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Unsupervised t-Distributed Video Hashing

and its Deep Hashing Extension
Yanbin Hao, Tingting Mu, Member, IEEE, John Y. Goulermas, Senior Member, IEEE, Jianguo Jiang, Richang

Hong, Member, IEEE, and Meng Wang, Member, IEEE,

Abstract—In this work, a novel unsupervised hashing algorith-
m, referred to as t-USMVH, and its extension to unsupervised
deep hashing, referred to as t-UDH, are proposed to support
large-scale video-to-video retrieval. To improve robustness of
the unsupervised learning, t-USMVH combines multiple types of
feature representations and effectively fuses them by examining a
continuous relevance score based on a Gaussian estimation over
pairwise distances, and also a discrete neighbor score based on
the cardinality of reciprocal neighbors. To reduce sensitivity to
scale changes for mapping objects that are far apart from each
other, Student t-distribution is used to estimate the similarity
between the relaxed hash code vectors for keyframes. This
results in more accurate preservation of the desired unsupervised
similarity structure in the hash code space. By adapting the
corresponding optimization objective and constructing the hash
mapping function via a deep neural network, we develop a robust
unsupervised training strategy for a deep hashing network. The
efficiency and effectiveness of the proposed methods are evaluated
on two public video collections via comparisons against multiple
classical and state-of-the-art methods.

Index Terms—Video retrieval, hashing, deep neural net-
work, multi-view learning, unsupervised learning, Student t-
distribution.

I. INTRODUCTION

BOOSTED by the continuous development of internet

technology and the popularity of digital products, video-

related online activities, such as downloading, uploading,

viewing and modifying, have gained significant increase of

attention in the recent years [1]. This has resulted in a

substantial amount of web video (or segment) data [2],

and a high demand of content-based video retrieval that

supports applications, such as near-duplicate video retrieval

(NDVR) [3], [4], copy detection [5], video classification [6]

and recommendation [7]. In general, a content-based video-

to-video retrieval task follows a three-step procedure: (1)

representation of a video by a sequence of frames, referred

to as keyframes, extracted by uniform sampling [8] or shot-

based methods [9]; (2) generation of video representation, e.g.,

content characterization of video keyframes (or segments); and

(3) computation of similarities between the query video and
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the database videos based on the generated representations.

Successful retrieval relies on the computation of a robust

similarity score between videos. Therefore, it is essential to

construct satisfactory video representations that characterize

and quantify visual information in videos [10].

High retrieval accuracy is the principal priority of research

in the field. Work on feature engineering aims at improving

the retrieval performance by constructing high-quality video

representations based on image/video domain knowledge. For

instance, global signature features [11], [12] are advanta-

geous for fast NDVR, but fail to represent longer and more

complex videos than the near-duplicate ones. Optical flow

[13] and dense trajectories [14] utilize local keypoints of

keyframes to capture video motion information, and achieve

good performance in action recognition. However, they are

time-consuming approaches not capable of processing videos

with complex scenes. To improve video representation, multi-

view techniques have been developed. These capture video

characteristics by mixing multiple feature types and analyzing

connections from multiple perceptions [15]–[17]. In the recent

years, deep learning has become the most effective technique

for learning visual representations directly from pixels/voxels

of images/videos. This paradigm offers substantial gain and

performance improvement over traditional manual feature en-

gineering in image/video classification and visual recognition

[18]–[21]. Most state-of-the-art deep leaning systems are

supervised, and although they offer excellent performance,

they require tens of millions of labeled training instances.

The performance of unsupervised deep learning systems is

unfortunately not as successful as the supervised ones [21].

For example, the unsupervised training of a convolutional

neural network (CNN) results in a significant performance

drop compared to one with supervised training (e.g., AlexNet),

both in terms of rate for the nearest neighbor retrieval task on

the VOC 2012 dataset and classification accuracy for the scene

classification task using the MIT Indoor set [21].

To support large-scale retrieval, another concern is the

matching speed based on the learned video (or image) repre-

sentation [1], [22], [23]. Currently, hashing is one of the most

commonly used techniques that offers not only high retrieval

speed, but also significantly reduced memory volume for

storing videos (or images) [15], [24], [25]. Connecting it with

representation learning, hashing can actually be deemed to be

a binary representation learning approach that characterizes

objects with binary codes.

To consider the issues of unsupervised deep learning and

to facilitate large-scale retrieval, our work focuses on the
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development of a robust unsupervised method for hash code

learning, and its adaptation to a neural network to further

improve unsupervised deep hashing. Building upon our previ-

ous work on multi-view hashing (SMVH) [26], we propose

an unsupervised mechanism for constructing a composite

similarity structure between keyframes supported by different

types of feature representations. To capture the unsupervised

similarity information more accurately, we take into account

both the continuous relevance estimation based on a Gaussian

distribution over pairwise distances and also the discrete neigh-

bor relationships by examining the cardinality of the reciprocal

neighbors. To preserve better the desired similarity structure in

the hash code space, we propose to use Student t-distribution to

estimate the similarity between the relaxed hash code vectors

of the keyframes. This distribution imposes an inverse square

law, which is beneficial with respect to large distances and

noise effects from distant objects. By using a neural network

to construct the hash mapping function, the model weight

parameters can be optimized based on the composite Kullback-

Leibler (KL) divergence computed between the desired unsu-

pervised similarity structure and the computed hashing-based

one. This provides a robust unsupervised training method

for deep hashing models. Compared to the state-of-the-art

hashing methods in [15], [26], the proposed one is also easier

to optimize, since the utilization of the t-distribution in the

construction of the probabilistic model simplifies the gradients

of the cost function. The performance of the proposed method

is demonstrated with benchmark evaluations and comparisons

with state-of-the-art techniques.

The remaining of this paper is organized as follows. Section

II briefly reviews related works. Section III outlines SMVH

[26] which is the starting point of the current work. Section

IV explains the proposed work on unsupervised similarity

construction, t-distributed matching and the unsupervised deep

hashing extension. In Section V the performance of the pro-

posed methods is evaluated in terms of retrieval accuracy and

efficiency, while Section VI concludes the presentation.

II. RELATED WORK

A. Indexing Techniques

Video indexing studies mechanisms that represent video

content in symbolic descriptions that allow search to be con-

ducted by matching user queries. Sophisticated video indexing

techniques have been developed to accelerate the search speed,

such as tree-based [8], [27] and hashing [15], [26], [28]. Tree-

based indexing partitions the video/image representation space

from coarse to fine and forms a hierarchical tree structure

[29]. One example work is [8] which presents a hierarchical

filter-and-refine framework for video copy detection and copy

segment localization. It first constructs a pattern-based index

tree using symbol encoding as a filter, and then designs a

pattern-based dynamic programming algorithm to re-rank the

retrieved videos and to localize the copy segments. Another

example work is [27] which proposes a two-level filtration

approach using an adaptive vocabulary tree to index all the

frame-level descriptors. Subsequently, it performs an edit-

distance-based pairwise matching to detect video copies.

Hashing is used to encode an object (e.g., a video, an

image, or a document) into a fixed-length binary string through

a mapping strategy. Its advantages in retrieval include both

fast distance computation and reduced memory costs. Ex-

ample works include the locality sensitive hashing (LSH)

[30], spectral hashing (SPH) [31] and the self-taught hashing

(STH) [32]. These map a real-valued feature vector to a

short binary string using random projections or binarizations

of eigenvectors of the neighborhood graph constructed using

object features. There are also non-spectral works, such as the

supervised kNN hashing (kNNH) [33] and inductive manifold

hashing (IMH) [34], [35] with both unsupervised and super-

vised versions. Their underlying optimizations are formulated

via KL divergence. To improve the hashing performance,

multi-view hashing techniques have also been developed to

learn compact and efficient binary hash codes from a mixture

of multiple feature views [15], [26], [36], [37]. Examples

of unsupervised works relying on multi-view information,

include the multiple feature hashing (MFH) [15], which learns

hash codes for videos by manually weighting the importance

of different types of feature sources, and also the multi-view

alignment hashing (MAH) [36], which fuses the alignment

representations from multiple sources while preserving the

joint distributions. To enhance learning by incorporating label

information, semi-supervised multi-view discrete hashing (SS-

MDH) [38] optimizes a composite objective function designed

to serve multiple goals for pattern extraction.

Recently, there has been a boost in the development of deep

hashing techniques. Deep neural networks (e.g., CNNs) are

employed to learn binary representations for objects of interest

through an appropriately selected activation function, such as

a rectification linear or sign one [39]–[45]. Most of the state-

of-the-art deep hashing approaches are CNN based, and can

jointly generate feature representations and hash mappings.

Training of these networks is usually supervised and relies

on examples with known labels. They construct the training

objective functions based on, for instance, pointwise labels

[42], pairwise labels [43] and ranking labels [44], [45]. There

are fewer deep learning works that generate hash codes in

an unsupervised manner. Such an example, is deep hashing

in [41], which optimizes the network weights by minimizing

the quantization loss between the hash code returned by the

output layer and the image representation from a hidden layer.

Performance evaluation reports a significant drop of the unsu-

pervised training compared to the supervised configuration.

B. Representation Learning

Video representations can be constructed by using hand-

crafted visual features to characterize keyframes and by selec-

tively combining time sequence information [13], [14], [46],

[47]. One major feature extraction method [48], generates low-

level features that characterize the global or local information

of a given keyframe (or video). Global features (e.g., color

features [49]) and extensions (e.g., color spatiograms [50] and

Markov stationary features [51]) usually lead to fast retrievals

[11], [12]. Local features rely on sets of local points and

possess more superior discriminating power than the global
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features, especially when characterizing objects with complex

changes and scenes [52]. Popular local feature descriptors

include SIFT [53], SURF [54], and LBP [55].

To improve the retrieval speed and accuracy, more sophis-

ticated feature extraction methods have been developed. One

example is [8], which groups local keypoint descriptors (e.g.,

SURF) into a fixed number of clusters using bag of words

(BoW) [56], and assigns each cluster a unique “visual word”.

Subsequently, a keyframe (video clip) can be represented as

a histogram of the occurrences of the visual word clusters,

and the retrieval accuracy is closely related to the number of

used clusters. Another example is multi-feature fusion (MFF)

which exploits the complementary properties of the global

and local features. Many MFF variations have been proposed

to improve multimedia data representations [57]–[59]. In the

recent years, deep neural networks are gradually replacing

the conventional visual feature hand-crafting, because of their

superior performance in multiple visual recognition challenges

(e.g., CaffeNet, AlexNet [18] and R-CNN [60]). Although

these networks can automatically learn excellent visual rep-

resentations directly from image pixels, they require strong-

supervision and their success relies on millions of manually

labeled data, such as the ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC) [19].

To reduce the dependency on labeled data, there has been

a growing interest in developing unsupervised methods for

video/image representation learning. For instance, [12], [61]

conduct unsupervised representation learning by reinforcing

the visual representations generated from hand-craft features

through the use of freely available social tags or text descrip-

tions of web videos. Neural networks are used to construct

unsupervised feature representations via auto-encoders [62],

[63] and restricted Boltzmann machines (RBMs) [64]. There

are also works that use hand-crafted features (e.g., SIFT or

HOG) to discover semantic classes [65], or to learn visual

patches [21], and then employ the discovered classes and

learned patches as the annotation information for the training.

III. NOTATIONS AND PRELIMINARIES

The proposed unsupervised hashing method is built upon

our previous work on stochastic multi-view hashing (SMVH)

[26] summarized with its relevant to this work notation as

follows. Given a collection of V videos, a set of representative

keyframes are firstly extracted for each video using either

the uniform time sampling or shot-based sampling methods.

Assume a total of n keyframes extracted from these V

videos. For each keyframe, multi-view features are extracted

to characterize its properties, where different feature views

correspond to different types of feature representations (e.g.,

features extracted by different extraction methods). Assuming

a total of m types of such representations, the gth feature

type is stored in an n×dg matrix X(g) = [x
(g)
ij ]. Each column

vector x
(g)
i = [x

(g)
i1 , . . . , x

(g)
idg

]T denotes the gth feature vector

for the ith keyframe. The SMVH model learns a set of s

hash functions {hi(·)}
s
i=1, each taking the available features

of a keyframe as the input and returning a binary number.

Therefore, a total of s hash functions correspond to an s-length

binary string for each keyframe. These computed strings are

stored as the rows of the n × s binary hash code matrix

H = [hij ], with hi = [hi1, . . . , his]
T

where hil ∈ {0, 1} for

l = 1, . . . , s.

Given an ith keyframe characterized by multiple feature

vectors {x
(g)
i }mg=1, the hashing function is defined as

hl

(

{

x
(g)
i

}m

g=1

)

= T (zil) , (1)

where

zil = sigmoid





m
∑

g=1

dg
∑

j=1

x
(g)
ij w

(g)
lj + bl



 , (2)

and w
(g)
lj and bl are the real weight parameters. The embedding

vector zi = [zi1, . . . , zis]
T provides an approximation viewed

as a relaxed version of the hash codes hi. The sigmoid function

is used to convert the positive and negative embedding values

to numbers close to one and zero. A thresholding function,

defined as T (x) = 1, if x > θ and zero otherwise, is employed

to binarize real-valued inputs.

Since the most critical component in a retrieval task is

the video comparison guided by a similarity evaluation be-

tween videos, SMVH trains its hash code by preserving

reliable similarity structure between the keyframes in the hash

code space. This structure is the mixing of three elements.

The first is the keyframe examination under the different

views and its encoding by conditional probability matrices

{P(g) = [p
(g)
j|i ]}

m
g=1 estimated with Gaussian distributions as

p
(g)
j|i =

exp

(

−

∥

∥

∥
x

(g)
i

−x
(g)
j

∥

∥

∥

2

2

2σ2
ig

)

∑

l ̸=i exp

(

−

∥

∥

∥
x

(g)
i

−x
(g)
l

∥

∥

∥

2

2

2σ2
ig

) . (3)

The second is the within-video structure matrix PW = [p
(W )
ij ],

with p
(W )
ij = 1 indicating that the ith and jth keyframes are

from the same video and zero otherwise. The third and most

important element, is the supervised label matrix PS = [p
(S)
ij ],

with p
(S)
ij = 1 indicating that the ith and jth keyframes are

extracted from matching videos and zero otherwise. To com-

bine these, SMVH uses a soft voting scheme corresponding

to the convex combination of these matrices

P = N

(

m
∑

g=1

αgP(g) + αm+1PW + αm+2PS

)

, (4)

where {αi}
m+2
i=1 denote positive weights summing to one and

N(·) normalizes each row of the input matrix.

The similarity structure preservation is realized by a match-

ing procedure between the desired similarity matrix P = [pj|i]
and the computed similarity matrix, denoted by Q = [qj|i],
using hash codes. The matching score is examined by a
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composite KL divergence to measure the difference between

the two matrices P and Q, given as

SKL = λ

n
∑

i=1

∑

j ̸=i

pj|i log
pj|i

qj|i
+ (1− λ)

n
∑

i=1

∑

j ̸=i

qj|i log
qj|i

pj|i
,

(5)

where λ is a user-defined parameter. The similarity qj|i is ap-

proximated from the relaxed hash code {zi}
n
i=1 of keyframes

using Gaussian distribution, as

qj|i =
exp

(

−∥zi − zj∥
2
2

)

∑

l ̸=i exp
(

−∥zi − zl∥
2
2

) . (6)

Finally, learning of the hash code is converted to the minimiza-

tion of Eq.(5) with respect to the weights w
(g)
lj and bl. Using

the relaxed hash codes {zi}
n
i=1, the video hash code can be

finally generated by h
(v)
il = T

(

1
|Indi|

∑

j∈Indi
zjl

)

, where h
(v)
il

denotes the lth digit of the ith video’s hash code, the set Indi

denotes the keyframe indices of this video and | · | denotes set

cardinality.

IV. PROPOSED METHODS

To reduce the performance drop incurred by the lack of

labeled information and build upon SMVH, we propose:

(1) more accurate construction of an unsupervised similarity

structure to be preserved by the hash code, and (2) more

accurate preservation of the desired similarity in the hash code

space. Additionally, motivated by the recent success of deep

learning in computer vision, it is of practical interest to adapt

the resulting robust unsupervised training strategy to a deep

neural network architecture.

A. Unsupervised Similarity Construction

As pointed out in [26], a reliable similarity structure should

be supported by the agreement between multiple types of

feature representation. We proceed towards this direction and

seek more accurate ways of encoding the multi-view similarity

structure. Apart from the conditional probability matrices

{P(g)}mg=1, discrete neighbor relationships are another impor-

tant indicator that reveals a similarity structure between the

keyframes; for example, being reciprocal neighbors indicates

images are visually similar [66], [67]. Relying on this, we

compute a relevance score based on reciprocal neighbors be-

tween objects under each view, given by a Jaccard coefficient

J
(g)
ij =

|Ng
K(i) ∩N

g
K(j)|

|Ng
K(i) ∪N

g
K(j)|

, (7)

where N
g
K(i) denotes the set of K nearest neighbors of the

ith object searched under the gth feature view. This measure

evaluates the percentage of the reciprocal neighbors among

the existing neighbors of the two involved objects.

We further enrich this neighbor based relevance score with

the conditional probability score as computed in Eq.(3), and

accumulate the relevance over different types of features. We

then obtain the following composite similarity score between

two keyframes

p
(C)
ij =

1

2n

m
∑

g=1

J
(g)
ij

(

p
(g)
j|i + p

(g)
i|j

)

. (8)

To construct a symmetric similarity score, the conditional

probability is symmetrized by 1
2 (p

(g)
j|i + p

(g)
i|j ). The content-

based video similarity matrix PC = [p
(C)
ij ] is then combined

with the within-video structure matrix PW , to produce the final

unsupervised similarity matrix

P = (1− α)N (PC) + αN (PW ) , (9)

where N(·) is a normalization function to restrict the input

matrix to a sum of one. The parameter 0 < α < 1 balances

the weights between the feature-driven content relevance and

the video structure based relevance. The resulting matrix P

is symmetric. Compared to the asymmetric one in Eq.(4),

it greatly simplifies the gradients of the cost function and

better circumvents the outlier problem [68]. Also, compared

to Eq.(4), the proposed similarity construction employs fewer

combination parameters, i.e., only one balancing parameter α

compared to m+2. Both the proposed and SMVH employ an

integer K to control the computation of the Gaussian width

σig; the same K also controls the neighbor based relevance

score for the proposed method.

B. t-Distributed Structure Matching

Similar to Eq.(5), the KL divergence is used to match the

similarity structures in the desired P from original videos and

the computed Q from the hash codes. Given a fixed P, the

success of a good matching mainly relies on the construction

of Q. Inspired by the effectiveness of Student t-distribution

in structure preservation for embedding computations [68],

we employ it to estimate the relevance between keyframes

based on their relaxed hash codes. Replacing accordingly the

Gaussian distribution in Eq.(6) results in

qij =

(

1 + ∥zi − zj∥
2
2

)−1

∑

k ̸=l

(

1 + ∥zk − zl∥
2
2

)−1 . (10)

The Student t-distribution can be viewed as an infinite mixture

of Gaussians and bears the desirable property that (1 + ∥zi −
zj∥

2
2)

−1 approaches an inverse square law for large pairwise

distances ∥zi−zj∥2, which makes it almost invariant to scale

changes for mapping objects far apart from each other.

Let θ = {{w
(g)
lj }l,j,g, {bl}l} be the set of variables used

to parameterize the mapping function in Eq.(2) for computing

the relaxed hash code. We use the newly defined pij described

in Section IV-A to formulate the minimization problem

min
θ

O(θ) = SKL (θ) + µR(θ). (11)

The regularization term R(θ) is introduced to prevent overfit-

ting, while µ > 0 is the user-defined regularization parameter.

In our case, one possibility for setting the regularization term is

R(θ) = 1
2

∑m
g=1

∑s
l=1

∑dg

j=1(w
(g)
lj )2. As the objective func-

tion is smooth and differentiable, we can employ stochastic
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Algorithm 1 Pseudocode for the training of t-USMVH.

Input: n keyframes {x
(g)
i }ni=1 extracted from V videos

represented by m types of dg-dimensional features (g =
1, . . . ,m).

Output: Combination coefficients {w
(g)
l,j }, bias parameters

{bl}.

Algorithmic parameters: Hash code length s, neighbor

bound K, balancing parameter λ, regularization parameter

µ, relevance matrix weight α.

Optimization parameters: Iteration number T, learning

rate η and momentum ζ (t).

Initialization: Assign random values to the weight {w
(g,0)
l,j }

and bias variables {b
(0)
l }.

for t = 1 to T do

Compute gradient ∂O

∂w
(g,t)
lj

, compute gradient ∂O

∂b
(t)
l

.

Set the updates:

w
(g,t+1)
lj = w

(g,t)
lj + η ∂O

∂w
(g,t)
lj

+ ζ(t)
(

w
(g,t)
lj − w

(g,t−1)
lj

)

.

b
(t+1)
l = b

(t)
l + η ∂O

∂b
(t)
l

+ ζ (t)
(

b
(t)
l − b

(t−1)
l

)

.

end for

gradient descent (SGD) to find a reasonably good solution. The

technical effort merely remains in the gradient computation

with respect to θ, which we discuss in Section IV-D. The

pseudocode of the training process is provided in Algorithm 1,

where the parameters η and ζ (t) control the step size and

T indicates the iteration number. The proposed method can

be envisaged as an unsupervised extension of SMVH through

Student t-distribution matching, and thus, we refer to it as

t-USMVH. Its overall system structure is illustrated in Fig.1.

C. Deep Extension

In this section, we extend the previous unsupervised method

to hash code generation through a neural network. The key

idea is to use Eq.(5) as the loss function to train the network

weights, where the computation of the unsupervised similarity

structure to be preserved as well as the estimated similarity

from the relaxed hash code follow the mechanisms described

in Sections IV-A and IV-B. The main modification is that,

instead of Eqs.(1,2), the relaxed hash code (embedding vector)

for each keyframe is computed by a neural network (denoted

as the function Φ) taking the whole keyframe image as input

(denoted by Ii). This is given as

hl(Ii) = T (zil) , (12)

[zi1, zi2, . . . , zis]
T = Φ(Ii,θ), (13)

where θ is the set of weights to be optimized based on Eq.(11).

In this work, we use a CNN based on the typical LeNet-5

[69] to learn the relaxed hash code, with the input layer being

fed with color images in RGB format. The structure of the

proposed system is illustrated in Fig.2. Layer-wise based pre-

training is applied. For learning each convolution/subsampling

layer-pair, we fully connect a layer to the layer-pair and create

a 3-layer CNN (not considering the input layer). Subsequently,

we perform mini-batch SGD on the newly created CNN by

using the proposed unsupervised training strategy. The sigmoid

activation function is adopted in each convolution layer and the

fully connected layer. After pre-training, the weights of the en-

tire CNN are fine-tuned using the same objective function. We

refer to this unsupervised deep hashing based on t-distribution

matching as t-UDH. It generates image representations, that is

binary thresholded hash codes, via learning from raw image

pixels. To improve the accuracy of unsupervised learning,

the learning procedure utilizes expert knowledge obtained by

different feature extraction methods; this resembles multi-view

learning. The use of the t-distribution improves the matching

accuracy by reducing the noise effects of distant objects.

D. Gradient Computation

Here we provide the gradient computations for the intro-

duced t-USMVH and t-UDH systems. Both models employ

the same objective function in Eq.(11) for training, but for

notational clarity, we decompose the objective function into

the separate components

O = λKL1 + (1− λ)KL2 + µR, (14)

KL1 =
n
∑

i=1

∑

t ̸=i

pit log
pit

qit
, (15)

KL2 =

n
∑

i=1

∑

t ̸=i

qit log
qit

pit
. (16)

The objective function is controlled by the model variables

θ = [θ1, . . . , θ|θ|]
T , through the relaxed hash code (embed-

ding) zi = [zi1, . . . , zis]
T . Applying chain rule gives

∂O

θt
=

[

λ
∂KL1

∂zil
+ (1− λ)

∂KL2

∂zil

]

∂zil

∂θt
+ µ

∂R

∂θt
. (17)

The target gradients {∂O
θt

}
|θ|
t=1 depend on the different com-

ponents ∂KL1

∂zil
, ∂KL2

∂zil
, ∂zil

∂θt
and ∂R

∂θt
. The differences of the

gradient computation between t-USMVH and t-UDH lie in

the computation of ∂zil
∂θt

. For t-USMVH, θ includes w
(g)
lj and

bl. As zil = sigmoid (z̃il) and z̃il =
∑m

g=1

∑dg

j=1 x
(g)
ij w

(g)
lj +bl,

we can easily obtain that

∂zil

∂w
(g)
lj

=sigmoid (z̃il) [1− sigmoid (z̃il)]x
(g)
ij , (18)

∂zil

∂bl
=sigmoid (z̃il) [1− sigmoid (z̃il)] . (19)

For t-UDH, zil corresponds to the image representation re-

turned by the output layer and its gradient with respect to the

network weights can be easily computed through backpropa-

gation, which we do not discuss in detail. Computation of ∂R
∂θt

depends on the formulation of the used regularization term,

which can be easily computed given a differentiable function.

The remaining key computation to derive, which is shared by

both t-USMVH and t-UDH, are

∂KL1

∂zi
=

[

∂KL1

∂zi1
,
∂KL1

∂zi2
, . . . ,

∂KL1

∂zil
, . . . ,

∂KL1

∂zis

]T

, (20)

and

∂KL2

∂zi
=

[

∂KL2

∂zi1
,
∂KL2

∂zi2
, . . . ,

∂KL2

∂zil
, . . . ,

∂KL2

∂zis

]T

. (21)
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Fig. 2: Illustration of the overall architecture of the proposed unsupervised deep hashing system.

Following a similar procedure as in [68], we introduce the

two auxiliary variables

dit = ∥zi − zt∥2 , (22)

U =
∑

k ̸=l

(

1 + ∥zk − zl∥
2
2

)−1

=
∑

k ̸=l

(

1 + d2kl
)−1

, (23)

to simplify the quantity

qit =

(

1 + d2it
)−1

U
. (24)

Noting that pit = pti and qit = qti both in KL1 and KL2,

and that dit and dti possess exactly the same formulation, we

have ∂KL1

∂dit
= ∂KL1

∂dti
and ∂KL2

∂dit
= ∂KL2

∂dti
. Then, we have

∂KL1

∂zi
=

∂KL1

∂dit

∂dit

∂zi
+

∂KL1

∂dti

∂dti

∂zi
= 2

∂KL1

∂dit

∂dit

∂zi
, (25)

∂KL2

∂zi
=

∂KL2

∂dit

∂dit

∂zi
+

∂KL2

∂dti

∂dti

∂zi
= 2

∂KL2

∂dit

∂dit

∂zi
. (26)

We first derive ∂KL1

∂dit
and ∂KL2

∂dit
according to

∂KL1

∂dit
=
∑

k ̸=l

−pkl
∂ (log qkl)

∂dit
= −

∑

k ̸=l

pkl
1

qkl

∂qkl

∂dit
, (27)
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and

∂KL2

∂dit
=
∑

k ̸=l

[

∂ (qkl log qkl)

∂dit
−

∂ (qkl log pkl)

∂dit

]

=
∑

k ̸=l

(1 + log qkl − log pkl)
∂qkl

∂dit
. (28)

It can be seen that both derivatives in Eqs.(27,28) depend on
∂qkl

∂dit
, which can be calculated after incorporating Eq.(24) as

∂qkl

∂dit
=

1

U

∂
(

1 + d2kl
)−1

∂dit
− qkl

1

U

∂U

dit
, (29)

∂U

∂dit
=
∑

k ̸=l

∂
(

1 + d2kl
)−1

∂dit
. (30)

Noting that
∂(1+d2

kl)
−1

∂dit
is nonzero only when k = i and l =

t, and that
∑

k ̸=l pkl =
∑

k ̸=l qkl = 1, and we incorporate

Eqs.(29,30) into Eqs.(27,28), we get

∂KL1

∂dit
= 2pit

(

1 + d2it
)−1

dit +
1

U

∂U

∂dit

= 2 (pit − qit)
(

1 + d2it
)−1

dit, (31)

∂KL2

∂dit
= −2

(

1 + log
qit

pit

)

(

1 + d2it
)−1

dit

+
∑

k ̸=l

(

qkl + qkl log
qkl

pkl

)

1

U

∂U

∂dit

= 2





∑

k ̸=l

qkl log
qkl

pkl
− log

qit

pit



 qit
(

1 + d2it
)−1

dit.

(32)

Subsequently, we have

∂dit

∂zi
=

∂dti

∂zi
=

zi − zt

dit
. (33)

Finally, substituting these into Eqs.(25,26), yields

∂KL1

∂zi
= 4

∑

t

(pit − qit)
(

1 + ∥zi − zt∥
2
2

)−1

(zi − zt) ,

(34)

∂KL2

∂zi
= 4

∑

t

qit





∑

k ̸=l

qkl log
qkl

pkl
− log

qit

pit



 (zi − zt)

(

1 + ∥zi − zt∥
2
2

)−1

. (35)

E. Discussion

The proposed t-USMVH is an unsupervised hashing al-

gorithm formulated by minimizing the structural difference

between the similarity matrices constructed in the original

and embedded feature spaces. Compared to its predecessor

SMVH [26] which is a supervised hashing method, the major

challenge is how to improve the model design to limit the

performance drop given the situation of lacking labeled exam-

ples. Compared to SMVH, the main changes we incorporate

in the design of t-USMVH include a dedicated proximity cal-

culation scheme between objects in the original space without

TABLE I: List of compared methods.

Acronym Method description

VS Retrieval by video signature [3].
HF Retrieval by hierarchical filter [3].
SPH Retrieval by spectral hashing [31].
STH Retrieval by self-taught hashing [32].

IMH
Retrieval by inductive manifold hashing with t-SNE
and 400 base samples [35].

MAH Retrieval by multi-view alignment hashing [36].
MFH Retrieval by multi-feature hashing [15].
USMVH SMVH with αm+2 = 0 [26].

involving any label information, and also an accurate structure

preservation strategy utilizing Student t-distribution to estimate

the embedded similarity structure and to reduce sensitivity to

outlier objects. An additional benefit of t-USMVH is that it

offers simpler gradient calculation than SMVH and this greatly

facilitates the optimization procedure.

The previous work kNNH [33] is a supervised representative

of formulating the hash code generation problem based on

KL divergence. It utilizes the KL divergence to approximate

kNN classification accuracy that is closely related to the intra-

class neighbor retrieval precision. The IMH method [34], [35]

employs t-SNE as its base algorithm to compute embeddings

for anchor objects, and induces embeddings for query objects

only from the anchor embeddings. During this process, the

KL divergence approximates the neighbor retrieval precision

for anchor objects. Differently from these methods, we take

into account both neighbor retrieval precision and recall by

constructing two KL-divergence scores. This forms a trade-off

between precision and recall that can lead to a more accurate

and balanced structure matching.

V. EXPERIMENTATION AND COMPARATIVE ANALYSIS

A. Experimental Setup

In the first experiment, we compare the proposed t-USMVH

with the classical video-to-video retrieval systems including

VS and HF, as well as the state-of-the-art ones based on

various recent hashing techniques including SPH, STH, IMH,

MAH, MFH and USMVH. All the compared methods are

unsupervised, and their acronyms and descriptions are sum-

marized in Table I. To evaluate the retrieval performance,

the classic metric of the mean average precision (MAP) is

employed. This is commonly used in the video retrieval

community [3], [8], [15], [26]. Additionally, the precision-

recall curve is provided to offer a more thorough view of the

retrieval performance.

Two publicly available web video datasets are used to

assess the retrieval performance. One is the CC WEB VIDEO

dataset [3], which consists of 12,790 video clips downloaded

from video sharing websites, such as YouTube, Google and Ya-

hoo! via searching with different keywords, and subsequently

organized into 24 sets. Within each set, the most popular video

is used as the query, and the remaining videos are manually

labeled by two non-expert assessors to create the ground truth.

Shot boundaries of each video are detected and each shot

is represented by a keyframe. There are a total of 398,015

keyframes extracted from this video collection. The other is

the UQ VIDEO dataset [15], which is a combined dataset
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TABLE II: The parameter settings used for the t-USMVH.

Optimization param. Value Algorithmic param. Value

T 1000 λ 0.9

η 500 (initially) µ 0.01

ζ (t) (t < 250) 0.5 s 80-500

ζ (t) (t ≥ 250) 0.75 K 20

TABLE III: The tuning range of hash code length s.

Features sa sb st
HSV (H) 100 160 20

MSF-color (M) 180 280 20

HSV, LBP (HL) 80 400 40

HSV, LBP, MSF-color (HLM) 100 500 100

by mixing the CC WEB VIDEO and the YouTube videos.

There are a total of 169,952 videos and 2,570,554 keyframes

extracted by a shot-boundary detection algorithm. Original

keyframes and videos are available in CC WEB VIDEO,

while UQ VIDEO only provides features extracted by HSV

(hue, saturation, value) and local binary patterns (LBP).

The proposed and the three competing methods MAH, MFH

and USMVH are multi-view methods. They attempt to boost

the retrieval performance by learning from different types of

feature representations. Different feature extraction methods

are used to construct different types of keyframe feature

representations. In addition to the HSV features characterizing

the global color histogram and LBP features characterizing

the local texture, we also extract the color extension of the

Markov stationary features (MSF) [27] for CC WEB VIDEO.

The extracted MSF features not only characterize the spatial

co-occurrence of histogram patterns but also incorporate local

information. The extracted feature dimensionality is 162 for

HSV, 256 for LBP and 288 for MSF.

The optimization parameters for t-USMVH follow the set-

tings shown in the left side of Table II, and are determined

from empirical recommendations from [68] for gradient de-

scent updates. The algorithmic parameter settings are listed in

the right side of Table II. The parameter η for controlling the

step size is initially set to 500 and then updated in each itera-

tion by means of the adaptive learning rate scheme described

in [70]. The balancing parameter λ and the neighbor bound K

are determined by following the empirical recommendations

in [71]. The regularization parameter µ does not affect the

performance much when it is within a reasonable range. The

hash code length s is tuned from sa to sb with a step size

st, as shown in Table III for different feature sets; these are

set according to the input feature dimensionality. The within-

video information weight α is tuned from 0.0 to 0.5. For

the competing methods, we either use our implementation

based on the settings recommended in their referenced work

or employ the existing code provided by the authors. For the

single-view methods SPH, STH and IMH, the features are

included within a vector as their input. In all experiments, a

random set of 600 videos are used for training. The online

retrieval speed is recorded by Matlab R2012b on the same

computer platform.

In the second experiment, we compare t-UDH with two

commonly used unsupervised training strategies:

TABLE IV: The parameter settings used for the t-UDH.

Optimization parameter Value

T1 1500

T2 1000

η1 0.5

η2 0.01

ζ 0.8

• One is based on an auto-encoder (AE) that minimizes the

reconstruction error between the input and its estimation

from the hidden layer representation. This is one of the

most common unsupervised training methods.

• The other is based on the use of extra information

resources from labeled corpora available for different but

related visual tasks. Specifically, the two supervised CNN

networks BVLC CaffeNet and BVLC R-CNN, which are

trained on ILSVRC-2012 for image classification and on

ILSVRC-2013 for object detection, are used to compress

each video keyframe to a high-level representation vector

of dimensionality 4,096. The obtained feature represen-

tations are referred to as CaffeNet fc7 and R-CNN fc7,

and are used as the input to the t-USMVH system, but

in its single view version (g = 1).

The CNN network trained by the proposed method and the

AE are based on LeNet-5, in which there are two convolution

layers, two subsampling layers and one full connection layer

as shown in Fig.2. Secondly, we compare it with two state-of-

the-art supervised deep hashing networks:

• The deep pointwise-supervised hashing (DSH) that trains

a deep CNN to learn image representations and hash

codes based on the pointwise training [42].

• The deep pairwise-supervised hashing (DPSH) that trains

a deep CNN to learn image representations and hash

codes based on the pairwise training [43].

For the proposed t-UDH training, the algorithm parameter

settings are those in the right column of Table II, while

the optimization parameters settings those in Table IV. The

parameters T1 and η1 are the epoch number and learning ratio

in each pre-training, while T2 and η2 are the corresponding

parameters for the fine-tuning phase. The length of the hash

code s corresponds to the neuron cardinality in the output layer

of the CNN, and is set to vary from 200 to 500 with a step

size of 100. The batch size (the number of training videos in

each batch) for the SGD method is 100. Due to the fact that

different videos may contain different numbers of keyframes,

the number of keyframes in each batch between epochs may be

different. A random set of 1,000 videos are used for training.

The selected setting of s = 400 and α = 0.1 is used by t-UDH

to report the performance of the proposed training method

(t-UDH) and the weakly supervised ones (CaffeNet fc7 and

R-CNN fc7). The AE training of the CNN follows the layer-

wise fashion proposed in [63]. For DSH and DPSH, we use

the pre-trained CNN model CNN-F [72] to learn the image

representation as recommended in the references. A total

of 150 keyframes in each video set are randomly selected,

resulting in 150× 24 = 3, 600 keyframes in the training data,

and keyframes belonging to the same set are considered to
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have the same label. The same hash code length of s = 400
is used for AE, DSH and DPSH training of the CNN.

B. Comparative Analysis for t-USMVH

For the proposed t-USMVH and its competing methods,

we report their MAP performance computed with a total of

24 queries and their averaged online retrieval speed over

the 24 searches for the two datasets in Tables V and VI,

given different types of extracted features. The used parameter

setting for reporting the performance in the second column

of the tables is s = 120 and α = 0.3 when the HSV (H)

feature is used alone, s = 220 and α = 0.3 for the MSF-

color (M) feature alone, s = 320 and α = 0.25 when both

HSV and LBP (HL) are used, and s = 400 and α = 0.1
for all HSV, LBP and MSF-color (HLM) features. We also

compare the average precision-recall curves of these methods

in Figs.3 and 4 for the two datasets. However, because HF is

very time-consuming, we only examine its performance over

the smaller dataset CC WEB VIDEO. It can be seen from the

tables and the figures that the proposed t-USMVH outperforms

all the competing methods under all the learning environments.

For example, t-USMVH provides better performance than

USMVH, and it always offers much better performance than

VS, SPH, IMH given the same input features. It performs

significantly better than MAH and MFH in many cases. It

can also be seen that the MSF-color features provide in

general better performance than the HSV features. This is

mainly because the former not only characterize the spatial

co-occurrence of histogram patterns, but also incorporate local

information [27].

Fig.4(b) shows that for the large UQ VIDEO dataset, the

proposed system is able to achieve over 85% precision given

recall values up to 75%. When it uses the HSV, LBP and

MSF-color combination, we can find that the proposed t-

USMVH gets the highest MAP value of 96.8% and also

performs better than other methods on the CC WEB VIDEO

dataset. Comparing with our former method USMVH which

relies on Gaussian distributions to construct the similarity

structures, these results also corroborate the advantage of the

t-distribution. Regarding the retrieval speed, it can be seen

from Tables V and VI that all the hashing-based systems

are capable of achieving real-time retrievals even within the

Matlab prototyping environment, whereas a longer hash code

only leads to a slightly reduced retrieval speed.

To examine how the proposed method performs when

restricted to short hash code lengths, we conduct an evaluation

by setting s to a small value (s = 96) and report the

performance in the last columns of Tables V and VI for

the two datasets. It can be seen that the proposed t-USMVH

outperforms all the competing methods for all the compared

feature views, which demonstrates its tolerance to short hash

codes. We also investigate the behavior of t-USMVH given

varying values of hash code lengths and the weight parameter

α in Fig.5. It can be seen that t-USMVH performs well when

α ∈ [0.1, 0.3]. Also, when an effective value of α is selected,

the algorithm is not very sensitive to the change of hash code

lengths, e.g., the MAP performance is over 0.94 for most

length values in s ∈ [80, 400].

TABLE V: Performance comparisons with respect to MAP

and retrieval speeds on the CC WEB VIDEO dataset. The

best performances and speeds are boldfaced and second best

underlined. “HP-S” denotes HSV and PCA-SIFT features.

Method Features MAP Time (10−4 s) MAP (s=96)

VS [3] H 0.892 28.0 —
SPH [31] H 0.854 4.91 0.857
STH [32] H 0.922 4.95 0.922
IMH [35] H 0.861 4.90 0.863
MAH [36] H 0.859 4.97 0.849
MFH [15] H 0.918 4.81 0.901
USMVH [26] H 0.934 4.82 0.933
t-USMVH H 0.937 4.81 0.937

VS [3] M 0.913 38.4 —
SPH [31] M 0.860 5.63 0.868
STH [32] M 0.937 5.63 0.931
IMH [35] M 0.888 5.62 0.870
MAH [36] M 0.930 5.64 0.930
MFH [15] M 0.929 5.60 0.905
USMVH [26] M 0.943 5.61 0.934
t-USMVH M 0.947 5.60 0.940

HF [3] HP-S 0.952 >8000.0 —
HF [3] HL 0.936 >8000.0 —
SPH [31] HL 0.864 6.24 0.825
STH [32] HL 0.932 6.50 0.918
IMH [35] HL 0.875 6.30 0.835
MAH [36] HL 0.921 6.41 0.842
MFH [15] HL 0.928 6.38 0.898
USMVH [26] HL 0.955 6.17 0.933
t-USMVH HL 0.959 6.17 0.939

SPH [31] HLM 0.901 6.94 0.871
STH [32] HLM 0.940 7.11 0.935
IMH [35] HLM 0.910 6.96 0.875
MAH [36] HLM 0.939 7.02 0.918
MFH [15] HLM 0.938 6.88 0.918
USMVH [26] HLM 0.962 6.79 0.947
t-USMVH HLM 0.968 6.79 0.955

TABLE VI: Performance comparisons with respect to MAP

and retrieval speeds on the UQ VIDEO dataset. The best

performances and speeds are boldfaced and second best un-

derlined.

Method Features MAP Time (s) MAP (s=96)

VS [3] H 0.640 0.2290 —
SPH [31] H 0.457 0.0374 0.459
STH [32] H 0.727 0.0386 0.712
IMH [35] H 0.485 0.0377 0.464
MAH [36] H 0.540 0.0391 0.545
MFH [15] H 0.715 0.0348 0.680
USMVH [26] H 0.787 0.0345 0.763
t-USMVH H 0.792 0.0345 0.775

SPH [31] HL 0.546 0.0671 0.510
STH [32] HL 0.775 0.0682 0.704
IMH [35] HL 0.550 0.0674 0.447
MAH [36] HL 0.746 0.0680 0.540
MFH [15] HL 0.757 0.0639 0.656
USMVH [26] HL 0.851 0.0636 0.768
t-USMVH HL 0.858 0.0637 0.793
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Fig. 3: Comparison of the average precision-recall curves for different methods computed using different features of the

CC WEB VIDEO dataset. Parenthesized characters following the algorithm acronyms correspond to the used features.
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Fig. 4: Comparison of the average precision-recall curves for different methods computed using different features of the

UQ VIDEO dataset. Parenthesized characters are as in Fig.3.

To obtain a more detailed view of different methods, a bar

graph comparing the average precision over each query is

provided in Fig.6 using the UQ VIDEO dataset. It can be seen

that, for most queries, the multi-view version of t-USMVH

performs better than its single-view version, although there

also exist few individual cases such as Q5, Q11 and Q13 where

the multi-view performance is not better. In some queries, such

as Q7, Q11, Q13 and Q24, STH and MFH perform better

than the t-USMVH. In general, when taking into account all

the queries, the global and local features are complementary

in achieving a more complete video representation, and it

is therefore effective to combine both views. The proposed

system provides the best overall retrieval performance.

C. Comparative Analysis for t-UDH

We compare the MAP performance of the CNN training

for different methods using the CC WEB VIDEO dataset

in Table VII, for which the corresponding precision-recall

curves are plotted in Fig.7. The compared methods include:

(1) the proposed t-UDH, where different mixtures of manual

feature extraction methods are used to construct the desired

similarity structure, (2) weakly supervised training using Caf-

feNet fc7/R-CNN fc7 features extracted from the “fc7” layer

of two supervised CNN networks trained using two image

corpora with labeled images, (3) AE, (4) AE / t-UDH using

an AE for layer-wise pre-training and the proposed t-UDH for

a fine-tuning of the entire network, and (5) the two supervised

deep hashing methods DSH and DPSH based on pointwise

and pairwise trainings, respectively.

Results show that DSH and DPSH set an upper bound in

the retrieval performance. The t-UDH provides a satisfactory

performance that is close to this upper bound when learning

in a completely unsupervised manner. The unsupervised AE

training provides the worst performance, which however, can

be improved by employing the proposed t-UDH to fine-tune

the network weights. The weakly supervised CNN using extra

information provides good performance, but not the best. This

is likely due to the fact that, although a large set of labeled

images is used for training the CNN, the training and the

NDVR data may contain different patterns.

As observed in previous experiments for t-USMVH (see

Fig.5), when an effective value for α is used, the algorithm

is not sensitive to the hash code length. Therefore, we fix

the code length (the two cases of s = 300 and s = 400
are examined) and investigate the performance change of t-

UDH by varying α in Fig.8 for two sets of feature views

(HL and HLM). Similar to what is observed for t-USMVH,

t-UDH performs in general well when its weight parameter is

set within the range of α ∈ [0.1, 0.3].

VI. CONCLUSION

The novel unsupervised hashing algorithm t-USMVH and

its extension to unsupervised deep hashing t-UDH were pro-

posed to facilitate large-scale video-to-video retrieval. The
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TABLE VII: MAP performance comparison of CNN network with different training strategies using CC WEB VIDEO data.

Methods Type Supporting Information MAP

DSH [42] Supervised label information. 0.960
DPSH [43] Supervised label information 0.967

CaffeNet fc7 Weakly supervised labeled ILSVRC-2012 corpus for image classification 0.919
R-CNN fc7 Weakly supervised labeled ILSVRC-2013 corpus for object detection 0.926

AE Unsupervised NA 0.847
AE/t-UDH Unsupervised HSV and LBP feature extraction 0.919
t-UDH Unsupervised HSV and LBP feature extraction. 0.940
t-UDH Unsupervised HSV, LBP and MSF feature extraction. 0.957

first one addressed the accuracy, efficiency and scalability

issues, as well as the lack of labeled images in training.

These are all very important issues considered in recent video

retrieval research and we contribute to their improvement.

We achieved more accurate construction of between keyframe

similarity without relying on label information and more

accurate preservation of the desired similarity structure using

hash codes with reduction of noise from distant keyframes.

The proposed unsupervised method is robust and was further

extended to train a deep neural network that improves the

unsupervised deep hashing techniques. Results from extensive

experimentations using public datasets showed the superior

performance of the proposed methods over various classical

and state-of-the-art algorithms.
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