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ABSTRACT

The goal of this work is to provide robust and accurate speech de-

tection for automatic speech recognition (ASR) in meeting room

settings. The solution is based on computing long-term modula-

tion spectrum, and examining specific frequency range for dominant

speech components to classify speech and non-speech signals for a

given audio signal. Manually segmented speech segments, short-

term energy, short-term energy and zero-crossing based segmenta-

tion techniques, and a recently proposed Multi Layer Perceptron

(MLP) classifier system are tested for comparison purposes. Speech

recognition evaluations of the segmentation methods are performed

on a standard database and tested in conditions where the signal-to-

noise ratio (SNR) varies considerably, as in the cases of close-talking

headset, lapel, distant microphone array output, and distant micro-

phone. The results reveal that the proposed method is more reliable

and less sensitive to mode of signal acquisition and unforeseen con-

ditions.

Index Terms— Acoustic signal detection, speech recognition

1. INTRODUCTION

Aiming at discriminating speech and non-speech segments from a

given audio signal, speech/non-speech detection (SND) is crucial for

speech signal processing applications. Inaccurate boundaries are an

important cause of errors in automatic speech recognition systems,

and a pre-processing stage that segments the signal into periods of

speech and non-speech is invaluable in improving the recognition

accuracy. An evaluation of an isolated-word recognizer has shown

that more than half of the recognition errors are due to inaccurate

word boundaries [1]. Apart from ASR, a good segmentation of au-

dio stream has many practical applications such as broadcast news

transcription [2], automatic audio indexing and summarization [3],

audio and speaker diarization [4]. Accordingly, segmentation has

to be easily integrated into the systems concerned, but it should not

increase the overall computational load.

One of the issues in the design of a SND system is the selection

of an appropriate feature set that captures the temporal and spectral

structure of the signals. Scheirer and Slaney investigated features

for speech/music discrimination that are closely related to the na-

ture of human speech [5]. The proposed features, including, spec-

tral centroid, spectral flux, zero-crossing rate, 4Hz modulation en-

ergy (related to the syllable rate of speech), and the percentage of

low-energy frames, have been explored in the task of discriminating

speech from various types of music. In [6], entropy and dynamism

features based on posterior probabilities of speech phonetic classes

(as obtained at the output of an HMM/ANN large vocabulary contin-

uous ASR system) are used to form an observation vector sequence,

which is used in a HMM classification framework. Depending on the

process involved, the SND techniques can be divided into two gen-

eral categories: threshold detection process, and pattern-recognition

process. In the threshold detection process, the acoustic features for

each frame of speech signal are extracted and then compared with

preset thresholds to classify each frame. The frame feature parame-

ters include energy, zero-crossings, pitch, entropy, duration, and lin-

ear prediction error energy [7, 5]. In the pattern-recognition process,

the estimates of model parameters for speech and non-speech are re-

quired. The most commonly used features for discriminating speech

from music, and other sound sources are the cepstrum coefficients

such as Mel-frequency cepstral coefficients (MFCCs) and perceptual

linear prediction (PLPs) cepstral coefficients, which are extensively

used in speaker-and speech recognition tasks. Although these signal

representations have been originally designed to model the short-

term spectral information of speech events, they were also success-

fully applied in SND systems in combination with Gaussian Mixture

Models (GMMs) or Hidden Markov Models (HMMs) for separating

different sound sources (broadband speech, telephone speech, music,

noise, silence, etc.) [2, 6]. In the context of conference rooms, com-

bination of energy features generated directly from the signal, and

the acoustic phonetic features derived from observations generated

by ASR acoustic models were used as input to the GMM classifica-

tion framework [8].

The existing methods are limited by two common drawbacks.

On one hand, threshold based detection techniques fail under low

SNR conditions, and on the other hand, pattern-matching techniques

require large training data to train the models and need a prior knowl-

edge of the noise. In this paper, a simple, robust, and accurate al-

gorithm based on modulation spectrum for SND tasks is proposed,

which performs well in low SNR conditions and neither requires

training data nor a prior knowledge of the noise. The special char-

acteristic of long-term modulation spectrum, that speech segment is

dominated by components between 2 and 16 Hz, which reflect syl-

labic and phonetic temporal structure of speech is used [9]. This ap-

proach reduces the computational complexity and time as required

for pattern matching methods. The performance is also close to real-

time, as the decision is made on short-segments of the signal (200

- 1000 ms), rather than over the entire utterance, which is a basic

requirement for conventional threshold detection methods [7, 5].

The paper is organized in four sections: Section 2 gives an overview

of the system setup for the database used for evaluations. Section 3

explains the algorithm design. Section 4 presents experiments and

results. Finally, Section 5 concludes the paper.



2. SYSTEM SETUP

The data used for experiments is recorded in an instrumented meet-

ing room comprising of a microphone array, and headset and lapel

microphones. All the microphones are of high quality electret type.

The sensor configuration is similar to the system presented in [10].

Figure 1.a shows the layout, the positions of the microphone array,

and the typical speaker positions in the meeting room.
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Fig. 1. Schematic diagram of the meeting room. The headset mi-

crophone is close to the mouth of the speaker, the lapel microphone

fixed at the collar of the speaker is about 15 - 20 cm away from the

mouth, and the distant microphone and microphone array are about

90 - 100 cm away from the speaker.

3. ALGORITHM DESIGN

The proposed approach is based on long-term modulations, exam-

ining the slow temporal evolution of the speech energy with time-

windows in the range of 200 - 800 ms, contrary to the conventional

short-term modulations (frequently used in ASR) studied with time-

windows up to 10 - 30 ms which capture rapid changes of the speech

signals. The relative prominence of slow temporal modulations is

different at various frequencies, similar to perceptual ability of hu-

man auditory system. Particularly, most of the useful linguistic in-

formation is in the modulation frequency components from the range

between 2 and 16 Hz, with dominant component at around 4 Hz

[11, 12, 13]. In [12], it has been shown that for some realistic envi-

ronments, the use of components from the range below 2 or above

16 Hz can degrade the recognition accuracy. The proposed algorithm

is based on this particular characteristic of speech, which is used to

classify speech and non-speech signals in order to characterize each

acoustic event. The block diagram of the algorithm is shown in Fig-

ure 2, and is as follows:

For a given 16 kHz sampled signal x(t), the Fast Fourier Trans-

form (FFT) is computed over N points and the segment is shifted

by n ms, resulting in a N

2
dimensional FFT vector. The Mel-scale
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Fig. 2. Block diagram of the speech/non-speech detection algorithm.

transformation is applied to the FFT vector. The logarithmic-like

Mel scale models the non-linear frequency resolution of the human

ear,which is defined by [14]

Mel(f) = 2595 log
10

(1 +
f

700
) (1)

The filters used in Mel-frequency analysis are generally triangu-

lar in shape, and are equally spaced along the Mel-scale. The output

is a Mel-scaled vector consisting of K bands. The computations are

made over all the incoming signal, resulting in a sequence of en-

ergy magnitudes for each band sampled at 1

n
Hz. In each band, the

modulations of the signal are analyzed by computing FFT over the

P points and the segment is shifted by p ms. The result is a se-

quence of P

2
dimensional modulation vectors. The energies for the

frequencies between the 2 - 16 Hz represent important components

for the speech signal. An example of the modulation spectrum of a

audio signal for values K=1, N = 512, P = 100 is shown in Figure

3.b. It can be observed that the speech and non-speech segments are

clearly distinguished by high and low activities in the regions which

correspond to 2 - 16 Hz.

The modulation energy corresponding to 2 - 16 Hz is computed

and normalized with the total modulation energy (1 - 50 Hz), result-

ing in a time sequence s(t) (sampled at 1

n
Hz). This sequence is

smoothed using the moving average method with span of 2P to give

ŝ(t), as shown in Figure 3.c.

The mean T of the ŝ(t) is estimated from few utterances of the

headset evaluation data, which is used for the decision D(t), as de-

fined by

D(t) =

�
0 ŝ(t) < T

1 ŝ(t) ≥ T
(2)
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Fig. 3. (a) Waveform of the given audio signal, and red lines indicate

segmentation boundaries given by D(t) (b) Log modulation spectrum

of speech utterance for K = 1, N = 512, and P = 100. The frequency

range between 2 - 16 Hz illustrate high activity for speech segments

(c) Smoothed normalized energy.

where ŝ(t) is the smoothed version of the normalized energy. This

computation is done for each of the K bands. Finally, a majority

voting is performed (every n ms) to decide the segmentation bound-

aries.

4. EXPERIMENTS AND RESULTS

All the experiments are conducted on a subset of the Multi-Channel

Wall Street Journal Audio-Visual (MC-WSJ-AV) corpus. The spec-

ification and structure of the full corpus are detailed in [15]. A part

of Single speaker stationary data, in which the speaker reads out

sentences from different positions within the meeting room is used.

Most of the data comprised non-native English speakers with differ-

ent speaking styles and accents. The data is divided into develop-

ment (DEV) and evaluation (EVAL) sets with no common speakers

in both the sets.

To compare the efficiency of the proposed algorithm, short-term

energy, short-term energy and zero-crossing based segmentation tech-

niques [7], and a recently proposed MLP based system [16] are eval-

uated . This system relies on a MLP classifier, trained from several

meeting room corpora to identify speech/non-speech segments. The

training is performed with a corpora comprising headset recordings,

which include approximately 112 hours of speech over 150 meet-

ings.

To evaluate the proposed method, the parameters in section 3

are set as follows: N = 512, n = 10, K = 8, P = 100, p=10. The

average energy in the 2-16 Hz for speech is approximately around

40 % of the total energy. The parameters are selected in order to

handle wide variety of modes of speech acquisition in the meeting

room, right from headset which is to close to mouth of the speaker to

distant microphone which is around 100 cm away from the speaker

as shown in Figure 1.

For the speech recognition experiments to evaluate the perfor-

mance of the above mentioned techniques, a full HTK based recog-

nition system [14], trained on the original Wall Street Journal data-

base (WSJCAM0) was used. The training set consisted of 53 male

and 39 female speakers, all with British English accents. The sys-

tem consisted of approximately 11000 tied-state triphones with three

emitting states per triphone and six mixture components per state.

52-element feature vectors were used, comprising of 13 MFCCs (in-

cluding the 0th cepstral coefficient) with their first, second, and third

order derivatives. Cepstral mean normalization is performed on all

the channels. The dictionaries used are generated from that devel-

oped for the Augmented Multi-party Interaction (AMI) project and

used in the evaluations of National Institute of Standards and Tech-

nology rich transcriptions (NIST RT05S) system [17], and the lan-

guage models are the standard MIT-Lincoln Labs 5k and 20k Wall

Street Journal trigram language models. To reduce the channel mis-

match between the training and test conditions, the baseline HMM

models are adapted using a maximum likelihood linear regression

(MLLR) [18]. A static two-pass approach was used, where in the

first pass a global transformation was performed and in the second

pass a set of specific transforms for speech and silence models were

calculated. This was followed by maximum-a-posteriori (MAP)[19]

adaptation, where MLLR transformed means are used as the priors.

For the experiments, 15 minutes of data of seven speakers was used

for adaptation, and 10 minutes data of five speakers for testing.

Table 1. Speech recognition results. The values in the first column

represent baseline WER, obtained from manual segmentation, and

other values are compared with respect to these values.

WER (%)

Signal M E E+ZC MLP MS

Headset 21.3 12.8 6.1 0.6 0.8

Lapel 27.9 11.4 4.8 1.8 0.6

Distant Microphone 38.6 8.0 5.3 7.2 0.4

Beamformer Output 26.8 6.5 4.1 2.4 0.3

Speech recognition experiments on different channels including

headset, lapel, distant microphone and the output of the beamformer

as obtained from [10] are performed to evaluate the performance

of the various techniques. The obtained results are shown in Table

1, where M, E, E+ZC, MLP, MS represent manual, energy, energy

+ zero-crossing, multi layer perceptron, and modulation spectrum

based segmentations, respectively. The values in the first column

represent baseline word error rate, which are obtained from the man-

ual segmentation of the speech data. All the other values are com-

pared with respect to these values. From the Table 1, it is clear that

energy based approach (method E) performs poorly for all the chan-

nels. Adding the zero-crossing feature to energy (method E+ZC)

helps in reducing the WER by about 50 % in all the cases. The



MLP based approach performs close to manual segmentation as it

is trained on headset data of the large corpus [16]. However, the

performance decreases as the same MLP (headset trained) is used

for lapel, distance microphone, and microphone array output for

obvious reasons. From the table, It is also clear that the proposed

modulation spectrum based approach is accurate and close to man-

ual segmentation for all the channels. For reliable and robust per-

formance, training based approaches require large training data to

model prior knowledge of the noise, and the process itself involves

huge amounts of time and computational resources. The other limi-

tation of training based approach is, they are more sensitive to differ-

ent training and unforeseen conditions. For example, in situations,

where the speaker is using white board or moving around, the train-

ing based approaches cannot perform efficiently as the distance be-

tween the microphone and the speaker are not known exactly before

hand. Apart from accuracy and robustness, the proposed approach

provides additional benefits, that it neither requires training data nor

prior knowledge of the noise, and can be used for SND tasks of any

unknown channel and unforeseen conditions, and the performance

is close to real-time as the classification decision is made on short

segments of the signal, rather than over the entire utterance.

5. CONCLUSIONS

This paper has presented a novel algorithm based on modulation

spectrum for speech/non-speech detection. This algorithm has been

compared to manual segmentation, short-term energy, short-term en-

ergy and zero-crossing based segmentation techniques, and a re-

cently proposed MLP classifier trained system. The speech recogni-

tion based evaluations are performed on real data in a meeting room

for stationary speaker for all the methods and varying signal-to-noise

ratios i.e headset, lapel, distant microphone, and beamformer output.

The results illustrate that the proposed simple technique is accurate,

robust, close to real-time, and can be applied for SND tasks for any

mode of speech acquisition and unforeseen conditions. Our study

also raised a number of issues, including the approaches for decision

without using the evaluation data (presently mean of the smoothed

normalized energy is used), and the number of parameters involved

in the method to suit different environments and acquisition chan-

nels. These subjects will be studied in the future.
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