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Structural health monitoring (SHM) is a hot research topic with the main purpose of damage detection in a structure and assessing
its health state. The major focus of SHM studies in recent years has been on developing vibration-based damage detection
algorithms and using machine learning, especially deep learning-based approaches. Most of the deep learning-based methods
proposed for damage detection in civil structures are based on supervised algorithms that require data from the healthy state and
different damaged states of the structure in the training phase. As it is not usually possible to collect data from damaged states of a
large civil structure, using such algorithms for these structures may be impractical. This paper proposes a new unsupervised deep
learning-based method for structural damage detection based on convolutional autoencoders (CAEs). The main objective of the
proposed method is to identify and quantify structural damage using a CAE network that employs raw vibration signals from the
structure and is trained by the signals solely acquired from the healthy state of the structure. The CAE is chosen to take advantage
of high feature extraction capability of convolution layers and at the same time use the advantages of an autoencoder as an
unsupervised algorithm that does not need data from damaged states in the training phase. Applications on the two numerical
models of ITASC-ASCE benchmark structure and a grid structure located at the University of Central Florida, as well as the full-
scale Tianjin Yonghe Bridge, prove the efficiency of the proposed algorithm in assessing the global health state of the structures

and quantifying the damage.

1. Introduction

Civil infrastructures including buildings and bridges are
valuable assets necessary for every society to function well.
They are susceptible to damage due to different factors such
as material aging, environmental corrosion, poor con-
struction quality, or extreme events such as earthquakes [1].
Therefore, these structures need to be checked regularly to
detect damage in the early stage and prevent their propa-
gation through the structure. According to the large size of
civil structures, visual inspection is not an efficient way as it
is time-consuming, laborious, and dependent on the ex-
perience of the inspector. SHM techniques provide a
practical automatic means of detecting, locating, and
quantifying damage in a structure and assessing its health
state under operational conditions. Thus, these techniques

have attracted considerable attention from researchers and
engineers [2].

A major focus of SHM studies in recent years has been
devoted to developing vibration-based monitoring tech-
niques. The idea behind these techniques is that damage-
induced changes in structural properties such as stiffness will
change the measured vibration response of the structure [3].
Machine learning techniques have been extensively used in
vibration-based SHM of engineering structures during the
last two decades, because of their ability to cope with un-
certainty and noise [4]. Among these techniques, feed-
forward artificial neural networks (ANNs) are the most
common ones.

In Yun et al. [5], the joint damage in a steel frame was
estimated using an ANN model and employing modal data
as input. Three techniques were used to improve the
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performance of ANNs: substructural identification, noise
injection learning, and the data perturbation scheme. Lee
et al. [6] presented an ANN-based method for a structural
damage assessment at element level considering the mod-
eling errors in the finite element (FE) model that was used to
generate training samples. The mode shape variations before
and after damage were inputted to the ANNG s as they are less
sensitive to the modeling errors than the mode shapes
themselves. Li et al. [7] proposed a damage identification
method utilizing changes in frequency response functions
(FRFs) and ANNSs. Principal component analysis (PCA)
techniques were employed to extract damage features and
obtain suitable patterns for ANN inputs. Osornio-Rios et al.
[8] used multiple signal classification (MUSIC) fused with
ANN s for damage detection, localization, and quantification
in a truss-type structure. The vibration signals obtained from
the structure were first preprocessed using the MUSIC al-
gorithm and then inputted to an ANN to evaluate the health
state of the structure. Bandara et al. [9] introduced a
structural damage identification procedure by combining
FRFs, ANNs, and PCA. PCA was used to compress the initial
FRF data and transform it into new damage indices. An
ANN was then utilized to locate and quantify the damage.
Another example is the method proposed by Abdeljaber and
Avci [10]. This method uses self-organizing maps to extract
damage indices from the vibration response of the structure.
The damage indices are then processed using an ANN to
conduct damage detection.

Other machine learning techniques such as support
vector machine (SVM) [11-13], fuzzy neural network (FNN)
[14, 15], optimization algorithms such as genetic algorithm
(GA) [16-19], multiverse optimizer (MVO) algorithm [20],
and grey wolf optimization (GWO) algorithm [21] have also
been used in SHM and damage detection of civil structures.

When using traditional machine learning algorithms, the
data samples need to be preprocessed to extract certain
features representing the main characteristics of the data.
The features are then inserted into the algorithm. The ef-
ficiency of these algorithms highly depends on the selection
of extracted features, though it is not a trivial task to choose
the right group of features representing the main properties
of the input data for the machine learning algorithm to
perform well [22]. As a subset of machine learning, deep
learning-based approaches were introduced to address this
problem. Among deep learning-based algorithms, con-
volutional neural networks (CNNs) have recently gained
popularity in damage detection applications due to their
great success in feature extraction and classification taking
raw data as input, which is a result of using convolution
layers. Abdeljaber et al. [23] used one-dimensional (1D)
CNNs to detect loosened bolts in a steel frame. Lin et al. [24]
proposed the use of CNNs for feature extraction and clas-
sification to detect structural damage. Gulgec et al. [25]
designed a CNN topology to classify simulated damaged and
healthy cases and localize the damage. Ma et al. [26] offered a
transfer learning-CNN based on AlexNet for bearing fault
diagnosis in noisy environment. Cofre-Martel et al. [27]
presented a CNN-based approach to localize and quantify
structural damage. Li et al. [28] employed a fully
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convolutional neural network together with a Naive Bayes
data fusion to recognize cracks in concrete bridges. Guo et al.
[29] combined wavelet transform and deformable CNN for
bearing fault diagnosis.

Most of the deep learning-based methods proposed for
SHM purposes are based on supervised learning algorithms.
These algorithms need labeled data from healthy and various
damaged states of the monitored structure which makes
them impractical for civil infrastructures, because data from
different damaged states of these structures are not usually
accessible. Unsupervised deep learning-based approaches
have recently been proposed to overcome this limitation. In
Rafiei and Adeli [30], a deep restricted Boltzmann machine
was used to extract features from a set of preprocessed
signals obtained from the healthy state of a small-scale
reinforced concrete building and another set of preprocessed
signals with unknown health states. Synchrosqueezed
wavelet transform and fast Fourier transform were used to
process raw acceleration signals. The extracted features are
then used to assess the health conditions of the unknown
state. Silva et al. [31] presented a damage detection method
based on deep PCA. This approach was applied on a pro-
gressively damaged prestressed concrete bridge and a three-
span suspension bridge. Hsu et al. [32] trained an autoen-
coder network using natural frequencies extracted from
vibration signals acquired from a dam under different en-
vironmental conditions to continuously monitor the health
state of the dam. Wang and Cha [33] presented an unsu-
pervised deep learning-based method for structural damage
detection which uses a deep autoencoder with a one-class
SVM to detect the presence of damage in civil structures
using data from the healthy state of the structure as training
samples. Ma et al. [34] used variational autoencoders (VAEs)
for damage detection and localization task of a bridge under
a moving vehicle. The presented method did not need the
baseline data; VAE was trained using only data from a
damaged structure.

This paper proposes a new unsupervised deep learning-
based algorithm for structural damage detection based on
CAEs. The main objective of the proposed method, which
makes it different from the current researches, is to identify
and quantify structural damage using raw vibration signals
from the structure and training the CAE network using only
signals acquired from the structure in the healthy state. Also,
unlike the majority of existing methods that use complex
algorithms, the proposed method is simple and easy to
implement reducing the need for experts to interpret the
results. The CAE is chosen to take advantage of high feature
extraction capability of convolution layers and at the same
time use the advantages of an autoencoder as an unsuper-
vised algorithm that does not need data from damaged states
in the training phase and thus can be used for health
monitoring of real-life civil structures. Applications on the
two numerical models of IASC-ASCE benchmark structure
and a grid structure located at the University of Central
Florida, as well as the full-scale Tianjin Yonghe Bridge, prove
the efficiency of the proposed algorithm in assessing the
global health state of the structures and quantifying the
damage.
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The rest of this paper is organized as follows: A brief
overview of autoencoders is presented in Section 2, the
proposed methodology is introduced in Section 3, appli-
cations on the above-mentioned structures and obtained
results are described in Section 4, and finally, the last section
includes concluding remarks regarding this paper.

2. Overview of Autoencoders

An autoencoder is a kind of feed-forward ANN that is
basically used to form useful representations of the input
data by combining their features in nonlinear ways [35]. Like
other neural networks, learning in autoencoders is usually
done using back-propagation and gradient descendant-
based optimizers. Autoencoders are trained in an unsu-
pervised manner and thus do not need damaged samples in
the training phase.

The main objective of most autoencoders is to compress
the data and reduce their dimensionality in a way that only
their main features are preserved (feature extraction).
Compressed data can be analyzed easier and faster and with
less computational burden. Figure 1 shows an example of an
autoencoder network. As can be seen in this figure, an
autoencoder consists of two parts, namely, encoder and
decoder. The encoder part lowers the dimensions of the
input data and outputs their compressed representations,
while the decoder part tries to rebuild the input data from
compressed representations, so the output of an autoen-
coder is supposed to be the same as its input. The size of the
compressed data can be controlled by the number of neu-
rons in the last layer of the encoder.

In order to use the advantages of both autoencoders and
CNNs, CAEs are used in this study, which usually use
convolution and pooling layers to extract the key features of
the input data and compress them (encoding) and decon-
volution and unpooling layers to reconstruct the original
data from the compressed form (decoding) [36]. Figure 2
shows an illustrative example of the structure of a two-di-
mensional (2D) CAE. The CAEs employed in this study are
trained using data from the healthy state of the structure.
After training, the encoder can extract features from a
damaged state that are different from those of the healthy
state of the structure.

3. Methodology

The proposed damage detection methodology contains three
steps: in the first step, the acceleration data from the
structure are preprocessed and made ready to enter the CAE;
then, the network is trained using data from the healthy state
of the structure; at the end, in the third step, the encoder part
of the trained network is used to compress the input data by
extracting their main features and the damage is detected by
comparing the features extracted from a damaged state data
with those extracted from the healthy state data. These steps
are shown in Figure 3 and explained in the following
subsections.

Compressed data

Encoder Decoder

FiGURE 1: An example of an autoencoder network.

3.1. First Step: Preprocessing. In this step, the data from n
accelerometers installed on the structure are concatenated to
form an n-column matrix. Then, the values in this matrix are
normalized between —1 and 1. This matrix is divided into
smaller matrices which can be used as inputs to the network.

3.2. Second Step: Training of the CAEs. In the second step, the
CAE:s are trained using preprocessed healthy data. In this study,
all convolution layers of a CAE use Rectified Linear Unit (ReLU)
activation function, except the last one that uses the Sigmoid
function. Mean Square Error (MSE) is chosen for reconstruction
loss function which is minimized using Adam optimizer.

3.3. Third Step: Data Compression and Damage Detection.
In the last step, the encoder part of the network trained in the
second step is used to compress input matrices into 1D
vectors. Data from healthy and unknown states of the
structure are fed into the CAE separately to form reference
and test vectors, respectively. Every vector V is then con-
verted to a unit vector UV, by dividing its components by its
norm as shown in the following equations:

V ={vy, vy v3. . ) (1)
UV ={v, v vas oo, Vb (2)
where
V, _ Vi
i ‘ (3)

2 2 2
VitV 4+,
The distance between a unit test vector

UU = {u{,uy,u3,...,u,} and a unit reference vector UV,
each of length #, can be calculated using

(4)

As the damage in the structure increases, the vectors
extracted from its acceleration data take distance from the
reference vectors.
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FIGURE 3: Procedure of the proposed damage detection method.

When data from the healthy state of a structure are fed to
a CAE in the form of n 2D matrices, the encoder produces n
1D vectors from them (reference vectors). In the same way,
we will have m 1D vectors for m matrices from an unknown
state of the structure (test vectors). The distances between
each of these m vectors and every one of the reference
vectors are computed and among the n obtained values, the
minimum value is chosen as the final distance of that test
vector from reference vectors. If this distance is greater than
a specific threshold, the related test vector is classified as
damaged. Figure 4 shows the classification process for m = 1.
The damage percentage for an unknown state of a structure
is computed as follows:

number of damaged vectors

x 100.
(5)

For any structure of interest, the aforementioned
threshold is determined in a way that the resulting damage
percentage for the healthy state data is reasonably low.

damage percentage =
m

4. Case Studies and Results

To study the efficiency of the proposed method, it is applied
for damage detection in two numerical models and a real-
world structure. All calculations are implemented in Python

BB i > Reference
—
Al Gy Encoder % vectors ..j;o
state > — 3
g ¢
= 8
1z}
Data from Test =g
the unknown »Encoder—» O
tate vector
s
N i Distance < Select the minimum
orm; threshold distance

Damaged

FiGure 4: Classification of the vector obtained from a 2D matrix
from an unknown state of the structure (m=1).

3.6.9. The damage detection steps for each of the structures
along with the obtained results are discussed in this section.

4.1. Phase 1 IASC-ASCE Benchmark Structure. Phase I SHM
benchmark structure was established by the International
Association for Structural Control (IASC)-American Society
of Civil Engineers (ASCE) Structural Health Monitoring
Task group in order to provide a uniform test case for
validating various structural damage detection techniques.
Simulated acceleration data from an analytical model



Shock and Vibration

developed for this experimental structure, published by this
task group in 2004, were used in this study. The benchmark
frame is a four-story, two-bay by two-bay model structure
built at the University of British Columbia. It has a
2.5mx2.5m plan and is 3.6m tall. Two diagonal braces
were installed on each floor of each exterior face. Figure 5
shows the diagram of this structure. Two FE models were
developed based on this building. The second one, which is
considered in this study, is a 120-degree-of-freedom (DOF)
model. In addition to the healthy state, six damage patterns
were studied for this structure. These patterns are described
in Table 1 and shown graphically in Figure 6 [37].

4.1.1. Preprocessing. In this study, 2 accelerometers per floor
are considered to record acceleration data in y direction at a
sampling frequency of 200 Hz under independent loading in
y direction at each floor. For each state, the data from all 8
sensors are concatenated to form an 8-column matrix. After
normalization, these matrices are divided into smaller
128 x 8 matrices. In the end, the healthy state matrices are
shuffled before being used to train the network.

4.1.2. Training of the CAE. The number of 128 x 8 matrices
from the healthy state data needed in the training stage for
the network to perform well is obtained equal to 2000
through trial and error. The encoder part of the network
used for this structure has two 1D convolution layers, with
filter counts of 4 and 1, filter size of 5, and the same padding.
A 1D max pooling layer with a window size of 4 is used after
each convolution layer. The decoder part uses three 1D
convolution layers with filter counts of 1, 4, and 8, filter size
of 5, and the same padding and 1D upsampling layers with a
window size of 4 after the first two convolution layers.

4.1.3. Data Compression and Damage Detection. The en-
coder part of the CAE trained in the previous step is used to
compress the input data by removing redundant informa-
tion and keeping only the most important features. 1000
matrices from the healthy state data are inputted to the
encoder and outputted in the form of 1D vectors of length 8
which are used as reference vectors. A parametric study is
then performed in order to find the minimum number of
input matrices from an unknown state needed to reach a
suitable damage percentage. Damage detection is carried out
with (a) 50, (b) 100, (c) 200, (d) 300, (e) 400, and (f) 500
input matrices from each state (the healthy state and the six
damaged states). These matrices are fed to the encoder to
obtain test vectors of the same length (length 8). It is worth
mentioning that the healthy state matrices used to gain the
test vectors are different from those employed for training or
acquiring reference vectors.

After the distances are calculated, the mean plus 1.6
standard deviations of the set of distances obtained for
healthy state data is set as the damage threshold. The damage
percentage for each state is calculated by dividing the
number of vectors whose distances are greater than this
threshold by the total number of vectors. The damage

—
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FIGURE 5: Diagram of IASC-ASCE benchmark structure [37].

percentage in the structure under the six damage patterns
and for the healthy state is shown in Table 2 for cases (a) to
(f).

From the table, it is obvious that at least 400 matrices
(case (e)) are needed for appropriate damage detection.
Considering case (e), the damage percentage obtained for
the healthy state is 5.5% which can be neglected. As expected,
the highest damage values belong to patterns (2) and (1),
respectively. The 3rd pattern has a lower damage value
compared to patterns (4) and (5) and finally, the 6th pattern
has the lowest damage percentage as it should be. It can be
seen from the column labeled “case (e)” in Table 2 that the
obtained result for every pattern is in proportion to the
inflicted damage and a higher level of damage results in a
higher damage percentage; this shows the reliability and
efficiency of the proposed method in determining the se-
verity of damage in the structure.

4.2. A Bridge Health Monitoring (BHM) Benchmark Model.
The BHM benchmark model discussed in this paper is a
grid structure located at the University of Central Florida
that was developed to evaluate the reliability of SHM
techniques. Figure 7 shows a scheme of this structure. It
has two 5.49 m (18 ft) girders in longitudinal direction and
seven 1.83m (6ft) transverse beams at 0.91m (3ft)
spacing to provide lateral stability. These members all
have the same cross section of S3 x 5.7. The bridge has also
six 1.07 m (42 in) columns with a W12 X 26 cross section
which are all fixed to the ground. A numerical model was
also developed based on this structure for practitioners to
test their health monitoring methodologies using static or
dynamic tests on this model [38]. Here, we use acceler-
ation data from this numerical model to evaluate the
proposed damage detection methodology. Six damage
patterns were studied for this purpose and six acceler-
ometers were considered to record structural response
under dynamic excitation. Table 3 describes these damage
patterns. Also, the damaged nodes together with con-
sidered sensor placement are shown in Figure 8.
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TaBLE 1: Description of the damage patterns considered for IASC-ASCE benchmark structure [37].

Damage o
patterrg15 Description

1

The braces in the first story have all lost their stiffness.
2 The braces in the first and third stories have all lost their stiffness.
3 The north brace on the west face of the building, located in the first story, has lost its stiffness.
4 The north brace on the west face located in the first story and the west brace on the north face located in the third story
have lost their stiffness.
In addition to damage in pattern (4), the beam-column connection noted in Figure 6 is partially unscrewed and thus can
only transfer forces and does not sustain any bending moments.
The north brace on the west face located in the first story has lost one-third of its stiffness.

[$3]

I\
\

v

\

VAVAVA

FiGUre 6: The six damage patterns considered for the IASC-ASCE benchmark structure [37]: (a) no stiffness in 1st floor braces, (b) no
stiffness in 1st floor braces and no stiffness in 3rd floor braces, (c) no stiffness in one 1st floor brace, (d) no stiffness in one 1st floor brace and

no stiffness in one 3rd floor brace, (e) no stiffness in one 1st floor brace and no stiffness in one 3rd floor brace beam-column connection
weakened, and (f) 2/3 stiffness in one 1st floor brace.

TaBLE 2: Damage percentage in IASC-ASCE benchmark structure under different damage patterns for cases (a) to (f).

Damage percentage (%)
Damage pattern

Case (a) Case (b) Case (c) Case (d) Case (e) Case (f)

Healthy 5 5 4.5 5 55 5.52
1 84 76 79.5 76.6 78.25 78.2
2 90.5 79 86.5 86.2 87.37 86.24
3 30 29 29 28.6 28.42 27.4
4 38.5 28 27 28.54 30.67 29.36
5 27.5 33 33 31.74 34.05 35.16
6

17 14 13 16 17.55 17.16
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FIGURE 7: Scheme of the BHM benchmark structure [38].

TaBLE 3: Damage patterns considered for the BHM benchmark structure [38].

Damage patterns

Description

The connection of the transverse member into node 7 does not sustain the major moment any longer.
In addition to pattern (1), the connection plates at node 7 are removed.
The beam-column connection in node 19 has lost its moment releases and has turned into a fixed connection.
Similar to damage pattern (3) but for nodes 19 and 38.
Reduction of 10% on the spring constant in the springs located at the supports of the bridge.
Reduction of 20% on the spring constant in the springs located at the supports of the bridge.

1
2
3
4
5
6
1 2 3 4 5 6
@ @ o @ @ ® Node 32
Node 19
Node 7
@ Sensors

@ Damaged nodes

F1GURE 8: The sensor placement and the damaged nodes related to
the BHM benchmark structure.

4.2.1. Preprocessing. To record acceleration data, a 10 KN
dynamic load is applied to the model and its response is
recorded by the six sensors at a sampling frequency of
500 Hz. The data from these sensors are concatenated and
then divided into 128 x 6 matrices after normalization. The
healthy state matrices are then shuffled before being used in
the training phase.

4.2.2. Training of the CAE. The CAE developed for this
structure has two 1D convolution layers in the encoder part
with filter counts of 4 and 1, filter size of 4, and the same
padding. Each of these two layers is followed by a 1D max
pooling layer with a window length of 4. The decoder has
three 1D convolution layers with filter counts of 1, 4, and 6,
filter size of 4, and the same padding. An upsampling layer
with a window length of 4 is placed after each one of the first
two convolution layers. The number of matrices from the
healthy state data needed to train this network is determined

by trial and error. 2000 128 x 6 matrices are used for this
purpose.

4.2.3. Data Compression and Damage Detection. 1000 ma-
trices from the healthy state data are fed to the encoder to
form reference vectors of length 8. As with the case of the
IASC-ASCE benchmark structure, a parametric study is
performed at this point to determine the minimum number
of input matrices from an unknown state needed for proper
damage detection. Based on the results, at least 700 matrices
from each state must be employed for this purpose and the
damage detection process is described here accordingly. 700
matrices from the healthy state data that are not used in the
training phase or for extracting reference vectors and 700
matrices from each damaged state data are inputted to the
encoder separately and outputted as test vectors of length 8.
The distances from each test vector to all the reference
vectors are computed and the minimum of the obtained
values is chosen as the final distance. The mean plus 1.4
standard deviations of the set of distances obtained for
healthy state test vectors is chosen as the damage threshold.
The damage percentage in the structure is then calculated
using equation (5).

Table 4 shows the damage percentage in the bridge for
the healthy and the six damaged states. As can be seen in the
table, the amount of damage is 8.82% for the healthy state
which is negligible. Releasing the major moment of a
transverse member in one node increases the value to about
20%. When connection plates in this node are removed as
well, the damage percentage will be increased to about 23%.
In a similar way, when the reduction on the spring constant
goes from 10% in damage pattern (5) to 20% in damage
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TaBLE 4: Damage percentage in the BHM benchmark structure under different damage patterns.

Damage pattern Healthy 1

2 3 4 5 6

Damage percentage (%) 8.82 20.47

23.52 28.6 20.47 21.83 37.76

FiGure 9: Tianjin Yonghe bridge [41].

pattern (6) the amount of damage increases from 21.83% to
37.76%. The stiffness of the structure under damage pattern
(4), in which two columns are fixed to the deck, is more than
that under damage pattern (3), in which only one column is
fixed to the deck; thus, the amount of damage under pattern
(4) is obtained less than that under pattern (3) (20.47% and
28.6%, respectively). Accordingly, even though the CAE is
trained using only the healthy state data, the algorithm can
successfully assign a reasonable damage percentage in all
cases and performs well in damage quantification in the
structure.

4.3. Tianjin Yonghe Bridge. The Tianjin Yonghe Bridge is one
of the oldest cable-stayed bridges constructed in mainland
China (Figure 9). It is composed of a 260 m long main span
and two side spans of length 25.15 + 99.85 m and width 11 m.
It also has two 60.5 m tall towers. After 19 years of operation,
cracks with a maximum size of 2 cm were observed in the
midspan girder, so the bridge was repaired and rehabilitated
in 2007 [39, 40].

During rehabilitation, an SHM system was designed and
installed on the bridge by the Center of Structural Moni-
toring and Control (SMC) at the Harbin Institute of
Technology. In order to record acceleration time series, 14
uniaxial accelerometers were installed on the deck and one
biaxial accelerometer was installed on top of the south tower.
Figure 10 shows the placement of these sensors on the bridge
[40].

In August 2008, the bridge was inspected and two
damage patterns were observed. The side spans were seri-
ously cracked and the piers were damaged causing the
structure to lose a part of its vertical support. During this
period, the installed SHM system recorded acceleration data
from the healthy to the very damaged state [42].

4.3.1. Preprocessing. In this study, the data from the sensors
embedded downstream of the deck (7 sensors), recorded on
January 17, February 3, March 19, May 5, May 18, June 7,
and June 16, are used to validate the proposed SHM method.
The data recorded on January 17 2008 are considered as
healthy state data; afterward, the amount of damage grad-
ually increases. For each day, the sensors have recorded the
data for 24 hours with a sampling frequency of 100 Hz;

therefore, a total of 864 x 10* samples are available for each
sensor on each day. Figure 11 shows an example of the
recorded data on January 17 and June 16. 360 x 10* of the
samples are used to form a 3600000 x 7 matrix which is then
normalized and divided into 128 x7 matrices. These ma-
trices are then shuffled before being fed to the CAE.

4.3.2. Training of the CAE. 1000 128 x 7 matrices from the
data recorded on January 17 (the healthy state data) are used
to train the CAE (the number of matrices needed at this stage
is obtained by trial and error). The encoder part of the CAE
used for this structure has three 1D convolution layers with
filter counts of 64, 64, and 1, filter length of 16, and the same
padding. A 1D max pooling layer is placed after each one of
these convolution layers. The window length of these max
pooling layers is 4, 2, and 2, respectively. The decoder has
four 1D convolution layers with filter counts of 1, 64, 64, and
7, filter length of 16, and the same padding. The first three
convolution layers are followed by a 1D upsampling layer.
The window length in these upsampling layers is equal to 2,
2, and 4, respectively.

4.3.3. Data Compression and Damage Detection. 1000
128 x 7 matrices from the healthy state data are fed to the
encoder part of the CAE trained in the second step to obtain
1000 vectors of length 8 (reference vectors). In addition, 600
other healthy matrices that are not used in the training phase
and 600 matrices from the data recorded on the rest of the
days are inputted to the encoder part to extract test vectors
(the minimum number of matrices from each state needed
to extract test vectors is identified in a parametric study, like
in the case of TASC-ASCE benchmark structure). The
minimum of the distances from each test vector to the
reference vectors is considered as the final distance between
that test vector and reference vectors. The mean plus 1.6
standard deviations of the set of distances obtained for
healthy state test vectors is chosen as the damage threshold.
The amount of damage on each of the considered days is
then computed using equation (5). Table 5 shows the results
of this computation. As can be seen, the amount of damage
on January 17 and February 3 is 5.9% and 6.95%, respec-
tively, which is a low and negligible amount. However, the
damage percentage gradually increases until it reaches
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TaBLE 5: Damage percentage in Tianjin Yonghe Bridge on the seven considered days.
Date Jan. 17 Feb. 3 Mar. 19 May. 5 May. 18 Jun. 7 Jun. 16
Damage percentage (%) 5.9 6.95 16.12 29.24 36.56 40.3 46.34

46.34% on June 16. According to Table 5, the obtained
results are consistent with the expected overall condition of
the bridge knowing that the damage is propagating through
the structure which proves the success of the proposed al-
gorithm in damage quantification in this bridge as a real-life
structure.

5. Conclusions

In this paper, a new unsupervised deep-learning-based
method was proposed to detect structural damage. The
objective was to provide a practical way for global health
monitoring of civil structures using raw acceleration data.
CAEs with simple structures were used for this purpose. The
proposed method was validated through applications on

numerical models of IASC-ASCE benchmark structure and
a BHM benchmark model and also on the full-scale Tianjin
Yonghe Bridge.

The CAEs were trained using only healthy state data; no
information from the damaged states is needed during the
training phase. After training, the encoder part is used for
data compression and damage detection is done by simply
comparing the compressed data from a damaged state with
the compressed data from the healthy state. Applications on
the three above-mentioned structures show that the pro-
posed method can successfully detect and quantify damage
in all damage scenarios considered for the structures. The
CAEs used here have a simple structure and provide an
optimal way for realizing the severity of damage in civil
structures, which proves that using complex machine



10

learning-based algorithms is not necessary for the purposes
of this paper.
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