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Abstract— Supervised approaches classify input data using a
set of representative samples for each class, known as training
samples. The collection of such samples is expensive and time
demanding. Hence, unsupervised feature learning, which has
a quick access to arbitrary amounts of unlabeled data, is
conceptually of high interest. In this paper, we propose a
novel network architecture, fully Conv–Deconv network, for
unsupervised spectral–spatial feature learning of hyperspectral
images, which is able to be trained in an end-to-end manner.
Specifically, our network is based on the so-called encoder–
decoder paradigm, i.e., the input 3-D hyperspectral patch is
first transformed into a typically lower dimensional space via
a convolutional subnetwork (encoder), and then expanded to
reproduce the initial data by a deconvolutional subnetwork
(decoder). However, during the experiment, we found that such
a network is not easy to be optimized. To address this problem,
we refine the proposed network architecture by incorporating:
1) residual learning and 2) a new unpooling operation that can
use memorized max-pooling indexes. Moreover, to understand
the “black box,” we make an in-depth study of the learned feature
maps in the experimental analysis. A very interesting discovery
is that some specific “neurons” in the first residual block of
the proposed network own good description power for semantic
visual patterns in the object level, which provide an opportunity
to achieve “free” object detection. This paper, for the first
time in the remote sensing community, proposes an end-to-end
fully Conv–Deconv network for unsupervised spectral–spatial
feature learning. Moreover, this paper also introduces an
in-depth investigation of learned features. Experimental results
on two widely used hyperspectral data, Indian Pines and Pavia
University, demonstrate competitive performance obtained by the
proposed methodology compared with other studied approaches.

Index Terms— Convolutional network, deconvolutional net-
work, hyperspectral image classification, residual learning,
unsupervised spectral–spatial feature learning.
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I. INTRODUCTION

ALONG with the development of different earth observa-

tion missions, hyperspectral imagery has been accessible

at a reasonable cost over the last decade. Since hyperspectral

images are characterized in hundreds of continuous

observation bands, throughout the electromagnetic spectrum

with high spectral resolution, such data have attracted

considerable attention in the remote sensing community [1].

On the other hand, the analysis of hyperspectral images is of

high importance in many practical applications, such as urban

development [2]–[5], monitoring of land changes [6]–[9],

and resource management [10], [11]. To benefit from these

types of data, supervised hyperspectral image classification

is among the most active research areas in hyperspectral

analysis.

There is a vast literature on supervised classification models

such as decision trees [12], random forests [13], [14], and sup-

port vector machines (SVMs) [15], [16]. A random forest [14]

is an ensemble learning approach that operates by constructing

several decision trees in the training course and outputting

the classes of the input hyperspectral pixels via integration of

predictions of the individual trees. In contrast, as a significant

branch of the supervised machine learning algorithm, SVMs

have achieved a great success in various applications due to

the fact that they can handle high-dimensional data with a

limited number of training samples. SVM works by map-

ping data to a kernel-included high-dimensional feature space

seeking an optimal decision hyperplane that can best separate

data samples, when data points are not linearly separable.

SVM, therefore, has been considered to be an effective and

stable algorithm for hyperspectral image classification task.

In addition, some extensions of the SVM model [17], [18]

have been proposed for hyperspectral data analysis to improve

discrimination capability of the classifier. However, random

forests and SVMs are attributed as “shallow” models, which

means that their ability to deal with nonlinear data, e.g.,

hyperspectral data demonstrate dense nonlinearity, is limited

compared with the “deep” ones.

With the investigation of hyperspectral image classifica-

tion, a major finding is that various atmospheric scattering

conditions, complicated light scattering mechanisms, inter-

class similarity, and intraclass variability result in hyper-

spectral imaging procedure being inherently nonlinear [19].

It is believed that, compared with the “shallow” models,
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deep learning architectures are able to extract high-level,

hierarchical, and abstract features, which are generally more

robust to the nonlinear input data. So far, some studies in

the community have focused on making use of deep learning

models for hyperspectral image classification. For instance,

Chen et al. [20] employed a stacked auto-encoder to extract

hierarchical features from the spectral domain of hyperspectral

images for the purpose of classification. In [21], a restricted

Boltzmann machine (RBM) and its extension, deep belief net-

work (DBN), were introduced for the classification of hyper-

spectral data by learning spectral-based features. Tao et al. [22]

presented a multiscale sparse stacked auto-encoder to learn

an effective feature representation from unlabeled data, and

then the learned features were fed into a linear SVM for

hyperspectral data classification. Very recently, Mou et al. [23]

proposed a novel recurrent neural network with a new activa-

tion function and a modified gated recurrent unit for hyper-

spectral image classification, which can effectively analyze

hyperspectral pixels as sequential data and then determine

information categories via network reasoning.

Most of the aforementioned networks, e.g., auto-encoder,

RBM, and DBN, are both early and fairly simple 1-D deep

learning architectures totally equipped with fully connected

layers. Consequently, there are a lot of trainable parameters

that need to be estimated, which is an undesirable case given

that available labeled training samples for remote sensing

image classification are often limited [24]. Moreover, it should

be noted that the processing mechanism of the 1-D networks

and the vector-based feature alignment can lead to the loss of

structure information for hyperspectral imagery, as it has an

intrinsic 2-D data structure in the spatial domain.

Convolutional neural network (CNN), an important branch

of the deep learning family, has been attracting attention, due

to the fact that they are capable of automatically discovering

relevant contextual 2-D spatial features in image categorization

tasks. In addition, a CNN makes use of local connections

to deal with spatial dependencies via sharing weights, and

thus can significantly reduce the number of parameters of

the network in comparison with the conventional 1-D fully

connected neural networks. CNNs have already outperformed

other methodologies in various domains of machine learning

and computer vision such as large-scale natural image recogni-

tion [25]–[28], object detection [29], [30], and scene interpre-

tation [31]–[35]. Very recently, a few supervised CNN-based

models have been proposed for spectral–spatial classification

of hyperspectral remote sensing images. Chen et al. [36]

introduced a supervised ℓ2 regularized 3-D CNN-based feature

extraction model to extract efficient spectral–spatial features

for the purpose of classification. Ghamisi et al. [19] proposed

a self-improving CNN (SICNN) model, which combined a

CNN with a fractional order Darwinian particle swarm opti-

mization (FODPSO) algorithm to iteratively select the most

informative bands suitable for training the designed CNN.

Makantasis et al. [37] exploited a CNN to encode spectral

and spatial information of input hyperspectral data followed

by a multilayer perceptron to conduct the hyperspectral image

classification task. Zhao and Du [38] proposed a spectral–

spatial feature-based classification framework, which jointly

makes use of a local discriminant embedding-based dimension

reduction algorithm and a CNN for the purpose of land cover

classification. Aptoula et al. [39] fed attribute profile features

instead of original hyperspectral data into a CNN, which led

to a performance improvement.

Those CNNs trained in a supervised manner via backpropa-

gation, which improved the state-of-the-art performance on the

hyperspectral image classification task. Despite the big success

of the supervised CNNs, they have at least one potential

drawback detailed as follows: there is a need for a good

supply of labeled training samples to be used for supervised

training. However, these are difficult to collect, and there are

diminishing returns of making the labeled data set larger and

larger. In other words, the supervised CNNs generally suffer

from either small number of training samples or imbalanced

data sets.

Hence, unsupervised spectral–spatial feature learning, which

has a quick access to arbitrary amounts of unlabeled data, is

conceptually of high interest. In general, the main purpose

of unsupervised feature learning is to extract useful features

from unlabeled data, to detect and remove input redundancies,

and to preserve only essential aspects of the data in robust and

discriminative representations. In a pioneer work moving from

the supervised CNN to unsupervised CNN, Romero et al. [40]

proposed an unsupervised convolutional network for learning

spectral–spatial features using sparse learning to estimate the

weights of the network. However, this model was trained in a

greedy layer-wise fashion, i.e., it is not an end-to-end network.

In this paper, we aim to propose an end-to-end network,

fully Conv–Deconv network, for unsupervised spectral–spatial

feature learning of hyperspectral imagery. Basically, our net-

work architecture is based on the so-called encoder–decoder

paradigm. Specifically, the input is first transformed into a

typically lower dimensional space via a convolutional subnet-

work (encoder), and then expanded to reproduce the initial

data by a deconvolutional subnetwork (decoder). Moreover, the

trained unsupervised Conv–Deconv network can be adapted

to the classification of hyperspectral data by cutting off the

deconvolutional subnetwork, replacing the loss function, and

fine-tuning it to the new task, i.e., adjusting the weights using

backpropagation. With this approach, typically much smaller

training sets are sufficient. In detail, our work contributes to

the literature in three major aspects.

1) We propose an end-to-end deep Conv–Deconv neural

network, which is composed of a convolutional

subnetwork and a deconvolutional subnetwork with a

specially designed unpooling layer. Learning such a

2-D encoder–decoder-based network for unsupervised

spectral–spatial feature learning of hyperspectral data

has not been investigated yet to the best of our

knowledge.

2) Since our network is fairly deep, it might easily

converge to an inappropriate solution if small learning

rates are used. On the other hand, simply boosting

convergence with high learning rates leads to exploding

the gradient problem. In this paper, we resolve this issue

by introducing residual learning in our Conv–Deconv

network. To the best of our knowledge, this is the first
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use of residual learning to train networks for remote

sensing data analysis.

3) Our unsupervised network is able to preserve the

neighborhood relations and spatial locality of

3-D hyperspectral cubes in its latent high-level

feature representations, while the conventional 1-D

fully connected unsupervised network architectures

such as auto-encoder, RBM, and DBN do not scale

well to realistic-sized high-dimensional hyperspectral

data in terms of computational complexity.

4) To understand the “black box” of the proposed network,

we make an in-depth investigation. We found that some

specific “neurons” in the first residual block of the

network are capable of precisely capturing semantic

visual patterns in object level, which makes it possible

to achieve a high-quality unsupervised object detection

capability for hyperspectral images.

The rest of this paper is organized as follows. An introduc-

tion to the traditional unsupervised network architectures is

briefly given in Section II. The details of the proposed fully

Conv–Deconv network with residual learning for unsupervised

spectral–spatial feature extraction of hyperspectral data are

described in Section III. The network setup, network analysis,

experimental results, and a comparison with state-of-the-art

approaches are provided in Section IV. Finally, Section V

concludes this paper.

II. PRELIMINARIES

Several types of traditional 1-D unsupervised network

architectures have been leveraged for feature learning of hyper-

spectral data. In this section, we recall the basic principles of

such models.

A. Auto-Encoder

An auto-encoder [41] takes an input x ∈ R
D and first maps

it to a latent representation h ∈ R
M via a nonlinear mapping

h = f (�x + β) (1)

where � is a weight matrix to be estimated during the training

course, β is a bias vector, and f stands for a nonlinear function

such as the logistic sigmoid function and hyperbolic tangent

function. The encoded feature representation h is then used to

reconstruct the input x by a reverse mapping

y = f (�′h + β ′) (2)

where �′ is usually constrained to be the form of �′ = �T ,

using the same weight for encoding the input and decoding

the latent representation. The reconstruction error is defined

as the Euclidian distance between x and y that is constrained

to approximate the input data x, i.e., making ‖x − y‖2
2 → 0.

The parameters of the auto-encoder are generally optimized

by stochastic gradient descent (SGD) [42]. Fig. 1 illustrates

the structure of the auto-encoder.

B. Sparse Auto-Encoder

The conventional auto-encoder relies on the dimension of

the latent representation h being smaller than that of input x,

Fig. 1. Two classical unsupervised network architectures. (Left) Auto-
encoder. (Right) RBM.

i.e., M < D, which means it tends to learn a low-dimensional

compressed representation. However, when M > D, one

can still discover an interesting structure, by enforcing a

sparsity constraint on the hidden units. Formally, given a set of

unlabeled data X = {x1, x2, . . . , x N }, training a sparse auto-

encoder is to find the optimal parameters by minimizing the

following loss function:

E = 1

N

N
∑

i=1

⎛

⎝J (x i , yi ; �,β) + λ

M
∑

j=1

KL(ρ‖ρ̂ j )

⎞

⎠ (3)

where J (x i , yi ; �,β) is an average sum-of-squares error

term, which represents the reconstruction error between

the input x i and its reconstruction yi . KL(ρ‖ρ̂ j ) is the

Kullback-Leibler (KL) divergence between a Bernoulli random

variable with mean ρ and a Bernoulli random variable with

mean ρ̂ j . KL divergence is a standard function for measuring

how similar two distributions are, and it can be described as

follows:

KL(ρ‖ρ̂ j ) = ρ log
ρ

ρ̂ j

+ (1 − ρ) log
1 − ρ

1 − ρ̂ j

. (4)

In the sparse auto-encoder model, KL divergence is called

sparsity penalty term that provides the sparsity constraint, and

λ controls the weight of the sparsity penalty term. Similar to

the auto-encoder, the optimization of a sparse auto-encoder

can be achieved via the backpropagation and SGD [42].

C. RBM and DBN

Unlike the deterministic network architectures such as auto-

encoder or sparse auto-encoder, an RBM is a stochastic

undirected graphical model consisted of a visible layer and a

hidden layer, and it has symmetric connections between these

two layers, and no connecting exists within the hidden layer

or the input layer. The energy function of an RBM can be

defined as follows:

E(x, h) = 1

2
xT x − (hT W x + cT x + bT h) (5)

where W , c, and b are the weights of the RBM model. The

joint probability distribution of the RBM is defined as

p(x, h) = 1

Z
exp(−E(x, h)) (6)

where Z is a normalization constant. The form of the RBM

makes the conditional probability distribution computationally

feasible, when x or h is fixed. The structure of the RBM is

depicted in Fig. 1.
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Fig. 2. We propose a network architecture that learns to extract spectral–spatial features by reconstructing the initial input 3-D hyperspectral patches, being
trained end to end. There are no fully connected layers, and hence it is a fully Conv–Deconv network. The proposed network architecture is composed of
two parts, i.e., convolutional subnetwork and deconvolutional subnetwork. The former corresponds to an encoder that transforms the input 3-D hyperspectral
patches to abstract feature representations, whereas the latter plays the role of decoder that reproduces the initial input data from the encoded features. Each
layer in the convolutional subnetwork has a corresponding decoder layer in the deconvolutional subnetwork.

The feature representation ability of a single RBM is

limited. However, its real power emerges when a couple of

RBMs are stacked, forming a DBN [43]. Hinton et al. [43]

proposed a greedy approach that trains RBM in each layer to

efficiently train a DBN.

III. METHODOLOGY

CNNs have shown to be very successful on a range of

visual recognition tasks [25]–[27], [29]–[33]. Such tasks,

in common, can be posed as discriminative supervised learning

problems, and hence, can be resolved by CNNs, which are

well known to be effective at learning input–output relations

given an adequate number of labeled data sets. Normally,

a task solved by making use of CNNs involves learning

mappings from concrete raw images to some sort of condensed

abstract outputs, such as category. Here, we are interested in

training an end-to-end neural network to extract features in

an unsupervised fashion, which means we need to leverage a

network to solve a concrete-to-concrete problem instead of the

traditional concrete-to-abstract one. This brings up a question

in mind: what is a good network architecture for our purpose?

A. Initial Conv–Deconv Network Architecture

1) Analysis and Modeling: Denote by (x, h, y) random

variables representing a 3-D hyperspectral patch, its encoded

feature representation, and the reconstructed output. The joint

probability distribution p(x, y) can be described as follows:

p(x, y) = p(x)p(y|x) (7)

where p(x) is the distribution of 3-D hyperspectral patches

and p(y|x) is the distribution of reconstructed outputs given

the hyperspectral patches. Thus, the conditional probability

distribution p(y|x) can be written as

p(y|x) = p(y, h|x) = p(y|h)p(h|x) (8)

where p(h|x) indicates the distribution of the encoded feature

representations given the input hyperspectral patches. As a

special case, y may be a deterministic function of x. Ideally,

we would like to find p(h|x) and p(y|h), but direct applica-

tion of Bayesian theory is not feasible. We, therefore, in this

paper resort to an estimate function f (x) that minimizes the

following mean squared error objective:

Ex‖x − f (x)‖2
2. (9)

The minimizer of this loss is the conditional expectation

f̂ (x0) = Ey[ y|h] + Eh[h|x = x0] (10)

that is the expected reconstructed output given a hyperspectral

patch.

Given a set of unlabeled 3-D hyperspectral patches {xi},
we learn the weights � of a network f (x; �) to minimize a

Monte Carlo estimate of the loss (9)

�̂ = arg min
�

∑

i

‖xi − f (xi; �)‖2
2. (11)

This means that we train the network to reproduce the

input results in learning high-level abstract features in an

unsupervised manner.

In this paper, we propose a fully Conv–Deconv network

(see Fig. 2) in which the desired output is the input data

itself. The proposed network architecture is composed of two

parts, i.e., the convolutional subnetwork and deconvolutional

subnetwork. The former corresponds to an encoder that trans-

forms the input 3-D hyperspectral patch xi to abstract feature

representation hi , whereas the latter plays the role of a decoder

that reproduces the initial input data from the encoded feature.

Each layer in the convolutional subnetwork has a correspond-

ing decoder layer in the deconvolutional subnetwork.

2) Convolutional Subnetwork: The design of the architec-

ture of the convolutional subnetwork is mainly inspired by the

philosophy of the VGG Nets [26]. The input hyperspectral

patch is fed into a stack of convolutional layers, where we

leverage convolutional filters with a very small receptive field

of 3 × 3, rather than making use of larger ones, such as

5 × 5 or 7 × 7. The reason is that 3 × 3 convolutional

filters are the smallest kernels to seize patterns in different

directions, such as center, up/down, and left/right, but still

have an advantage: the usage of small convolutional filters

will increase the nonlinearities inside the network and thus

make the network more discriminative.
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In addition, the convolutional stride in the convolutional

subnetwork is fixed to 1 pixel; the spatial padding of con-

volutional layer input is such that the spatial resolution of

feature maps is preserved after convolution, in other words,

the padding is 1 pixel for the used 3 × 3 convolutional

layers. Spatial pooling is achieved by carrying out several

max-pooling layers, which follow some of the convolutional

layers. In particular, max pooling is performed over 3 × 3 pixel

windows with stride 3.

In a nutshell, the convolutional layers in the convolutional

subnetwork consist of 3 × 3 filters and follow the following

two rules: 1) the convolutional layers in each convolutional

block are with the same feature map size and have the same

number of filters and 2) the number of channels of the feature

maps increases in the deeper convolutional blocks, roughly

doubling after each max-pooling layer, which is meant to

preserve the time complexity per layer as far as possible. All

layers in the convolutional subnetwork are equipped with a

rectified linear unit (ReLU) [25] as activation function. ReLU

is one of several keys to the recent success of deep neural

networks and can be defined as f (x) = max(0, x). Compared

with the conventional activation functions, such as sigmoid

and hyperbolic tangent function, the usage of ReLU can

expedite convergence of the training course and result in better

solutions.

3) Deconvolutional Subnetwork: The convolutional subnet-

work is in charge of extracting high-level abstract spectral–

spatial feature representation of the input 3-D hyperspectral

patch, by interleaving convolutional layers and max-pooling

layers, i.e., spatially shrinking the feature maps layer by layer.

Pooling is necessary to allow agglomerating information over

large areas of feature maps and, more fundamentally, to make

the network computationally feasible. However, pooling leads

to reduced resolution of the feature maps; hence, in order to

reconstruct the initial input data, we need to find a way to

refine this coarse pooled representation.

Our approach to this refinement is to construct a deconvo-

lutional subnetwork. The main ingredient is deconvolutional

operation, which performs reverse operation of the convo-

lutional subnetwork and reconstructs the original input data

from the abstract feature representation. The deconvolutional

operation consists of unpooling and convolution. In order to

map the encoded feature to a high-dimensional hyperspectral

cube, we need unpooling to unpool the feature maps, i.e., to

increase their spatial span, as opposed to the pooling (spatially

shrinking the feature maps) implemented by the convolutional

subnetwork. More specifically, the unpooling [44], [45] is

performed by simply replacing each entry of a feature map

by an s × s block with the entry value in the top-left corner

and zeros elsewhere (see Fig. 3). With this operation, the

height and the width of the feature maps are increased s

times. In this network, we made use of s = 3, as the

size of the receptive field in the max-pooling layers of the

convolutional subnetwork is 3 × 3. When a convolutional

block is preceded by an unpooling layer, we can thus think

of the combination of unpooling and convolutional block

as the inverse operation of “convolutional block + pooling”

performed in the convolutional subnetwork.

Fig. 3. Illustration of (Left) max pooling and (Right) unpooling as used in
the fully Conv–Deconv network described in Section III-A.

Fig. 4. Learning curves for the initial fully Conv–Deconv network on
the Indian Pines data set and the Pavia University data set. Although the
network starts greatly reducing errors on both the training and validation
samples during the first few epochs, it rapidly converges to a fairly high
value, which means the learning of the network is significantly slowed down
and eventually gets stuck into a local minimum. This indicates that such a
network architecture is not easy to optimize.

The configuration of convolutional blocks in the decon-

volutional subnetwork is the same with the convolutional

subnetwork, namely, 3 × 3 receptive field, 1 pixel padding,

and ReLU as activation function.

B. Refined Network Architecture

1) Difficulty of Training Conv–Deconv Network: In

Section III-A, we have systematically built a reasonable net-

work architecture for our task, but a problem will arise when

we attempt to train the network. As can be seen in Fig. 4,

although the network starts greatly reducing errors on both

the training and validation samples during the first few epochs,

it rapidly converges to a fairly high value, which means the

learning of the network is significantly slowed down and

eventually gets stuck into a local minimum. This indicates that

such network architecture is not easy to optimize. We think

the obstacles to train the proposed fully Conv–Deconv network

are as follows.

1) In the Conv–Deconv network, the exact copy of the input

high-dimensional 3-D hyperspectral patch has to go

through all layers until it reaches the output layer. With

many weight layers, this becomes an end-to-end relation

requiring very long-term memory. For this reason, the

notorious vanishing gradient problem [46], [47] can
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Fig. 5. We refine the proposed fully Conv–Deconv network architecture by incorporating residual learning and a more appropriate unpooling operation,
which can use memorized max-pooling indices from the corresponding encoded feature maps and enables reconstruction to be more accurate.

be critical, which handicaps the learning process of the

network.

2) The unpooling operation [44], [45] in the deconvolu-

tional subnetwork increases the spatial resolution of

feature maps by simply adding zeros, which ignores the

location of the maximum value in the receptive field

of pooling layer, leading to loss of edge information

during the decoding procedure. Without this detailed

information, it is difficult for the optimizer to lead the

network to better solutions.

To address the aforementioned problems, in this section,

we refine the proposed fully Conv–Deconv network architec-

ture by incorporating residual learning and a new unpooling

operation that can use memorized max-pooling indices from

the corresponding encoded feature maps and enables recon-

struction to be more accurate. The new network architecture

is shown in Fig. 5.

2) Conv–Deconv Network With Residual Learning: Resid-

ual learning has recently shown appealing performance in

the concrete-to-abstract deep network architectures on many

challenging visual tasks, such as image classification [27], [48]

and object detection [27]. One main merit offered using the

residual learning is that it helps in handling the vanishing

gradient problem and degradation problem [27]. In this paper,

we are interested in introducing the residual learning to the

proposed concrete-to-concrete Conv–Deconv network in order

to resolve the network training problem.

The proposed Conv–Deconv network with residual learning

is a modularized network architecture that stacks residual

blocks. Similar to the convolutional blocks, a residual block

consists of several convolutional layers that are with the same

feature map size and have the same number of filters. However,

it performs the following calculation:
ϕl = g(φl) + F(φl; �l) (12)

φl+1 = f (ϕl). (13)

Here, φl indicates the feature maps that are fed into the

lth residual block and satisfies φ0 = x where x is the input

3-D hyperspectral patch. �l = {�l,k |1 ≤ k ≤ K } represents a

collection of weights associated with the lth residual block,

and K denotes that there are K convolutional layers in a

residual block. Moreover, F is the residual function and

is generally achieved by few stacked convolutional layers,

e.g., a convolutional block described in Section III-A. The

function f indicates the activation function such as a linear

activation function or ReLU, and f works after element-wise

addition. The function g is fixed to an identity mapping:

g(φl) = φl .

If f adopts a linear activation function and also acts as an

identity mapping, i.e., φl+1 = ϕl , we can obtain the output of

the lth residual block by putting (12) into (13)

φl+1 = φl + F(φl; �l) . (14)

In contrast, a convolutional block only performs the

following computation:

φl+1 = H(φl; �l). (15)

Recursively, like

φl+2 = φl+1 + F(φl+1; �l+1)

= φl + F(φl; �l) + F(φl+1; �l+1) (16)

we will get the following recurrence formula:

φL = φl +
L−1
∑

i=l

F(φi ; �i) (17)

for any shallower block l and any deeper block L.

As exhibited in (17), the network with residual learning has

some interesting and nice properties.

1) The feature maps φL of any deeper residual block L can

be considered to be adding the feature maps φl of any

shallower block l and a residual function in a form of
∑L−1

i=1 F , representing that the network is in a residual

fashion and is capable of learning some new features

between any blocks l and L.

2) With both the g and f being identity mappings, i.e.,

g(φl) = φl and f (ϕl) = ϕl , a network with residual

learning creates a direct path for propagating information

through the entire network, which can effectively avoid

the vanishing gradient problem.

These two respects are in contrast to the Conv–Deconv

network equipped with common convolutional blocks

(see Section III-A) in which the feature maps φL are a set

of matrix products, namely,
∏L−1

i=0 �iφ0.

The content discussed above illustrates the forward propa-

gation procedure of the Conv–Deconv network with residual
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Fig. 6. Comparison between the convolutional block and the residual block.
Here, φl denotes the input and φl+1 is any desired output. The convolutional
block hopes that two convolutional layers are able to fit φl+1 by directly
learning a mapping H. In contrast, the two convolutional layers are expected
to learn a residual function F to let φl+1 = F(φl )+φl in the residual block.

learning. However, how the residual learning can help us

to effectively train the proposed deep network? To answer

this question, we need to dive into the backward propagation

process. Denoted by E indicating the loss function, according

to the chain rule of backpropagation, we can obtain

∂E

∂φl

= ∂E

∂φL

∂φL

∂φl

= ∂E

∂φL

(

1 + ∂

∂φl

L−1
∑

i=l

F(φi ; �i )

)

. (18)

Equation (18) implies that the gradient (∂E/∂φl) can be

decomposed into two additive terms: a term of (∂E/∂φL) that

directly propagates information without concerning any weight

layers and another term of (∂E/∂φL)((∂/∂φl )
∑L−1

i=l F) that

propagates through the weight layers. The former term ensures

that the information can be propagated back to any shallower

residual block l directly. In addition, since (∂/∂φl )
∑L−1

i=l F

basically cannot always be −1 for all training data in a batch,

it is almost impossible that (18) is canceled out for a mini-

batch. This implies that the gradient information of a layer in

the network does not vanish even while the trainable weights

are arbitrarily small, which is the key to make the deep

network feasible for the purpose of training and to answer the

question mentioned above. Given the activation function of the

last layer is sigmoid, on the contrary, the initial Conv–Deconv

network easily suffers from the vanishing gradient problem,

which leads the learning procedure is slowed down or even

stopped. Fig. 6 shows a comparison between the convolutional

block [Fig. 6 (left)] and the residual block [Fig. 6 (right)].

3) More Accurate Unpooling: To acquire more appropri-

ate unpooled feature maps and more precise reconstruction

output, the max-pooling indices computed in the max-pooling

layers of the corresponding encoder can be used to perform

nonlinear upsampling of the feature maps. And, reusing the

max-pooling indices in the deconvolutional subnetwork has

several practical merits, including that it is able to improve

boundary delineation and eliminates the need for learning to

upsample. The unpooled feature maps produced by this form

of unpooling are sparse. Then, the unpooled feature maps are

convolved with trainable filters to generate dense feature maps.

Goroshin et al. [49] recently presented a soft version of max

and arg max operations that can take not only the maximum

value in the receptive field of a max-pooling layer but also

Fig. 7. Illustration of the unpooling operation in the refined Conv–Deconv
network (see Section III-B), using max-pooling indices that are capable of
recording the location of the maximum value in each local pooling region
during pooling in the convolutional subnetwork.

the corresponding index of that value. In particular, these two

operations can be computed as follows:

µ =
∑

V

z(i, j)
exp(αz(i, j))

∑

V exp(αz(i, j))
≈ max

V
z(i, j) (19)

ν =
∑

V

[i, j ]T exp(αz(i, j))
∑

V exp(αz(i, j))
≈ arg max

V
z(i, j) (20)

where (i, j) stands for the spatial location index in the

receptive field of a max-pooling layer and takes normalized

values from −1 to 1, and z(i, j) presents the value of the

given location on a feature map. V is the receptive field. Note

that α is a hyperparameter that controls soft pooling such that

the lager the α, the closer the soft pooling approaches max

pooling. With the max and arg max operations, the max-poling

indices can be obtained in every pooling layer.

Then we make use of interpolation in the unpooling layers

of the deconvolutional subnetwork by handling the values

conveyed by the max-pooling indices (see Fig. 7). The use of

max-pooling indices enables location information to be more

accurately represented and thus enables the feature maps to

capture fine details about the input 3-D hyperspectral patch.

C. Usage of Learned Features for Classification by

Fine-Tuning the Network

Once the Conv–Deconv network is trained, the convolu-

tional subnetwork, i.e., the encoder, can be regarded as an

effective feature extractor. The key idea, here, is that the

internal layers of the convolutional subnetwork can act as

a generic extractor of spectral–spatial representation, which,

first, can be trained by learning an identity mapping in the

encoder–decoder architecture and then reused on other target

tasks like classification. With this fine-tuning, we do not have

to use a large number of labeled data to train a valid network

for the purpose of supervised classification. In contrast, taking

into consideration the fact that the total number of trainable

parameters of a deep 2-D convolutional network is huge, a

direct learning of so many parameters from the limited number

of training samples is problematic. For fine-tuning, we cut

off the deconvolutional subnetwork, introduce a new fully

connected layer with softmax as a classifier, and fine-tune this
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Fig. 8. Illustration of fine-tuning.

TABLE I

NUMBER OF TRAINING AND TEST SAMPLES USED

IN THE INDIAN PINES DATA SET

new layer with limited labeled training samples, making the

network significantly easier to be trained for the classification

task. Fig. 8 illustrates this process.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Description

1) Indian Pines: This data set was acquired over the

Indian Pines agricultural site in northwestern Indiana. It was

collected with an airborne visible/infrared imaging spec-

trometer (AVIRIS) sensor in June 1992. The AVIRIS sensor

comprises 220 spectral channels ranging from 400 to 2500 nm.

In this data set, 20 bands affected by atmosphere absorption

have been removed, and the remaining 200 spectral bands

are investigated in this paper. The data set consists of

145 × 145 pixels, and the spatial resolution is 20 m/pixel.

The available training samples of this data set cover 16 classes

of interests. Table I provides information about different

classes and their corresponding training and test samples.

2) Pavia University: The second data set was captured by

reflective optics system imaging spectrometer (ROSIS) cov-

ering the Engineering School at the University of Pavia, and

presents nine classes, mostly related to land covers. The image

is of 610 × 340 pixels with a spatial resolution of 1.3 m/pixel

and was collected under the HySens project managed by the

German Aerospace Center. The hyperspectral imagery consists

of 115 spectral channels ranging from 430 to 860 nm. In this

TABLE II

NUMBER OF TRAINING AND TEST SAMPLES USED

IN THE PAVIA UNIVERSITY DATA SET

paper, we made use of 103 spectral channels, after removing

12 noisy bands. Table II provides information about all nine

classes of this data set with their corresponding training and

test samples.

B. General Information

To evaluate the performance of different approaches for

hyperspectral image classification, the following evaluation

criteria are used.

1) Overall Accuracy (OA): This measure represents the

number of samples that are classified correctly, divided

by the number of test samples.

2) Average Accuracy (AA): This index shows the average

value of the classification accuracies of all categories.

3) Kappa Coefficient: This metric is a statistical measure-

ment that provides information regarding the amount

of agreement between the ground truth map and the

final classification map. It is the percentage agreement

corrected by the level of agreement, which could be

expected due to the chance alone. In general, it is

considered to be a more robust index than a simple

percent agreement calculation, since k takes into account

the agreement occurring by chance [1].

In addition, in order to evaluate the significance of the

classification accuracies obtained by different approaches, a

statistical test is conducted. Since the samples that were used

for two different classification approaches are not independent,

we evaluate the significance of two classification results with

McNemar’s test, which is given by [50]

z12 = f12 − f21√
f12 + f21

where fi j is the number of correctly classified samples in clas-

sification i and incorrectly in classification j . McNemar’s test

is based on the standardized normal test statistic and therefore,

the null hypothesis, which is “no significant difference,” is

rejected at the widely used p = 0.05 (|z| > 1.96) level of

significance.

To validate the effectiveness of the proposed network archi-

tecture for the purpose of hyperspectral image classification,

the novel classification method is compared with the most

widely used supervised models, random forest [13], [14] and

SVMs [15], [16]. In addition, in this paper, the experiments
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making use of other supervised deep learning methods such

as 1-D CNN and 2-D CNN are also carried out to verify the

validity of the proposed network. The approaches included in

the comparison are summarized as follows.

1) RF-200: Random forest with 200 trees.

2) SVM-RBF: SVMs with an RBF kernel are implemented

using the libsvm package.1 Furthermore, fivefold cross-

validation is taken into account to tune the hyperplane

parameters.

3) 1-D CNN: The network architecture of the 1-D CNN is

designed as in [51] and includes an input layer, convo-

lutional layer, max-pooling layer, fully connected layer,

and output layer. The number of the convolutional filters

is 20 for all data sets. The length of each convolutional

filter and the pooling size are 11 and 3, respectively.

Moreover, 100 hidden units are contained in the fully

connected layer.

4) 2-D CNN: We follow the architecture of the 2-D CNN as

used in [36]. It contains three convolutional layers that

are equipped with 4 × 4, 5 × 5, and 4 × 4 convolutional

filters, respectively. The convolutional layers—apart

from the last one—are followed by the max-pooling

layers. In addition, the numbers of the convolutional

filters for the convolutional layers are 32, 64, and 128,

respectively.

5) SICNN: An SICNN model solves the curse of dimen-

sionality and the lack of available training samples by

iteratively selecting the most informative bands suitable

for the designed network via FODPSO [19].

6) Initial Conv–Deconv Network: The fully Conv–Deconv

network with the plain convolutional blocks and the

unpooling operation implemented in [44] and [45]

(see Section III-A).

7) Residual Conv–Deconv Network: Our final network

architecture makes use of the residual blocks and a more

accurate unpooling operation. Section III-B shows the

details.

Note that, to make the proposed approach fully comparable

with other supervised classifiers in the literature, we used the

standard sets of training and test samples for the data sets.

The fully Conv–Deconv network was trained using the

Adam algorithm [52], and all the suggested default parameters

were used for all the following experiments. The number

of convolutional filters increases toward deeper layers of the

convolutional subnetworks: 64 for the first residual block,

128 for the following block, and 256 for the last one. This

rule is turned over for the deconvolutional subnetwork. All

the convolutional layers are with ReLU as nonlinear activation

function except the last layer that uses sigmoid activation.

All weight matrices in the network and bias vectors are

initialized with a uniform distribution, and the values of

these weight matrices and bias vectors are initialized in the

range [−0.1, 0.1]. The number of unlabeled data samples used

for training the Conv–Deconv network on both Indian Pines

and Pavia University is 10 000. These unlabeled samples are

randomly selected from the whole images. Prior to training the

1https://www.csie.ntu.edu.tw/ cjlin/libsvm/

Conv–Deconv network, we normalize the hyperspectral data in

the range of 0–1. Then, all the weights can be updated during

the training procedure. Once the training of Conv–Deconv

network is complete, we can start to fine-tune the network

for hyperspectral data classification. We made use of SGD

with a fairly low learning rate of 0.0001 in order to fine-

tune the network. For fine-tuning, in both hyperspectral data

sets, we randomly chose 10% of the training samples as the

validation set. That is, during fine-tuning, we used 90% of the

training samples to learn the parameters and the remaining

10% of the training samples as validation to tune the super-

parameters, such as the numbers of convolutional filters in

the convolutional layers. All test samples are used to evaluate

the final performance of the learned spectral–spatial feature

representations and the fine-tuned network for classification.

The experiments are organized into three parts. The first

part aims primarily at evaluating the learning procedures of the

initial Conv–Deconv network and the residual Conv–Deconv

network. Moreover, the learned feature maps are also shown

and discussed in this part. In the second part, the effectiveness

of the proposed network is compared with other state-of-

the-art models such as random forest, SVM, 1-D CNN, and

2-D CNN. In the last part, we comment on the processing

time.

C. Analysis of the Conv–Deconv Networks

1) Learning Curves: We first investigate the behavior of the

initial Conv–Deconv network and the residual Conv–Deconv

network during the training process, before we present the

performance of the networks for the classification task. The

qualities of the trained networks can be reflected by learning

curves. As shown in Fig. 9, the initial Conv–Deconv network

starts reducing error earlier on both the training samples

and the validation samples but finally reduces the loss to a

relatively high value, which means the learning of the network

is apparently slowed down and the network converges to a

local minimum in the end. In contrast, with residual learning,

the residual Conv–Deconv network shows strong convergence

ability. In particular, the residual Conv–Deconv network can

obtain the training error value of 0.000276 on the Indian

Pines data set after 30 epochs, while the initial Conv–Deconv

network can achieve only 0.0767. For the Pavia University data

set, the residual Conv–Deconv network can quickly converge

to the error of 0.000238 after 30 iterations. In the same con-

dition, the initial Conv–Deconv network can yield only 0.120.

Furthermore, since we do not observe the overfitting problem

in Fig. 9, the trained residual Conv–Deconv network can be

thought as a good model for the follow-up fine-tuning stage.

2) Feature Visualization and Analysis: In order to under-

stand the “black box” of the Conv–Deconv network, we show

and analyze the learned feature maps. Specifically, we use the

Pavia University data set to perform an in-depth study of the

learned feature representation. Note that we do not have any

fully connected layer in the residual Conv–Deconv network,

which allows the trained network to take hyperspectral images

of arbitrary size as input. Fig. 10 shows feature visualizations

from the first residual block of the residual Conv–Deconv
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Fig. 9. Learning curves for the initial Conv–Deconv network and the residual Conv–Deconv network on the training samples and the validation samples
of (a) Indian Pines data set and (b) Pavia University data set. With residual learning and the new unpooling operation, we can lead the network to a better
solution. Here, we use the Adam optimizer with a default learning rate of 0.001.

Fig. 10. Feature visualizations from the first residual block of the residual Conv–Deconv network once training is complete on the Pavia University data
set. Each group contains two feature maps, including (Left) residual feature F(φl ; �l ) and (Right) output feature map φl+1. We randomly demonstrate
20 out of 64 learned feature map groups, revealing different structures that are activated by various convolutional filters.

network once training is complete. Each group in Fig. 10

contains two feature maps, i.e., the residual feature F(φl; �l)

[Fig. 10 (left)] and the output feature φl+1 [Fig. 10 (right)] of

the residual block. We randomly show 20 out of 64 learned

feature map groups, revealing the different structures that

are activated by various convolutional filters. For instance,
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Fig. 11. (a) Eight out of 128 output feature maps of the second residual
block. (b) Twelve out of 256 output feature maps of the third residual block.

in group #47, the visualization of output feature map reveals

that this particular feature focuses on the spectrum of metal

sheets in the scene, while the output feature map in group #52

inhibits the expression of the same class. And, as shown

in group #37, the residual feature tends to activate the

shadow areas in the feature map. Since these feature maps

are produced by the corresponding convolutional filters, it is

believed that the convolutional filters learned by our residual

Conv–Deconv network are capable of extracting some specific

spectral–spatial patterns from different perspectives. We also

show the output feature maps of the second and the third

residual blocks in Fig. 11. It can be seen that the deeper the

residual block is, the more abstract the learned feature maps

will be naturally.

3) Object Detection: A very interesting thing arises when

we analyze the learned feature maps. Although our residual

Conv–Deconv network has not been explicitly designed for the

task of object detection, we have observed strong evidence

of object detection for the hyperspectral image provided by

the network at the test stage. In particular, we found that

target objects can be localized by the activated or suppressed

pixels in some specific learned feature maps of the first

residual block. For example, we can determine the objects

consisted of metal sheets in the Pavia University data set

through finding the hyperspectral pixels that are suppressed by

the convolutional filter #52. Similarly, the vegetation covers,

including meadows and trees, are able to be identified in

Fig. 12. Object detection maps of selective convolutional filters from the
first residual block of the proposed residual Conv–Deconv network, in which
some “neurons” own good description power for semantic visual patterns in
the object level. For example, the feature maps activated by the convolutional
filters #52 and #03 in the first residual block can be used to precisely
capture (a) metal sheets and (b) vegetative covers, respectively. Specifically,
we achieve detection by simply setting a global threshold, which is computed
by minimizing the intraclass variance of the black and white pixels in the
considered feature map [53].

the scene by searching the nonactivated pixels in the output

feature map #03. To qualitatively assess the object detection

results acquired by the proposed approach, examples of such

object detection maps are given in Fig. 12. This visualization

clearly demonstrates that some “neurons” in the first residual

block of the proposed residual Conv–Deconv network know

the locations of the target objects within the hyperspectral

image and own good description power for semantic visual

patterns in the object level. Addressing the detection task

seems within reach. Moreover, it is worth noting that compared

with the conventional supervised object detectors that need a

number of labeled ground truth data, object detection achieved

by this method is free and totally unsupervised. Also, as

shown in Fig. 12, the quality of such object detection maps

is quite good. These maps are with very good edge details,

and even very small objects (e.g., cars on the road in the

Pavia University scene) can be detected. In a nutshell, our

study has shown that the convolutional filters in the proposed

residual Conv–Deconv network for the task of unsupervised

spectral–spatial feature learning possess strong selectiveness

on patterns corresponding to object categories. Particularly,

the feature maps obtained by some specific “neurons” at the

first residual block of the network record the spectral–spatial

representation of visual pattern of a specific object.

D. Fine-Tuned Network for Hyperspectral

Image Classification

To further investigate the spectral-spatial features learned

by the residual Conv–Deconv network, we evaluated the
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Fig. 13. Classification results obtained by different methods for the Indian Pines scene. (a) True-color composite (bands R: 26, G: 14, B: 8). (b) Training
samples. (c) Test samples. (d) RF-200. (e) SVM-RBF. (f) 1-D CNN. (g) 2-D CNN. (h) SICNN. (i) Fine-tuned residual Conv–Deconv network.

performance of the fine-tuned network for the hyperspectral

data classification task and provided a comparison with the

state-of-the-art approaches.

The classification maps of the Indian Pines data set obtained

by the widely used classifiers (e.g., random forest and SVM),

supervised CNNs, and our method are shown in Fig. 13, and

the corresponding accuracy indexes are presented in Table III.

Analysis of the classification accuracy indexes indicates that

the SVM with RBF kernel (SVM-RBF) outperforms the

random forest classifier, mainly because the kernel SVM

generally deals with nonlinear inputs more effectively than

the random forest model. The proposed fine-tuned residual

Conv–Deconv network achieves better scores for OA and

kappa coefficient compared with all other methods. In compar-

ison with SVM-RBF, 1-D CNN, and 2-D CNN, the proposed

network increases the OA by 12.98%, 13.36%, and 15.97%,

respectively. In addition, the numbers of test samples for

different classes of Indian Pines are considerably imbalanced.

Hence, the consideration of the OA alone cannot precisely

evaluate the usefulness of the classifier, since small classes

are commonly ignored. In this case, AA and kappa coefficient

can be used to evaluate the performance of different classi-

fication models more accurately. Strong difference between

the OA and AA or kappa coefficient may means that some

classes are incorrectly classified with a high proportion. With

respect to these two measures, compared with SVM-RBF,

1-D CNN, and 2-D CNN, the improvements in AA achieved

by the proposed network are 9.89%, 12.20%, and 7.58%,

respectively, and the increments of kappa coefficient obtained

by the fine-tuned residual Conv–Deconv Net are 0.1454,

0.1533, and 0.1406, respectively. Note that the OA and kappa

coefficient of 2-D CNN are significantly lower than those of

other approaches, as directly training such 2-D network gen-

erally suffers from a small and imbalanced data set, while the
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TABLE III

ACCURACY COMPARISON FOR THE INDIAN PINES DATA SET. THE BEST ACCURACY IN EACH ROW IS SHOWN IN BOLD

TABLE IV

CLASSIFICATION ACCURACIES OF DIFFERENT TECHNIQUES IN PERCENTAGE FOR PAVIA UNIVERSITY.
THE BEST ACCURACY IN EACH ROW IS SHOWN IN BOLD

proposed strategy, to a large extent, is capable of overcoming

this shortcoming. Moreover, SICNN also performs well on the

Indian Pines data set, since the specially designed mechanism

can effectively solve the curse of dimensionality and the lack

of available training samples. But, it is worth noting that our

method for feature learning is unsupervised, while 1-D CNN,

2-DCNN, and SICNN are supervised networks. Taking this

into account, the performance of our approach is competitive

and satisfactory. The proposed approach achieves the best

accuracies on most of classes of the Indian Pines data set. For

instance, the accuracy of the grass-pasture category obtained

by fine-tuned residual Conv–Deconv network reaches 96.56%,

and the proposed network can achieve 100% on the corn-min

class.

Fig. 14 shows the classification maps using the Pavia

University data set; the comparison of accuracies between

the random forest, SVM-RBF, supervised CNNs, and our

approach can be found in Table IV. It can be seen that

the proposed fine-tuned residual Conv–Deconv network

outperforms the others in terms of OA and kappa coefficient.

Misclassification in this data set lies in similar objects, such as

Meadow-Trees. The proposed network achieves the best AA

of 96.46% on Meadow-Trees. Similarly, the misclassification

problem in the Indian pines data set is also improved. For

example, the AA of Corn-notill, Corn-min, and Corn obtained

by the fine-tuned residual Conv–Deconv network is 96.79%,

which is higher than that of SVM-RBF (82.69%), 1-D CNN

(75.14%), 2-D CNN (89.49%), and SICNN (95.07%).

Furthermore, in Figs. 13 and 14, it is obvious that the spectral

classification methods (random forest, SVM, and 1-D CNN)

always result in noisy scatter points in the classification

maps, while the spectral–spatial approaches (2-D CNN,

SICNN, and fine-tuned residual Conv–Deconv network)

address this problem by eliminating noisy scattered points of

misclassification.

In addition to comparing the proposed approach with the

traditional classifiers (random forest and SVM) and other deep

networks, some mathematical morphology-based methods

like the morphological profile (MP) [54] are also considered

in comparison due to their capacity to extract spatial

features. Fauvel et al. [55] summarized some frequently

used spectral–spatial features. Benediktsson et al. [56]

proposed an extended MP (EMP) using principal component

analysis (PCA) for hyperspectral image classification. The

EMP-PCA [56] is able to achieve the OA of 77.7%, AA of

82.5%, and kappa coefficient of 0.71 on the Pavia University
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Fig. 14. Classification results obtained by different methods for the Pavia
University scene. (a) Composite image of hyperspectral data. (b) Training
data. (c) Ground truth reference. (d) RF-200. (e) SVM-RBF. (f) 1-D CNN.
(g) 2-D CNN. (h) SICNN. (i) Fine-tuned residual Conv–Deconv network.

data set. Fauvel et al. [57] attempted to make use of kernel

PCA to produce EMP, in which state-of-the-art performance

on the Pavia University scene can be obtained with the OA

of 96.3%, AA of 95.7%, and kappa coefficient of 0.95. For

more mathematical morphology-based approaches, please

refer to [55].

Table V gives information about the results of McNemar’s

test to evaluate the significance of the difference between

the classification accuracies of the proposed network and the

other investigated approaches. With reference to Table V, the

improvements of OAs achieved by the proposed methods are

statistically significant in comparison with the other studied

methods. It is worth noting that the SICNN performs simi-

larly to the proposed approach on the Indian Pines data set

TABLE V

ASSESSMENT OF THE SIGNIFICANCE OF THE CLASSIFICATION

ACCURACIES OF THE PROPOSED METHOD COMPARED WITH

THE OTHER INVESTIGATED APPROACHES FOR BOTH THE

INDIAN PINES AND PAVIA UNIVERSITY DATA SETS

TABLE VI

STATISTICS OF TRAINING TIME (MINUTES)

(the value is 1.747), as the SICNN exploits band selection

before feeding the data into the CNN, which greatly reduces

the total number of parameters of the network and thus

improves the accuracy.

E. Processing Time

For both training and testing steps of the residual

Conv–Deconv network and the fine-tuned network, we have

used an NVIDIA GTX Titan GPU. The other approaches,

i.e., random forest, SVM-RBF, and 1-D CNN, are computed

on a CPU with a personal computer equipped with an Intel

Core I5 with 2.20 GHz. The training times of the residual

Conv–Deconv network and the fine-tuned network are shown

in Table VI. With the help of GPU, the training times of the

proposed networks are acceptable.

V. CONCLUSION

In this paper, we proposed a novel end-to-end fully

Conv–Deconv network architecture for unsupervised spectral–

spatial feature extraction of hyperspectral images. In particular,

the proposed network is composed of two parts, namely, the

convolutional subnetwork and deconvolutional subnetwork.

They are responsible for transforming an input 3-D hyperspec-

tral patch to abstract feature representation and reproducing

the initial input data from the encoded feature, respectively.

Furthermore, residual learning and a new unpooling operation

that can make use of max-pooling indexes are introduced to

our network architecture in order to overcome the training

problem caused by vanishing gradient. A very interesting

observation can be found when we analyze the learned feature

maps. Although the proposed network has not been explicitly

designed for the task of object detection, we have observed that

target object can be localized by the activated or suppressed

pixels in some specific learned feature maps of the first resid-

ual block, which makes it possible to achieve the unsupervised

object detection in hyperspectral images. Experimental results

also demonstrate that the features learned by the proposed

unsupervised network can be used for the hyperspectral image

classification task, and the obtained classification results are

competitive compared with the other supervised approaches.

In the future, further experiments and studies will be con-

ducted to fully understand the “block box” of the proposed
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fully Conv–Deconv network with residual learning, providing

more accurate analysis for remote sensing applications such as

unsupervised object detection with the help of learned feature

maps. In addition, the input to the proposed Conv–Deconv

network is the raw hyperspectral data, and a possible future

work is to explore the capability of the proposed approach

using APs and extinction profiles that extract spatial informa-

tion in a robust and adaptive way.
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