streams based on speaker or to perform video

� Part of the work presented in this paper was published in the 10th
ACM International Conference on Multimedia, 1–6 December 2002

content analysis based on audio track, it is necessary to find
speaker change points first in such applications before the
speaker can be identified. This procedure is called speaker seg-
mentation, or speaker change detection. Furthermore, speaker
tracking, which clusters a speech stream by speaker identities,
can be performed based on the results of speaker segmenta-
tion. Speaker tracking is also essential in many applications,
such as conference and meeting indexing [6,18], audio/video
retrieval or browsing [24,25], speaker adaptation for speech
recognition [12,21], and video content analysis [30].

Unlike the speaker identification or verification problem
defined in most previous studies, we assume that there is no
prior knowledge about the number and identities of speak-
ers in the speaker segmentation and tracking process. If the
speakers are registered a priori, traditional speaker identifica-
tion algorithms can be employed for speaker segmentation and
tracking, as in the work of [2]. However, in many cases, such
as a continuous speech stream from live news broadcasting
or a meeting, the prior knowledge of speaker identities and
number of speakers is often not available or difficult to ac-
quire. Even in well-structured news broadcasting, we cannot
assume that the anchorpersons are always the same. There-
fore, it is desirable to perform unsupervised speaker change
detection and tracking algorithm in audio content analysis.

Several papers have reported work on unsupervised
speaker identification or tracking using different algorithms
in different applications. Sugiyama [3] studied a simpler case
in which the number of speakers to be clustered was as-
sumed known, and vector quantization (VQ) and the hid-
den Markov model (HMM) were used in the implementa-
tion. The algorithm proposed by Wilcox [4] was also based
on HMM segmentation, where an agglomerative clustering
method was used when the prior knowledge of speakers was
unavailable. Another system [5,8] was proposed to separate
controller speech and pilot speech with a Gaussian mixture
model (GMM), in addition to speech and noise detection that
were also considered in the framework. Speaker discrimina-
tion from telephone speeches was studied in [6] using HMM
segmentation. However, in this system, the number of speakers
was limited to two. Mori [12] addressed the problem of de-
tecting speaker changes and speaker clustering without prior
available knowledge. The speaker grouping information was

lmartins
Reviewed

lmartins
Note
[RANK:A][TAG:SPEAKERID][TAG:MFCC][TAG:LSP][TAG:DIVERGENCE][TAG:GMM][TAG:BAYESIAN FUSION][TAG:REAL-TIME][TAG:IMPLEMENT]



L. Lu, H.-J. Zhang: Unsupervised speaker segmentation and tracking in real-time audio content analysis

used in speaker adaptation for speech recognition. Chen [13]
also presented an approach to detecting changes in speaker
identity, environmental conditions, and channel conditions us-
ing Bayesian information criteria. A segmentation accuracy of
about 80% was reported. Couvreur [16] presented a first ap-
proach to building an automatic system for broadcasting news-
speaker-based segmentations. The system was developed in
the framework of the THISL project based on a chop-recluster
method. Sonmez [17] and Bonastre [18] also reported their
work on speaker tracking and detection systems.

Previous efforts to tackle the problem of unsupervised
speaker segmentation and tracking consist of clustering au-
dio segments into homogeneous clusters according to speaker
identity, background conditions, or channel conditions. Most
methods are based on VQ models, GMMs, or HMMs. A dis-
advantage of these models is that iterative operations are un-
avoidable in speaker modeling, which makes these algorithms
very time consuming. Such approaches are more suitable in
offline processing applications without prior knowledge of
speakers. If they are used in applications in which real-time
processing is required, offline supervised training of speaker
models have to be processed in advance with prior knowledge.
Here, “real-time” or “online” means that the results of speaker
segmentation and tracking can be instantly obtained with the
parsing of audio streams, and the audio stream parsing is per-
formed once and only once. In our system, the intent is to
segment and track speakers online or in real time, as well as
without any prior knowledge such as speaker count or labeled
training data. Thus, the approaches mentioned above cannot
be applied in applications like ours.

In this paper, we present an effective algorithm on real-
time speaker change detection and speaker tracking in a more
general unsupervised case, where both speaker identity and
speaker number are assumed to be unknown.

1.1 Issues and solutions

To perform unsupervised speaker segmentation and speaker
tracking for real-time audio content analysis, a number of is-
sues need to be addressed. In this section, we discuss these
issues and present our solutions.

1. Because there is no prior knowledge of speakers in our
applications, it is impossible to obtain labeled speaker data and
thus an accurate speaker model a priori. In our implementation,
the speaker data are obtained from speech stream gradually,
and the speaker model is established incrementally by online
updating. In such cases, the initial speaker model cannot be es-
timated accurately with limited available data. That means we
cannot obtain an accurate GMM model with full components.
Therefore, in our approach, GMM with one mixture compo-
nent is initially used to estimate the initial speaker model when
the available data are limited. Then, both the number of mix-
ture components and the parameters of each component of
GMM are incrementally updated, while the available data in-
crease. As the process accumulates more speaker data, the
speaker model will become more accurate.

2. Because of the real-time processing requirement, it is
not affordable to use complex audio features and complex clus-
tering methods. For example, when training a GMM model,
a traditional expectation-maximization (EM) algorithm is not

feasible since its time cost depends largely on the iterations
and training samples so that it usually could not meet the real-
time requirement. Although online-EM may be adopted in
updating an existed GMM model in real time, it can only up-
date the parameter of each component, but not the number of
mixture components, which is necessary in our applications,
as mentioned above. Therefore, it is not suitable to employ
online-EM in such a system. In our implementation, incre-
mental quasi-GMM, which utilizes segmental clustering, is
proposed to solve this problem. This method is less time con-
suming (15% of real time as experiments indicate) and makes
it possible to incrementally update both the number of mix-
ture components and the parameters of each component of the
speaker models. Although it is not as accurate as traditional
EM algorithm, it is capable of capturing the main components
of speaker models.

3.Also with the real-time requirement, the speaker identity
is expected to be estimated with little delay after the speaker
changes are detected. This is challenging since there is little
data to model the new speaker when a speaker change oc-
curs. Since it is difficult to obtain an accurate model for new
speakers, we perform the speaker tracking in several different
positions. We estimate the new speaker identity when speaker
change is detected and rectify the previous estimate result in
the later positions, where more speaker data are available.

4. Various audio features can be used for speaker segmen-
tation and tracking. However, it is difficult to select the best
feature. In our implementation, various features such as mel-
frequency cepstral coefficient (MFCC), line spectrum pairs
(LSP), and pitch are employed, since different features can
complement each other in different contexts. A Bayesian fu-
sion framework is used on these features to get a more robust
result.

5. The environment in an audio context is so complex
that channel or environment/background mismatch remains
a challenging problem. In our application, traditional cepstral
mean subtraction (CMS) is employed to compensate for chan-
nel mismatch. However, it is not sufficient to compensate for
background mismatch, especially for additive noise. To com-
pensate for environment mismatch more effectively, the noise
level is detected in each speaker segment and used in the final
decision.

1.2 System overview

The flow diagram of our proposed real-time unsupervised
speaker segmentation and tracking algorithm is illustrated in
Fig. 1. It is designed to meet the requirements of unsupervised
real-time processing and to address the issues mentioned in the
previous subsection. It is mainly composed of four modules:
front-end processing module, segmentation module, cluster-
ing and speaker model updating module, and speaker tracking
module. It is assumed that the input audio stream is speech
only; nonspeech segments of the input audio have been fil-
tered. In our system, nonspeech audio segment filtering is per-
formed by an audio segmentation and classification algorithm
similar to the one presented in [15,23,31].

In the front-end process, the input speech stream is divided
into 3 s subsegments with 2.5 s overlapping. These subseg-
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Fig. 1. A simple flow diagram for speaker change detection and
speaker tracking, composed of four main modules: I. Frontend pro-
cess. II. Speaker segmentation. III. Clustering and speaker model
updating. IV. Speaker tracking

ments are used as the basic unit and preprocessed by removing
silence and unvoiced frames.

Then, speaker change detection is performed by a “coarse
to refine” process, where potential speaker change is first de-
tected and then confirmed. This process gives a coarse esti-
mation of when the available data are limited and then does a
confirmation when available data increase, which also ensures
that more accurate segmentation results can be obtained un-
der the requirements of being both unsupervised and real-time
processing.

If no potential change is detected between two subseg-
ments, or a potential change is confirmed as a false alarm,
the current speaker model is updated by incorporating data of
the current subsegment. In our approach, incremental quasi-
GMM with segmental clustering is utilized for speaker model
updating.

Finally, when a speaker change is confirmed, the algorithm
searches the speaker model database to identify the newly ap-
peared speaker. The process is like a classification process with
rejection. If the speaker could not be found in the database, it
is registered as a new speaker and added to the database; oth-
erwise, the detected speaker model in the database is updated
by new speaker data.

In this way, the speaker model and speaker database are
gradually updated and increased. Such a design meets the re-
quirement of being both unsupervised and real-time process-
ing.

The rest of the paper is organized as follows. Section 2
presents the selected features and distance metrics, it also
presents the method of feature fusion. A detailed description
on segmentation and clustering scheme is presented in Sect. 3.
Section 4 describes the speaker tracking scheme. In Sect. 5,
experiments and the evaluations of the proposed algorithms
are given.

2 Feature selection, distance measure,
and feature fusion

In this section, we discuss the problem of feature selection
and distance measurement. In previous research, many fea-
tures were proposed for speaker recognition systems. The most
widely used features are LPC [3,7], MFCC [20], and LSP [1].
Other features are also used in some studies [22]. Meanwhile,
CMS or RASTA processing [7,9,10] is performed on the fea-
ture vectors to remove the channel convolutional effects.

Different features show different performances in different
speaker recognition systems. It is difficult to determine which
feature is the best for all purposes. However, different features
can complement each other in different contexts. With this in
mind, we fuse various features to improve the performance of
our system.

Our approach to feature fusion is based on feature discrim-
ination power analysis. We first measure the dissimilarity of
different feature sets between two speaker models. The dis-
similarities are then Bayesian fused to get a more reliable
result.

2.1 Acoustic feature selection

Line spectrum pairs (LSP) and mel-frequency cepstrum co-
efficient (MFCC) are commonly used and have proven their
effectiveness in speaker recognition [1,20]. Therefore, both
are used in our speaker segmentation and tracking system. In
general, MFCC and LSP have a similar overall performance
on speaker recognition. But they perform differently in some
specials cases or contexts. In other words, these two features
can complement each other to improve the performance of
speaker segmentation and tracking.

Besides these two features, pitch information is also useful.
Pitch information is a fast and effective discriminator between
male and female speakers. Thus, it is also considered in our
system and used as an assistant feature. These three features,
LSP, MFCC, and pitch, will ultimately be Bayesian fused to
get a more reliable result in our algorithm.

Moreover, in an audio stream, the environment and chan-
nel are variable and very complex to estimate. They affect
the performance dramatically. Compensating for the effect of
the channel or environment mismatch remains a difficult is-
sue in speaker recognition research. Cepstral mean subtraction
(CMS) is used in our algorithm. However, CMS alone is not
sufficient, as proved by many researches. Noise level, which
represents average background energy, is also estimated in our
system to help compensate for these effects. In this paper, we
also treat the music background as noise.

In general, speech is always composed of alternating
voiced sound and unvoiced sound at the syllable rate. For the
unvoiced sound, the energy is so small that it is always masked
or contaminated by background noise. At the same time, the
pause between voiced speech segments is also filled with back-
ground sound. Thus the energy of unvoiced/pause sound is
similar to background sound energy. Based on these facts,
an algorithm following [28] is used for adaptive background
noise level detection. In our implementation, we estimate a
noise level every 6 s to track the variation of background.
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Fig. 2. A self-similarity matrix using LSP divergence shape

2.2 Dissimilarity measure

Kullback-Leibler (K-L) divergence [1] is used to measure the
dissimilarity between each two speech subsegments, assuming
that each subsegment is modeled as a Gaussian, as follows:

D =
1
2
tr[(Ci − Cj)(C−1

j − C−1
i )]

+
1
2
tr[(C−1

j + C−1
i )(ui − uj)(ui − uj)T ] , (1)

where Ci and Cj are the estimated covariance matrixes of the
ith speech subsegment and jth subsegment, respectively, and
ui and uj are the corresponding estimated mean vectors.

The divergence is composed of two parts. The first part
is determined by the covariance of two subsegments, and the
second is determined by the covariance and mean. Since the
mean is easily biased due to different environmental condi-
tions, we will not consider the second part. Thus only the
first part is used to represent the dissimilarity, based on [1].
It is also similar to the CMS method of compensating for the
convolutional effects of channel. The final distance is called
divergence shape, defined by

D =
1
2
tr[(Ci − Cj)(C−1

j − C−1
i )] . (2)

In general, if two speech clips are spoken by the same speaker,
the dissimilarity between them would be small; otherwise, the
dissimilarity would be large. Thus a simple criterion is: if the
dissimilarity between two speech segments is larger than a
given threshold, these two segments could be considered as
being spoken by different speakers.

To show the effectiveness of the selected feature and dis-
tance measure, Fig. 2 illustrates a self-similarity matrix for a
180 s-long speech segment. The dissimilarity between any two
subsegments is calculated. One threshold is used to transform
the distance to a binary value (0, 1) based on the above simple
criterion. Value 0 is represented by black pixels, while value 1
is represented by white pixels. The figure is clearly symmetric,
and four different speakers exist in this speech segment. The
self-similarity matrix obtained by using MFCC also shows
similar characteristics.

Speaker Data 

 MFCC Distance

Bayesian 
Decision 
Engine 

 LSP Distance 

 Pitch Distance 

P(H|f1)

P(H|f2)

P(H|f3)

P(H|F)

 Noise Level

Fig. 3. A Bayesian fusion model

2.3 Feature fusion

Our approach to feature fusion is based on feature discrimina-
tion power analysis. We first measure the distance of different
feature sets between two speaker models. The distance of each
feature set gives the probability of the hypotheses and is then
fused by a Bayesian decision engine to get a more reliable
final decision, as illustrated in Fig. 3.

Since the features are extracted to represent different facets
of a speaker, these features fi (i = 1, . . . , N ) are assumed
independent of each other for simplicity in our implementation
(although it is possible for them to be more or less correlated).
Based on Bayesian inference [26,27], the fusion can be given:

P (H|F ) = P (H)1−N
N∏

i=1

P (H|fi)

. . . = P (H)
N∏

i=1

P (fi|H)
/ N∏

i=1

P (fi) . (3)

Thus, a basic hypothesis test can be employed to get the final
decision:

λ =
P (H0|F )
P (H1|F )

{ ≥ λ0 accept H0
< λ0 accept H1

, (4)

where H0 andH1 are two opposite assumptions, λ is the like-
lihood ratio, and λ0 is a threshold. In the experiments, various
λ0 are tested to obtain the relation curve between precision
and false alarms.

The prior probability for each hypothesis can be estimated
from the training data. Meanwhile, each P (fi | H ) can also
be easily acquired from the feature distance distribution at
each hypothesis. For example, in speaker segmentation, the
LSP distance distribution at speaker change boundary or non-
boundary is illustrated in Fig. 4. In the implementation, the
distribution is modeled as a single Gaussian for each speech
segment:

P (fi|H) = Ai exp{− (fi − µi)2

σ2
i

} , (5)

where µi is the mean, σi is the variance, and Ai is used for
normalization.

In general, the distance distribution is affected by the back-
ground noise. It is usually noticed that the distance is relatively
larger in a noisy environment. That is, µi and σi depend on
noise level. In our implementation, all speech data are divided
into two noise level groups, which represent clear speech and
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Fig. 4. LSP distance distribution at a nonspeaker boundary and b
speaker boundary

noisy speech, assuming they have the same prior probability
in the training data. In the fusion model, noise level is used to
select the distribution parameters. This method processes the
speaker data in similar environments and can help compensate
for the effect of environment mismatch.

3 Speaker segmentation

The purpose of speaker segmentation is to detect the speaker
change points in the speech stream in real time, as shown in
Fig. 5. It is a “coarse to refine” process, where potential speaker
changes are first detected when the available data are limited
and then confirmed when available data increase. In the coarse
step, an initial Gaussian model is estimated for each subseg-
ment, and then the LSP/MFCC/pitch divergence distance be-
tween every consecutive two models is examined. A potential
speaker change boundary is detected if the distance is above
a given threshold. Otherwise, the data of the current subseg-
ment are incorporated into previous subsegments to estimate
a more accurate model of the current speaker. If a potential
speaker change boundary is detected, Bayesian fusion, men-
tioned above, is used to confirm if it is really a speaker change
boundary.

3.1 Potential speaker boundary detection

At this “coarse” step, an initial speaker model is estimated
from each subsegment once it comes, and the dissimilarity
between each two neighboring models is calculated at each
time slot, as shown in Fig. 5a. In our implementation, only the
LSP divergence distance is used to detect potential speaker
change, since it is accurate enough and can recall more than
95% of true boundaries, while adding MFCC and pitch has
little benefit.

A potential speaker change boundary is detected between
the ith and the (i+1)th subsegment if the following conditions
are satisfied:

D(i, i + 1) > D(i + 1, i + 2) ,
D(i, i + 1) > D(i − 1, i) ,
D(i, i + 1) > Thi ,

(6)

where D(i, j) is the distance between the ith subsegment and
the jth subsegment and Thi is a threshold.

The first two conditions guarantee that a local peak exists,
and the last condition prevents very low peaks from being
detected. Reasonable results can be achieved by using this
simple criterion. However, the threshold is difficult to set in
advance. The threshold setting is affected by many factors,
such as insufficient estimate data and different environmental
conditions. For example, the distance increases if the speech
is in a noisy environment. Accordingly, the threshold should
increase in a noisy environment. To obtain the optimal result,
an automatic threshold setting method is proposed as follows:

Thi = α · 1
N

N∑
n=0

D( i − n − 1, i − n ) , (7)

where N is the number of previous distances used for predict-
ing the threshold and α is a coefficient used as an amplifier.
That is, the threshold is automatically set according to the pre-
vious N successive distances, and thus it catches and adapts to
the context variations. In this step, false alarms are preferred
to missing cases, since the false alarms can be rectified in the
refinement processing, while missing boundaries cannot re-
stored. In order to avoid too many missing cases, α is set as a
small number. We have tested many selections of α (from 0 to
2) in our experiments, and we choose 1.2 in our algorithm to re-
call more than 95% of true speaker boundaries with relatively
fewer false alarms, as Fig. 8 shows. The threshold determined
in this way works well in different conditions. However, false
detections (about 60%) still exist due to the insufficient data
in estimating the speaker model from only one short speech
subsegment.

To solve this problem, we should use as much data as pos-
sible to update the speaker model. A more accurate refinement
method is proposed to refine the above results.

3.2 Incremental speaker model updating

In order to collect more data to estimate a speaker model more
accurately, we utilize the results of potential speaker boundary
detection. If no potential speaker boundary is detected, the
system infers that the current coming subsegment is from the
same speaker as the previous one. Thus, we update the current
speaker model using these available new data, as illustrated
in Fig. 5b. In this step, the speaker model is comprised of
three features: LSP, MFCC, and pitch. Supposing each feature
satisfies Gaussian distribution, the speaker model for the ith
subsegment can be represented as {GF (ui, Ci)}, where F
represents a different feature. In the remainder of the paper,
we will omit the subscript F for simplicity and express the
speaker model as G(u, C), since each feature can be processed
in the same way.

In our approach, GMM-32 is found sufficient to model a
speaker, as indicated in some other works [1,18]. (More gen-
erally, GMM-s represents a Gaussian mixture model with s
mixture components.) The model is established progressively
in the following manner. Initially, there is no sufficient speaker
data to accurately estimate a GMM-32 model; thus, GMM-
1 is estimated. When more speaker data are available, the
model gradually grows up to GMM-2, GMM-3, . . . , and fi-
nally GMM-32. When the GMM-32 is reached, the updating
of the speaker model is terminated.
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Fig. 5. A step-by-step illustration of the speaker
change detection algorithm

A conventional EM algorithm is usually used to estimate
the GMMs. However, the EM algorithm employs recursive
process, so that it is usually time consuming and does not
meet the real-time requirement. An online-EM algorithm may
update a GMM in real time, but it cannot update the number of
mixture components. Therefore, we introduce an alternative
method, incremental quasi-GMM with segmental clustering,
to update the number of mixture components. Although it may
neglect low weighted components in a GMM, it is still capa-
ble of capturing the most important components in a GMM.
Furthermore, the real-time requirement is met due to the com-
putational simplicity of the approach. Through our empirical
experiments it could achieve reasonable accuracy.

Suppose that the current speaker model Gi has been ob-
tained from the previous (M − 1) subsegments and is repre-
sented by G(u, C); the M th speech subsegment, whose model
is represented by G(um, Cm), is also from the same speaker,
without a potential speaker change point. Thus, the speaker
model Gi can be updated using the feature data of the M th
subsegment by the following method:

µ′ =
N

N + Nm
µ +

Nm

N + Nm
µm , (8)

C ′ =
N

N + Nm
C +

Nm

N + Nm
Cm

+
N · Nm

(N + Nm)2
(µ − µm)(µ − µm)T , (9)

N ′ = N + Nm , (10)

where N and Nm are the number of feature vectors used to
estimate Gi and G(um, Cm), respectively.

The third part of Eq. 9 is determined by means that are
easily biased by environmental conditions. Thus, in practice
we ignore the mean part of Eq. 9 to compensate for the effect of
different environmental conditions or transmission channels.
Then Eq. 9 is simplified as

C ′ =
N

N + Nm
C +

Nm

N + Nm
Cm . (11)

The above procedure is looped per subsegment on timeline
till the dissimilarity between the speaker models before and

after updating is small enough or a potential speaker change
point is met. The dissimilarity is also measured by the diver-
gence shape distance. When the dissimilarity is sufficiently
small, it is assumed that the current Gaussian model is esti-
mated accurately, i.e, it is not necessary to continue updating
Gi. The next Gaussian model, Gi+1, is initiated with current
subsegment and updated with the new available data using the
same method.

For one speaker, several Gaussian models will be estimated
by the above method, which is called segmental clustering
since each Gaussian component is obtained from one speech
segment. Combining these Gaussian models would form a
quasi-Gaussian mixture model. The weight of each Gaussian
model is set by its corresponding number of training data, as
wi = Ni/N , where Ni is the number of feature vectors used

to estimate Gi, and N =
S∑

i=1
Ni is the total number of feature

vectors.

3.3 Speaker change boundary refinement

Often there are false positives in the potential speaker change
boundary obtained with the algorithms described above. To
remove false boundaries, a refinement algorithm is applied to
update the boundary hypotheses, based on the dissimilarity
between the current subsegment and the speaker model ob-
tained from previous subsegments before the current potential
boundary, as illustrated in Fig. 5c.

Suppose at the potential speaker boundary the model of the
previous speaker is GMM-s, in which each Gaussian model is
G(ui, Ci) (i = 1,. . . s) and the model of the current segment is
G(um, Cm); then the distance between them is roughly esti-
mated as the weighted sum of the distance of G(um, Cm) and
each G(ui, Ci):

D =
S∑

i=1

wi · D(Ci, Cm) . (12)

The LSP distance, MFCC distance, and pitch distance are cal-
culated, respectively, according to the above method. Then,
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these features are fused and given as input to a Bayesian deci-
sion engine, as shown in Fig. 3. The basic hypothesis test used
to refine the potential speaker change point is:

H0: It is a true speaker change boundary
H1: It is not a true speaker change boundary

The optimum test to decide between these two hypotheses
is a likelihood ratio test given by

λ =
P (H0|F )
P (H1|F )

{ ≥ λ0 accept H0
< λ0 accept H1

. (13)

If a potential candidate is not a real speaker change boundary,
the current speaker data are still used to update the speaker
model based on the method described in Sect. 3.2.

4 Speaker tracking

When a speaker change boundary is confirmed, the next step is
to identify the new speaker. The new speaker may or may not
have registered in the speaker model database, which means
this step is like a speaker identification and rejection process.

To identify the new speaker, the current subsegment is
compared with all the existing speaker models in the database
to find which model is most similar to the current subsegment.
The most similar model is the most possible speaker of the
current subsegment.

The dissimilarity between the verifying speaker model and
the current subsegment is set as the weighted distance sum of
k nearest Gaussian components in the speaker model, but not
the weighted sum of all components as given in Eq. 12:

D′ =
∑

i∈N(k)

wi · D(Ci, Cm) , (14.1)

and N(k) is a set of k nearest Gaussian components to Cm in
the verifying speaker model, i.e.,

N(k) = {i|D(Ci, Cm) < DkNN} , (14.2)

where DkNN is the (k+1)th smallest one in the distance series
D(Ci, Cm)), i = 1, . . ., s, assuming there are s components
in the verifying speaker model.

We design the distance in this way since the data of a
speaker model may be from different environments or chan-
nels and the weighted sum of all components may incorporate
data from various channels, thus introducing noises and re-
ducing the identification performance. In implementation, the
number k is adaptively chosen based on the noise level (see
Fig. 11 below). That is, only the components with a noise
level similar to that of the current subsegment are used in the
distance computation. It reduces the effect introduced by the
environment mismatch. By contrast, in the module of speaker
change boundary refinement, the speaker model is estimated
from a continuous speech segment between two contiguous
speaker change points. We can assume that there is no environ-
ment/channel change during this segment so that the weighted
sum of all components can be used.

Then, for each speaker model, we will have a hypothesis
test:

Hi0: The current subsegment is speaker-i
Hi1: The current subsegment is not speaker-i

The likelihood ratio for speaker-i can be given by

λi =
P (Hi0|F )
P (Hi1|F )

, (15)

where the probability P (Hi|F ) can be estimated from distri-
bution of the distance between intraspeakers or interspeakers,
similar to the mapping method mentioned in Sect. 2.3.

The most possible speaker models could be found accord-
ing to the biggest likelihood ratio. If the largest likelihood ratio
is larger than a threshold, the speaker of the current segment
is identified and the speaker model is updated with the new
data; otherwise, the current segment is considered from a new
speaker, which is then registered in the database. In this way,
we can determine the identity of the current speaker.

Suppose up to now there are K speakers registered in the
speaker model database; the concrete expression to identify
the speaker of the current segment is as follows:

ID =
{

arg max
i

λi

K + 1
if
if

max λi ≥ λ0
max λi < λ0

, (16)

where 1 ≤ i ≤ K and K+1 represents a new speaker identity.
It is similar to a classification process with rejection. Suppose
that each speaker appears with equal probability; λ0 can be set
at 1. The threshold could also be set experimentally according
to application context.

In fact, it is difficult to identify the speaker of the current
subsegment immediately after the speaker change point is de-
tected. This is due to the fact that our first segment is only
3 s long, which is not sufficient to properly classify a speaker.
In our implementation, we try three ways of making identifi-
cation decisions, corresponding to three different amounts of
data used in making a decision.

1. Use only the data of the current subsegment. This allows
one to perform identification immediately after the bound-
ary is detected.

2. Perform identification until the next potential speaker
change point is detected. In other words, in making an
identification, we use all previous subsegments until the
last speaker change is confirmed.

3. Perform identification until the next speaker change
boundary is confirmed. That is, the information used in
the next refinement is also used in making the decision,
compared to case 2.

The least data are available in case 1, and the most data are
available in case 3. We first estimate the new speaker identity
by 1 and then rectify the previous estimation in later decisions
by 2 and 3, where more speaker data are available. The exper-
iments presented in the next section prove that case 3 achieves
the highest performance. However, case 3 also introduces the
longest delay in decision making; thus it may not be desirable
in some applications with a strict real-time requirement.

5 Experiments

In this section, we present the evaluation results of the pro-
posed real-time speaker change detection and speaker tracking
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algorithms. The previous approaches are suitable for applica-
tions that either allow offline processing without any prior
knowledge or real-time processing with supervised offline
training, where the speaker models can be trained offline a pri-
ori with prior knowledge. However, these approaches cannot
be applied to applications such as the one we address that re-
quire unsupervised training with real-time processing. There-
fore, it is hard to compare the proposed algorithm quantita-
tively with existing approaches. In general, our algorithm is
suitable for various applications on real-time audio content
analysis. In this section, we evaluate our algorithm on a broad-
casting news analysis.

In our experimentation, the input speech stream is down-
sampled into a uniform format: 8 KHz, 16 bits, monochannel,
and then divided into 3 s subsegments with 2.5 s overlapping.
That is, the basic processing unit is 3 s, and the temporal res-
olution of the segmentation is 0.5 s.

5.1 Database information

The evaluations of the proposed speaker change detection and
speaker tracking algorithms were performed on the Hub-4
1997 English Broadcast News Speech Database. The database
is composed of about 97 h of news broadcasting from different
radio stations such as CNN, ABC, CRI, and C-SPAN. In our
application, we only used the news broadcasting from ABC
World News Tonight and CNN Headline News, which is a total
of about 10 h. Half of our data was selected randomly for train-
ing and the other half was for testing. In testing the database,
each speech file is about 30 min long, and there are about 30
speakers and about 60–80 speaker changes in each file.

Though this database was originally designed for spoken
document retrieval, it is also suitable for our intended appli-
cation: speaker segmentation and tracking for news broad-
casting. The ground truth is obtained from its accompanying
transcripts.

As we mentioned in previous sections, we use 3 s sub-
segments as our basic identification unit. This unit size was
determined from the statistics of our experiments. This size is
critical since if it is too short, there will be insufficient data
to estimate an accurate speaker model; otherwise, if it is too
long, two speakers’ speech may intervene, resulting in inaccu-
rate speaker model estimation, and it will also introduce more
delay.

Figure 6 shows a histogram for the length of speaker seg-
ment in the training database. It is seen that about 5% of
speaker segments are less than or equal to 2 s, and 10% are
less than 3 s. We tested the performance with a subsegment of
2 s or 3 s; it was observed that the performance decreased dra-
matically when the subsegment was 2 s. Hence, we selected
3 s as a subsegment unit size. It implies that for those speaker
segments that are less than 3 s the segmentation and tracking
results are not so reliable.

5.2 Speaker segmentation

Recall and precision is used to evaluate the performance of
the proposed speaker segmentation algorithm. As mentioned
above, since the smallest unit used to cluster a speaker model

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35 40 45
Speech Duration (s)

P
ro

b
ab

ili
ty

Fig. 6. The histogram for the length of speaker segment
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Fig. 7. Example of speaker change detection algorithm

is 3 s, our algorithm is not very good at detecting the speaker
change point if the speaker segment is very short. The recall
for short segments (<3 s) is only 37.6%. For the long seg-
ments (>3 s), the performance is much higher. The following
reported results are all based on the long segments.

Figure 7 shows an intuitive example of speaker change
detection on 176 s-long speech. The speech clip contains four
speaker change boundaries, which are 17 s, 52 s, 86 s, 154 s,
respectively. Figure 7 shows the initial LSP distance between
every two speech subsegments, the adaptive threshold, and the
potential speaker change boundaries. The real boundaries are
also marked with an asterisk.

To determine the adaptive threshold (Eq. 7), we should
choose the amplifier coefficient α. Figure 8 shows the recall-
false curve of potential speaker change detection with various
selections of α marked beside a solid square, where false = 1
– precision. It can be seen that both recall and false decrease
with an increase in α. In order to recall more than 95% of
true speaker boundaries with relatively fewer false alarms, α
is set at 1.2 in our implementation. This means that LSP is
sufficient for potential speaker change detection since it has
achieved a 95% recall rate. We also tested the performance
adding MFCC and pitch, but little improvement was obtained.
Therefore, only LSP is used in the potential speaker change
detection for simplicity.

However, many false detections (about 60%) are still
present in the potential boundaries. Bayesian fusion decision
is performed on these potential speaker change points to re-
move the false ones, when more data are available. Figure 9
shows the corresponding recall–false curve achieved by the
refinement process, with a few different thresholds in using
Bayesian decision. Figure 9 also compares the performance
among different feature fusions. It can be seen that the perfor-
mances of individual MFCC and LSP are similar, while pitch
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Fig. 8. Recall–false curve of potential segmentation with different
selections of amplifier coefficient

���

���

���

���

���

���

��	

��


�

� ���� ��� ���� ��� ���� ��� ����

False

R
ec

al
l

���

����

���	


��������

������������	


�������

Fig. 9. False–recall curve for speaker segmentation

is least. After the fusion of LSP and MFCC, the recall is im-
proved by about 3% and 6% over individual LSP and MFCC,
respectively, when the false alarm rate is about 15%. With the
same false alarm rate, the fusion of all three features can fur-
ther improve the recall by about 3%. Actually, this means that
the effect after pitch is added to fusion. The “fuse all” curve
represents the final performance after considering noise mod-
eling. It is seen that when the false alarm is 15%, the overall
recall is improved up to 89%. Figure 9 also shows the trade-
off between recall and false alarm and provides a reference to
select different recall and false alarm rates for different appli-
cations.

Because there is no ground truth on speech/nonspeech in-
formation in the test database, an audio-type classifier was
used to segment them. Unfortunately, there still exist some
misclassifications. The detection results are strongly affected
by the short nonspeech segments misclassified as speech seg-
ments, especially those sounds intervening in speech, such as
a burst of wind, laughter, or applause. Many (>50%) false
alarms are caused for this reason.

Since the algorithm is based on a resolution of 0.5 s and a
context of 3–6 s, the detected speaker change point may shift
from the true one. In the above experiment, we take it as a
true detection if the shift is less than 3 s. Another experiment
was carried out to obtain the statistics of the shift information.
Figure 10 illustrates a shift histogram for the detected speaker
change boundaries.

Figure 10 shows that almost 70% of detected boundaries
are less than 1 s away from the true boundary, and 86.6% are
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Fig. 10. Histogram of shift duration from true speaker change bound-
ary

less than 2 s away. Only 7.6% are beyond the 3 s range. This
also proves that our algorithm has good resolution in speaker
boundary detection. It is very easy to increase the resolution
from 0.5 s to 0.1 s, or even higher if we increase the overlapping
of the shifting window. However, the computation complexity
will increase linearly.

5.3 Speaker tracking

In our approach, the tracking problem is considered as a re-
trieval problem. For a special speaker, he/she has a ground
truth speech set and a detected speech set; thus recall and
precision can be used to evaluate the tracking results. In our
implementation, the average recall and the average precision
are used to evaluate the tracking performance. Here, average
recall and precision are calculated from a weighed sum of
recall and precision of each speaker in the test speech file.

Suppose there are N speakers in a test speech segment,
and the recall and precision of the ith speaker is Ri and Pi,
respectively; then:

Ravr =
N∑

i=1
αiRi ,

Pavr =
N∑

i=1
αiPi ,

(17)

where the weight of the ith speaker is denoted by αi, which
can be calculated from:

αi = Li

/ N∑
i=1

Li , (18)

where Li is the speech length of the ith speaker.
In the experiments, we first compared the speaker tracking

performance with different schemes of k in Eq. 13, including
k = 1, k = all, and our adaptive k scheme. Figure 11 shows
the corresponding recall–false curve, where Favr = 1−Pavr.
As shown in the figure, the performance is worst when k is
chosen as 1, and our adaptive k has the best performance,
which is 2–5% better than selecting all components in distance
calculations.

In the above result, speaker identification is performed im-
mediately after a speaker turn is detected. We also compared
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Fig. 11. Average false-recall curve with different k selection scheme
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Fig. 12. Average false-recall curve for speaker tracking in four cases:
(1) Instant: once at a real speaker change boundary. (2) Change: at
the next potential speaker change. (3) Bound: at the next real speaker
change boundary. (4) Offline

three positions where the speaker is identified. The first one is
to perform speaker recognition instantly once a speaker change
is found (Instant). The second one is to perform speaker recog-
nition after the next potential change is found (Change). The
third one is to perform speaker recognition when the next real
speaker boundary is detected (Bound). Figure 12 illustrates
the average false alarm vs. average recall curve in these three
cases.

Figure 12 shows that, from the first case to the third case,
when the available data increase, the corresponding perfor-
mance also improves. The performance of Bound (the third
case) is the best among these three cases, since it has the most
data to model the current speaker for speaker tracking. When
the false alarm rate is 0.1, the recall of Bound is 20% higher
than that of the other two; when the false alarm rate is 0.2, the
recall of Bound is 12% higher. The performance of Change
(the second case) is only slightly better than that of Instance
(the first case). It indicates that the data used in the second case
are not yet sufficient to obtain an accurate speaker model. In
our experiments, there are about 30 speakers in each testing
speech file. The higher the speaker number is, the more con-
fusion there will be in speaker identification.

In the experiments, we also implemented an offline speaker
tracking system by storing all raw features in memory and us-
ing EM-based GMM-32 to update the speaker model instead of
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Fig. 13. Performance comparisons between EM-based GMM and
incremental quasi-GMM in a speaker recognition system

our incremental quasi-GMM. The corresponding false–recall
curve is also shown in Fig. 12 with a bold line. The figure
shows that offline tracking yields only a slight (about 2–4%)
performance improvement. This is because, initially, GMM-
32 could not be fully estimated due to the small data size. It
introduces some errors in speaker identification, and the error
is further diffused in later speaker tracking. Thus, the overall
performance is only slightly better than our real-time algo-
rithm, while the speed is much slower.

In order to further clearly compare the performance be-
tween EM-based GMM and our incremental quasi-GMM, we
implemented a speaker recognition system. This system con-
tains 25 speakers, with each person having between 120 and
200 s of data for training and testing. Thus, the speaker mod-
els can be fully trained with enough data, and other influent
factors, such as error diffusion, are excluded. Figure 13 illus-
trates the performance comparison using the curve of accuracy
vs. testing length, which is measured in 25-ms frames. It can
be seen that there is about 8–9% performance decrease when
using incremental GMM instead of EM-based GMM. This
means that the incremental quasi-GMM can roughly catch
the main components in speaker modeling; when the testing
length is longer, the accuracy between them could be closer.

Although in speaker recognition systems there is an 8–9%
accuracy decrease, in speaker tracking, incremental GMM has
only a 3% performance decrease due to other effects. This
shows that it is appropriate to use incremental GMM in our
speaker tracking system to meet the real-time requirement.

5.4 Computation efficiency

We have also tested the time complexity of our algorithm. With
a Pentium III 864-MHz PC running Windows XP, the segmen-
tation and tracking process can be completed in about 15% of
the time-length of an audio clip. The LSP/MFCC correlation
analysis is the most time-consuming part of our algorithm. Af-
ter using an optimized function to compute correlation analy-
sis, the time performance has been increased dramatically. Our
scheme can totally meet the real-time processing requirement
in multimedia applications.
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6 Discussion and conclusion

In this paper, we have presented a novel approach to real-time
unsupervised speaker segmentation and speaker tracking. A
two-step speaker change detection algorithm is proposed that
includes potential speaker change detection and refinement.
Speaker tracking is based on the results of speaker change.
A Bayesian fusion method is used to fuse different features,
which include MFCC, LSP, pitch, and noise level, to obtain a
more reliable result. The algorithm achieves 89% recall with a
15% false alarm rate on speaker segmentation and 76% recall
with a 20% false alarm rate on unsupervised speaker track-
ing. Due to the proposed incremental GMM, the algorithm is
computationally efficient and can perform in 15% of real time.
Compared with EM-based GMM, incremental GMM has only
2–3% performance drops on speaker tracking, while it per-
forms more than eight times faster. Although this system is
designed for news broadcast processing, the same algorithms
could be used in other audio applications.

There is still room for improvement in the proposed ap-
proach. In particular, our future research will be focused on
addressing the following issues.

First, in order to process in real time, the available data
to train speaker model are always limited. Estimating an ac-
curate model from limited training data is still a challenge.
Also, in news broadcasting, the environment and context are
so complex that the segmentation result is often affected. In
the experiments, we have found that if there is a burst of laugh-
ter between speeches, it is easily detected as a speaker change
boundary. Therefore, another future focus will be on address-
ing this issue. Furthermore, environmental and channel varia-
tions also affect speaker tracking results. It has also been found
that the same speaker in different environments sometimes is
detected as different speakers. This indicates that our com-
pensation for the mismatch effect of environment or channel
is still insufficient.
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