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ABSTRACT
This paper proposes a new framework to formulate summa-
rization of rushes video as an unsupervised learning prob-
lem. We pose the problem of video summarization as one
of time-series clustering, and proposed Constrained Aligned
Cluster Analysis (CACA). CACA combines kernel k-means,
Dynamic Time Alignment Kernel (DTAK), and unlike pre-
vious work, CACA jointly optimizes video segmentation and
shot clustering. CACA is efficiently solved via dynamic pro-
gramming. Experimental results on the TRECVID 2007
and 2008 BBC rushes video summarization databases vali-
date the accuracy and effectiveness of CACA.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Video analysis; H.3.1 [Information Storage
and Retrieval]: Content Analysis and Indexing—Abstract-
ing methods; H.5.1 [Information Interfaces and Presen-
tation]: Multimedia Information Systems—Video

General Terms
Algorithms, Experimentation

Keywords
Constrained aligned cluster analysis, dynamic program-
ming, dynamic time alignment kernel, unsupervised learn-
ing, rushes video summarization, TRECVID

1. INTRODUCTION
The aim of rushes video summarization [5, 6] is to sum-

marize a film as a professional film cutter would do using the
raw footage. Compared with traditional method for video
summarization [2, 4], rushes video summarization [5, 6, 7]
has some important difference due to the structural charac-
teristics of rushes videos. Rushes are the unorganized raw
footages with considerable junk clips (such as color bars and
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Figure 1: Flowchart of the proposed framework.

monochrome frames) and redundant information (such as
retakes of the same shot). To produce a compact and in-
formative summary of the rushes video, the junk clips and
redundant information should be detected and discarded.

Generally, the procedure of rushes video summarization
can be divided into four steps: video segmentation, shot
clustering, redundant information and junk clip removal,
and final summary generation (shown as four solid line boxes
in Figure 1) [5, 6]. Among these four steps, video segmen-
tation and shot clustering are of great importance since ac-
curate segmentation and clustering can reflect the semantic
meaning of video sequences and thus essentially improve the
performance of further processing. However, previous work
treat these two steps independently, which might result in
unsatisfactory results due to the hard decision of the segmen-
tation process. In this paper, we present an unsupervised
framework for joint video segmentation and shot clustering
( see step 1, i.e., the dotted line box in Figure 1), called Con-
strained Aligned Clustering Analysis (CACA). CACA finds
the optimal segmentation and shot clustering using dynamic
programming in polynomial time. After video segmentation
and shot clustering, we detect and remove the redundant in-
formation as well as junk clips (step 2). Finally, we generate
the summary (step 3). Figure 1 describes the flowchart of
proposed framework.

2. PROPOSED FRAMEWORK
This section proposes the new framework for rushes video

summarization. Section 2.1 introduces the unified procedure
for video segmentation and shot clustering. Section 2.2 de-
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scribes the detection and removal of redundant information
as well as junk clips. Section 2.3 presents the generation of
the final summary.

2.1 Video Segmentation and Shot Clustering
Given a video sequence, we first extract the local color

histogram as the feature for each frame. Each video frame
is divided into 16 (= 4 × 4) subimages with the same size.
For each sub-image, 16 bins’ color histogram on HSV color
space is extracted according to MPEG-7 [3]. Therefore, each
frame is represented as a 256-dimensional feature vector.

2.1.1 Similarity Measure of Video Sequences
In order to segment and cluster video sequences, we need

to define a distance metric to measure the similarity between
video sequences with different lengths. To align time series,
a frequent approach is Dynamic Time Warping (DTW). A
known drawback of using DTW as a distance metric is that it
fails to satisfy the triangle inequality. To address this issue,
Shimodaira et al. [8] proposed Dynamic Time Alignment
Kernel (DTAK).

Given two video sequences X = [x1, ...,xnx ] ∈ R
d×nx and

Y = [y1, ...,yny
] ∈ R

d×ny (d is the feature dimension of
the video frame, nx and ny are the frame numbers of video
sequences X and Y, respectively), DTAK is defined as:

τ(X,Y) =
unxny

nx + ny
(1)

where uij = max{ui−1,j + κij , ui−1,j−1 + 2κij , ui,j−1 + κij},
and κij = φ(xi)

Tφ(yj) is the kernel similarity between two
frames xi and yj , which composes the similarity matrix K ∈
R

nx×ny . The DTAK is constructed in a recursive manner.
The cumulative similarity matrix U ∈ R

nx×ny is initialized
at the upper-left, i.e., u11 = 2κ11.

Figure 2 illustrates the procedure of constructing U for
two video sequences based on the similarity matrix K. Fig-
ure 2(a) shows two video sequences and the alignment result
on two-dimensional PCA subspace. In this example, x1 and
y1 are aligned; x2 and y2 are aligned; x3 is aligned with
both y3 and y4; finally, x4 is aligned with y5. Figure 2(b)
is the similarity matrix K of these two video sequences, in
which the frame similarity is calculated by the RBF kernel.
Figure 2(c) is the cumulative similarity matrix. The final
value of DTAK, τ(X,Y) = 6.5

9
, is computed by normalizing

the bottom-right of cumulative similarity matrix with the
sum of sequence lengths.

2.1.2 Video Segmentation and Shot Clustering
In this section, we propose Constrained Aligned Cluster

Analysis (CACA) an extension of Aligned Cluster Analy-
sis (ACA) [9], for video segmentation and shot clustering.
Given a video sequence X = [x1, ...,xn] ∈ R

d×n with n
frames, we aim to decompose X into m disjointed segments,
each of which belongs to one of k clusters. The ith seg-
ment Yi = X[si,si+1) = [xsi , ...,xsi+1−1]. The length of Yi,
ni = si+1 − si, is constraint as ni ∈ [1, nmax]. An indicator
matrix G ∈ {0, 1}k×m is used to assign each segment to a
cluster: gci = 1 if Yi belongs to cluster c, otherwise gci = 0.
The objective function of CACA can be written as:

Jcaca(G, s) = (1−λ)

k∑
c=1

m∑
i=1

gcidist
2
ψ(Yi, zc)+λ

m∑
i=2

bsi (2)

where s ∈ R
(m+1)×1 is the vector that contains the start and

end of each segment. dist2ψ(Yi, zc) is the squared distance

Figure 2: Dynamic time alignment kernel (DTAK)
as similarity measure for two video sequences. (a)
Projection of the video into the the first two princi-
pal components. Dotted lines denote the final align-
ment of frames. (b) Similarity matrix K. (c) Cumu-
lative similarity matrix U.

between the ith segment and the center of cluster c in the
feature space defined by the implicit mapping ψ(·), i.e.,

dist2ψ(Yi, zc) = τii − 2

mc

m∑
j=1

gcjτij +
1

m2
c

m∑
j1,j2=1

gcj1gcj2τj1j2

(3)
where mc =

∑m
j=1 gcj is the number of segments that be-

long to cluster c. The dynamic kernel function τ is defined
as τij = ψ(Yi)

Tψ(Yj). CACA extends ACA [9] by adding
a regularization term b = [b1, ..., bn]T to further improve
the segmentation performance, where bsi penalizes the seg-
mentation between (si − 1)th and sth

i frames. λ ∈ [0, 1]
is a trade-off parameter to balance the within-cluster error
dist2ψ(Yi, zc) and the boundary error bsi .

2.1.3 Dynamic Programming for CACA
As in the case of ACA [9], we use a coordinate-descent

algorithm to minimize CACA:

G, s = argmin
G,s

(1−λ)

k∑
c=1

m∑
i=1

gcidist
2
ψ(Yi, żc)+λ

m∑
i=1

bsi (4)

where żc is the cluster center computed from the segmen-
tation (Ġ, ṡ) obtained in the previous step. Given a video
sequence X of length n, however, the number of all possible
segmentations is O(2n), which makes a brute-force search
infeasible. In this subsection, we present a dynamic pro-
gramming (DP) based algorithm to find the optimal solution
in polynomial time. First we rewrite (2) as follows:

Jcaca(G, s) = (1 − λ)

m∑
i=1

dist2ψ(Yi, zc∗i ) + λ

m∑
i=1

bsi (5)

where c∗i denotes the label of the closest cluster for segment
Yi, i.e., gc∗i i = 1. Observe that G is determined once s is
known. To further leverage the relationship between G and
s, we introduce an auxiliary function J : [1, n] → R,

J(v) = min
G,s

Jcaca(G, s)|X[1,v] (6)

to relate the minimum energy directly with the tail position
v of the subsequence [x1, ...,xv]. Actually, J satisfies the
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principle of optimality [1], i.e.,

J(v) = min
1<i�v

(
J(i− 1) + min

G,s
Jcaca(G, s)|X[i,v])

)
(7)

which implies that the optimal decomposition of the subse-
quence X[1,v] is achieved only when the segmentations on
both X[1,i−1] and X[i,v] are optimal and their sum is min-
imal. Although the number of possible ways to decompose
sequence X is exponential in n, DP [1] offers an efficient way
to minimize J by using Bellman’s equation:

J(v) = min
v−nmax<i�v

(
J(i− 1) + λbi

+ (1 − λ) min
g

k∑
c=1

gcdist
2
ψ(X[i,v], żc)

)
(8)

where dist2ψ(X[i,v], żc) is the squared distance between seg-
ment X[i,v] and the center of cluster c. When v = n, J(n)
is the optimal cost of the segmentation that we seek. The
inner values, i∗v,g

∗
v = argmini,g J(v), are the head position

and label for the last segmentation respectively that lead
to the minima. We repeat the following forward-backward
steps alternately until J(n) converges:

Forward step: Scan from the beginning (v = 1) of the
sequence to its end (v = n). For each v, J(v) is computed
according to (8), as well as i∗v and g∗

v.
Backward step: Trace back from the end of sequence

(v = n). Cut off the segment whose head s = i∗v. The in-
dicator vector g = g∗

v can be indexed from the stored posi-
tions. Repeat this operation on the left part of the sequence
(v = i∗v − 1).

The computational cost of DP based search isO(n2nmaxt),
where t is the number of iterations.

2.2 Redundant Information and Junk Clip
Removal

To exclude the redundant information, we select only the
longest shot from each cluster. To remove junk clips, we use
the mean value of gradients in the vertical direction (on gray
scale) as the feature to distinguish junk frames from normal
frames:

Fvg =
1

W × (H − 1)

W∑
i=1

H−1∑
j=1

|I(i, j + 1) − I(i, j)| (9)

where I(i, j) is the gray level pixel value at location (i, j). W
and H are the width and height of the frame, respectively.

We define a threshold Fth. If Fvg > Fth, the correspond-
ing frame is regarded as a normal frame; otherwise it is
regarded as a junk frame. For each selected shot, we uni-
formly sample ns frames (if the total frame number of the
shot is less than ns, we regard this shot as a junk clip since
it is too short to include any useful information). If

nju

ns
> ε,

i.e., the ratio of the number of junk frames to the number
of sample frames is larger than a predefined value ε, the
shot is regarded as a junk clip and then removed. In our
experiment, we set Fth = 1, ns = 10, and ε = 0.5.

2.3 Final Summary Generation
After redundant information and junk clip removal, the

remaining shots are representative and informative. We gen-
erate the final summary based on the extension of keyframes
of these remaining shots. To extract keyframes, we need to
calculate how many keyframes we can have in final summary.

According to the requirement of rushes summarization
task in TRECVID 2008, the total length of each summary
should not be longer than 2% of the original full video.
Note that the requirement of rushes summarization task in
TRECVID 2007 is slightly different: the total length of each
summary should not be longer than 4% of the original full
video. In our framework, we follow the stricter requirement
in TRECVID 2008. Furthermore, in our framework, we ex-
tend each keyframe to a one-second clip (25 frames). There-
fore, the maximum number of keyframes that we can have
in the summary is: nkf = [ntotal×2%

25
], where ntotal is the

total frame number of original rushes video and [·] denotes
the rounding operation.

In this paper, we use two methods to extract keyframes.
The first method is uniform sampling, i.e., nkf keyframes
are uniformly extracted from the remaining shots to gen-
erate the final summary. The second method is k-means
clustering. We cluster all frames of the remaining shots into
nkf groups, and then select the frame closest to each group
center as the keyframe. When we get these keyframes, we
can generate the final summary by extending each keyframe
to a one-second clip and concatenating them orderly.

3. EXPERIMENTS
This section evaluates the performance of proposed frame-

work using the test datasets from TRECVID 2007 and 2008
BBC rushes video summarization tasks [5, 6]. These two
datasets include about 40 hours’ rushes videos provided by
BBC Archive. The videos are in MPEG-1 format with
352 × 288 resolution and the frame rate is 25 fps. First
we test the segmentation and clustering performance of pro-
posed framework on a short video and give detailed analysis.
Then we report the statistical results of rushes summariza-
tion on TRECVID 2007 and 2008 test datasets. In our ex-
periments, we use the RBF kernel in DTAK, and σ is set
as the average Euclidean distance between all data points
and their 10% closest neighbors (Here each point is a 256-
dimensional feature vector introduced in Section 2.1).

3.1 Segmentation and Clustering
In the first experiment, we tested CACA’s performance

to segment and cluster a short video from the BBC rushes
video MRS148090 of TRECVID 2008. This video lasts three
minutes and nine seconds (4732 frames). It includes 5 dif-
ferent scenes (as shown in Figure 3(a)) and 11 shots. The
first shot belongs to scene 1; the second to fifth shots belong
to scene 2; the sixth to eighth shots belong to scene 3; the
ninth and tenth shots belong to scene 4; and the last shot
belongs to scene 5. For this video, we uniformly sampled the
frames at a rate of 1

5
, and set k = 5 and nmax = 105. Figure

3(b) shows the similarity matrix as well as the segmentation
positions obtained by CACA with λ = 0.2. Different scenes
and shots are clearly represented by big and small squares,
respectively (pure white point denotes the value 1, which
means that the two frames are totally the same; while pure
black point denotes the value 0, which means the two frames
are totally different). Figure 3(c) shows the segmentation
and clustering results of proposed framework with different
values of λ, as well as the ground truth provided by human
(same color denotes same cluster). If we set λ = 0, i.e., ig-
nore the regularization term

∑m
i=2 bsi , the clustering result

is approximately correct but boundaries are not very pre-
cise. When λ is increased to balance both terms in (2), the
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Figure 3: Segmentation and clustering results of
proposed framework on a 4732-frame video from
TRECVID 2008 BBC rushes.

results become more accurate. Specifically, if we set λ = 0.1
or λ = 0.2, the segmentation and clustering results of CACA
are the same as ground truth provided by human.

In our case, we computed the boundary costs b ∈ R
n×1 as

bi =
∑i−1

i1=i−nb

∑i+nb−1
i2=i κi1i2 , which measures the similarity

between the sequences [xi−nb , ...,xi−1] and [xi, ...,xi+nb−1].
In this paper, we set nb = 10. By comparing the ground
truth and the values of costs b in Figure 3(c), we can observe
that by setting to a small value b the correct segmentation
is found, outperforming ACA.

3.2 Rushes Video Summarization
In the second experiment, we reported CACA’s qualita-

tive results on the TRECVID 2007 and 2008 BBC rushes
datasets. There were a total of eight evaluation criteria for
the summarization tasks [5, 6]. In this paper, we use the
following four to evaluate performance: DU - duration of
the summary (secs.); IN - fraction of inclusions found in the
summary (0 - 1); JU - Summary contained lots of junk: 1
strongly agree - 5 (best) strongly disagree; RE - Summary
contained lots of duplicate video: 1 strongly agree - 5 (best)
strongly disagree. For DU, the lower the score is, the bet-
ter the performance is. For IN, JU, and RE, the higher the
scores are, the better the performance is. In this experiment,
we set k = 30, nmax = 50, and λ = 0.2.

Table 1 and 2 list CACA’s results as well as the mean and
median results of all participants’ submissions in TRECVID
2007 and 2008, respectively. Even though we use very simple
methods to remove useless information and generate final
summary, due to the effectiveness of the proposed framework
in jointly optimizing video segmentation and shot clustering,
the results are promising.

Note that the best summarization results reported in [5,
6] are slightly better than the results of proposed algorithm.
However, it is worth pointing out that our framework uses
very simple algorithms for redundant information removal
and final summarization. In the future, we plan to consider
more complicated steps to further improve the performance.

4. CONCLUSION AND FUTURE WORKS
In this paper, we present a new framework for rushes video

Table 1: Summarization performance on TRECVID
2007 rushes summarization task.

Criteria DU IN JU RE
Mean of 22 research groups 50.54 0.49 - 3.65
Median of 22 research groups 50.64 0.51 - 3.69
Proposed - uniform sampling 25.60 0.59 3.55 3.53
Proposed - k-means 26.17 0.63 3.58 3.57

Table 2: Summarization performance on TRECVID
2008 rushes summarization task.

Criteria DU IN JU RE
Mean of 31 research groups 27.10 0.44 3.16 3.27
Median of 31 research groups 28.11 0.45 3.11 3.37
Proposed - uniform sampling 26.15 0.62 3.56 3.53
Proposed - k-means 26.41 0.67 3.54 3.59

summarization. We propose CACA, an extension of ACA
that allows joint segmentation and shot clustering. The uni-
fication of video segmentation and shot clustering not only
reduces cumulative errors of these two tasks, but also takes
into account the close relationship between them, which fur-
ther improves the summarization performance. CACA is
solved in polynomial time with Dynamic programming. Al-
though we have illustrated the benefits of CACA in the sum-
marization of rushes video, our approach is more general and
it can be viewed as a general framework useful for other un-
supervised clustering and segmentation video segmentation
problems.
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