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Abstract

This paper addresses the problem of unsupervised video

summarization, formulated as selecting a sparse subset of

video frames that optimally represent the input video. Our

key idea is to learn a deep summarizer network to mini-

mize distance between training videos and a distribution

of their summarizations, in an unsupervised way. Such a

summarizer can then be applied on a new video for estimat-

ing its optimal summarization. For learning, we specify a

novel generative adversarial framework, consisting of the

summarizer and discriminator. The summarizer is the au-

toencoder long short-term memory network (LSTM) aimed

at, first, selecting video frames, and then decoding the ob-

tained summarization for reconstructing the input video.

The discriminator is another LSTM aimed at distinguish-

ing between the original video and its reconstruction from

the summarizer. The summarizer LSTM is cast as an ad-

versary of the discriminator, i.e., trained so as to maximally

confuse the discriminator. This learning is also regularized

for sparsity. Evaluation on four benchmark datasets, con-

sisting of videos showing diverse events in first- and third-

person views, demonstrates our competitive performance in

comparison to fully supervised state-of-the-art approaches.

1. Introduction

A wide range of applications require automated summa-

rization of videos [36, 42], e.g., for saving time of human

inspection, or enabling subsequent video analysis. Depend-

ing on the application, there are various distinct definitions

of video summarization [30, 27, 28, 1, 40, 37, 6, 20, 18,

14, 25, 12]. In this paper, we consider unsupervised video

summarization, and cast it as a key frame selection prob-

lem. Given a sequence of video frames, our goal is to select

a sparse subset of frames such that a representation error

between the video and its summary is minimal.

Our problem statement differs from other formulations

considered in the literature, for example, when a particular

(a) (b)

Figure 1: (a) Overview: Our goal is to select key frames

such that a distance between feature representations of the

selected key frames and the video is minimized. (b) As

specifying a suitable distance between deep features is dif-

ficult, we use a generative adversarial framework for opti-

mizing the frame selector. Our approach consists of a vari-

ational auto-encoder and a generative adversarial network.

domain of videos to be summarized is a priori known (e.g.,

first-person videos) [18], or when ground-truth annotations

of key frames are provided in training data based on atten-

tion, aesthetics, quality, landmark presence, and certain ob-

ject occurrences and motions [9].

Fig. 1a shows an overview of our approach to selecting

key frames from a given video. The key frame selector is

learned so as to minimize a distance between features ex-

tracted from the video and the selected key frames. Follow-

ing recent advances in deep learning [35, 41, 43], we extract

deep features from both the video and selected sequence

of key frames using a cascade of a Convolutional Neural

Network (CNN) – specifically GoogleNet [38] – and Long

Short-Term Memory Network (LSTM) [13, 35]. The CNN

is grounded onto pixels and extracts deep features from a

given frame. The LSTM then fuses a sequence of the CNN’s
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outputs for capturing long-range dependencies among the

frames, and produces its own deep feature representing the

input sequence. Specifically, we use the (variational) auto-

encoder LSTM [35, 16] as a suitable deep architecture for

unsupervised learning of video features. Given a distance

between the deep representations of the video and selected

key frames, our goal is to optimize the frame selector such

that this distance is minimized over training examples.

Recent work, however, demonstrates that specifying a

suitable distance of deep features is difficult [19]. Hence,

we resort to the generative adversarial framework [8], which

extends the aforementioned video summarization network

with an additional discriminator network. As shown in

Fig. 1b, the decoder part of the summarizer is used to re-

construct a video from the sequence of selected key frames.

Then, we use a discriminator, which is another LSTM, to

distinguish between the original video and its reconstruc-

tion from the summarizer. The auto-encoder LSTM and the

frame selector are jointly trained so as to maximally con-

fuse the discriminator LSTM – i.e., they are cast in a role of

the discriminator’s adversary – such that the discriminator

has a high error rate in recognizing between the original and

reconstructed videos. When this recognition error becomes

maximum, we deem that the frame selector is learned to

produce optimal video summarizations.

As we will show in this paper, our approach allows for an

effective regularization of generative-adversarial learning in

terms of: (i) limiting the total number of key frames that

can be selected; or (ii) maximizing visual diversity among

the selected key frames. For a fair comparison with related

approaches to fully supervised video summarization – a dif-

ferent setting from ours that provides access to ground-truth

key frame annotations in training – we also show how to

effectively incorporate the available supervision as an addi-

tional type of regularization in learning.

Evaluation on four benchmark datasets, consisting of

videos showing diverse events in first- and third-person

views, demonstrates our competitive performance in com-

parison to fully supervised state-of-the-art approaches.

Our contributions include:

1. A new approach to unsupervised video summa-

rization that combines variational auto-encoders and

generative-adversarial training of deep architectures.

2. First specification of generative-adversarial training on

high resolution video sequences.

In the following, Sec. 2 reviews prior work, Sec. 3 briefly

introduces the generative adversarial network (GAN) and

the variational autoencoder (VAE) models, Sec. 4 speci-

fies main components of our approach, Sec. 5 formulates

our end-to-end training, Sec. 6 describes variants of our ap-

proach differing in types of regularization we use in learn-

ing, and finally Sec. 7 presents our results.

2. Related Work

This section reviews related: (i) problem formulations

of video summarization; (ii) approaches to supervised and

unsupervised video summarization; (iii) deep learning ap-

proaches; and (iv) work using the generative adversarial

framework in learning.

Various Problem Formulations. Video summarization

is a long-standing problem, with various formulations con-

sidered in the literature. For example, the video synopsis

[28] tracks moving objects, and then packs the identified

video tubes into a smaller space-time volume. Also, mon-

tages [1, 40, 37] merge and overlaps key frames into a sin-

gle summary image. Both of these problem formulations,

however, do not require that the video summary preserves

the information about a temporal layout of motions in the

video. Previous work has also studied hyperlapses where

the camera viewpoint is being changed during the time-

lapse for speeding-up or slowing-down certain parts of the

input video [18, 14, 25, 12]. Our problem statement is clos-

est to storyboards, representing a subset of representative

video frames [6, 20]. However, except for [43, 41], existing

approaches to generating storyboards do not take advantage

of deep learning.

Supervised vs. Unsupervised Summarization. Super-

vised methods assume access to human annotations of key

frames in training videos, and seek to optimize their frame

selectors so as to minimize loss with respect to this ground

truth [7, 43, 42]. However, for a wide range of domains,

it may be impossible to provide reliable and a sufficiently

large amount of human annotations (e.g., military, nurs-

ing homes). These domains have been addressed with un-

supervised methods, which typically use heuristic criteria

for ranking and selecting key frames [21, 41, 15, 44, 34].

There have been attempts to use transfer learning for do-

mains without supervision [43], but the surprisingly better

performance of the transfer learning setting compared to the

canonical setting, reported in [43], suggests a high correla-

tion of the domains for three training dataset and one test

dataset , which is hard to ensure in real-world settings.

Deep Architectures for Video Summarization. In

[43], two LSTMs are used – one along the time sequence

and the other in reverse from the video’s end – to select key

video frames, and trained by minimizing the cross-entropy

loss on annotated ground-truth key frames with an addi-

tional objective based on determinantal point process (DPP)

to ensure diversity of the selected frames. Our main differ-

ences are that we do not consider the key frame annotations,

and train our LSTMs using the unsupervised generative-

adversarial learning. In [41], recurrent auto-encoders are

learned to represent annotated temporal intervals in train-

ing videos, called highlights. In contrast, we do not re-

quire human annotations of highlights in training, and we

do not perform temporal video segmentation (highlight vs
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non-highlight), but key frame selection.

Generative Adversarial Networks (GANs) have been

used for image-understanding problems [8, 29, 33, 31], and

frame prediction/generation [22, 39, 5]. But we are not

aware of their previous use for video summarization. In

[19], the discriminator output of a GAN is used to provide a

learning signal for the variational auto-encoder (VAE). We

extend this approach in three critical ways: (1) We specify

a new variational auto-encoder LSTM, whereas their auto-

encoder is not a recurrent neural network, and thus cannot

be used for videos; (2) Our generative-adversarial learning

additionally takes into account the frame selector – a com-

ponent not considered in [19]; and (3) We formulate regu-

larization of generative-adversarial learning that is suitable

for video summarization.

3. Review of VAE and GAN

Variational Autoencoder (VAE) [16] is a directed

graphical model which defines a posterior distribution over

the observed data, given an unobserved latent variable. Let

e ∼ pe(e) be a prior over the unobserved latent variable,

and x be the observed data. One can interpret e as the

encoding of x and define q(e|x) as the probability of ob-

serving e given x. It is typical to set pe(e) as the standard

normal distribution. Similarly, p(x|e) identifies the condi-

tional generative distribution for x. Learning is done by

minimizing the negative log-likelihood of the data distribu-

tion:

− log
p(x|e)p(e)

q(e|x)
= − log(p(x|e))

︸ ︷︷ ︸

Lreconst

+DKL(q(e|x)‖p(e)
︸ ︷︷ ︸

Lprior

.

(1)

For efficient learning, Kingma et al. [16] propose a repa-

rameterization of the variational lower bound suitable for

stochastic gradient descent.

Generative Adversarial Network (GAN) [8] is a neural

network that consists of two competing subnetworks: i) a

‘generator’ network (G) which generates data mimicking an

unknown distribution and ii) a ‘discriminator’ network (D)

which discriminates between the generated samples and the

ones from true observations. The goal is to find a generator

which fits the true data distribution while maximizing the

probability of the discriminator making a mistake.

Let x be the true data sample, e ∼ pe(e) be the prior in-

put noise, and x̂ = G(e) be the generated sample. Learning

is formulated as the following minimax optimization:

min
G

max
D

[
Ex[logD(x)] + Ee[log(1−D(x̂))]
︸ ︷︷ ︸

LGAN

]
, (2)

where D is trained to maximize the probability of correct

Figure 2: Main components of our approach: The selector

LSTM (sLSTM) selects a subset of frames from the input

sequence x. The encoder LSTM (eLSTM) encodes the se-

lected frames to a fixed-length feature e, which is then for-

warded to the decoder LSTM (dLSTM) for reconstructing

a video x̂. The discriminator LSTM (cLSTM) classifies x̂

as ‘original’ or ‘summary’ class. dLSTM and cLSTM form

the generative adversarial network (GAN).

sample classification (true vs generated) and G is simulta-

neously trained to minimize log(1−D(x̂)).

4. Main Components of Our Approach

Our approach consists of the summarizer and discrimi-

nator recurrent networks, as illustrated in Figure 2.

Given CNN’s deep features for every frame of the in-

put video, x = {xt : t = 1, . . . ,M}, the summarizer

uses a selector LSTM (sLSTM) to select a subset of these

frames, and then an encoder LSTM (eLSTM) to encode the

sequence of selected frames to a deep feature, e. Specifi-

cally, for every frame xt, sLSTM outputs normalized im-

portance scores s = {st : st ∈ [0, 1], t = 1, . . . ,M}
for selecting the frame. The input sequence of frame fea-

tures x is weighted with these importance scores, and then

forwarded to eLSTM. Note that in the special case of dis-

cretized scores, st ∈ {0, 1}, eLSTM receives only a subset

of frames for which st = 1. The last component of the

summarizer is a decoder LSTM (dLSTM), which takes e as

input, and reconstructs a sequence of features correspond-

ing to the input video, x̂ = {x̂1, x̂2, ..., x̂M}.

The discriminator is aimed at distinguishing between x

and x̂ as belonging to two distinct classes: ‘original’ and

‘summary’. This classifier can be viewed as estimating a

distance between x and x̂, and assigning distinct class la-
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Figure 3: The four loss functions used in our training. LGAN

is the augmented GAN loss and Lreconst is the reconstruction

loss for the recurrent encoder-decoder. In training, we use

an additional frame selector sp, governed by a prior dis-

tribution (e.g., uniform), which produces the encoded rep-

resentation ep, and the reconstructed feature sequence x̂p.

The adversarial training of cLSTM is regularized such that

it is highly accurate on recognizing x̂p as ‘summary’, but

that it confuses x̂ as ‘original’.

bels to x and x̂ if their distance is sufficiently large. In

this sense, the discriminator serves to estimate a represen-

tation error between the original video and our video sum-

marization. While one way to implement the discrimina-

tor could be an energy-based encoder-decoder [45], in our

experiments a binary sequence classifier have shown better

performance. Hence, we specify the discriminator as a clas-

sifier LSTM (cLSTM) with a binary-classification output.

Analogous to the generative adversarial networks pre-

sented in [8, 19], we have that dLSTM and cLSTM form

the generative adversarial network (GAN). The summarizer

and discriminator networks are trained adversarially until

the discriminator is not able to discriminate between the re-

constructed videos from summaries and the original videos.

5. Training of sLSTM, eLSTM, and dLSTM

This section specifies our learning of: (i) Summarizer

parameters, {θs, θe, θd}, characterizing sLSTM, eLSTM,

and dLSTM; and (ii) GAN parameters, {θd, θc}, defining

dLSTM and cLSTM. Note that θd are shared parameters

between the summarizer and GAN.

As illustrated in Fig. 3, our training is defined by four

loss functions: 1) Loss of GAN, LGAN, 2) Reconstruction

loss for the recurrent encoder-decoder, Lreconst, 3) Prior loss,

Lprior, and 4) Regularization loss, Lsparsity. The key idea be-

hind our generative-adversarial training is to introduce an

additional frame selector sp, governed by a prior distribu-

tion (e.g., uniform distribution), sp ∼ p(sp). Sampling the

input video frames with sp gives a subset which is passed

to eLSTM, producing the encoded representation ep. Given

ep, dLSTM reconstructs a video sequence x̂p. We use x̂p to

regularize learning of the discriminator, such that cLSTM is

highly accurate on recognizing x̂p as the ‘summary’ class,

but that it confuses x̂ as ‘original’ class. Recall that the

Lprior is imposed by the prior distribution over e as in (1).

Similar to the training of GAN models in [8, 19], we

formulate an adversarial learning algorithm that iteratively

optimizes the following three objectives:

1. For learning {θs, θe}, minimize

(Lreconst+Lprior+Lsparsity).

2. For learning θd, minimize (Lreconst+LGAN).

3. For learning θc, maximize LGAN.

In the following, we define Lreconst and LGAN, while the

specification of Lsparsity is deferred to Sec. 6.

Reconstruction loss Lreconst: The standard practice in

learning encoder-decoder networks is to use the Euclidean

distance between the input and decoded output, ‖x − x̂‖2,

for estimating the reconstruction error. However, recent

findings demonstrate shortcomings of this practice [19].

Hence, instead, we defineLreconst based on the hidden repre-

sentation in cLSTM – specifically, the output of the last hid-

den layer of cLSTM, φ(x), for input x. Note that while x

is a sequence of features, φ(x) represents a compact feature

vector, capturing long-range dependencies in the input se-

quence. Therefore, it seems more appropriate to use φ(x),
rather than x, for specifying Lreconst.

Specifically, we formulate Lreconst as an expectation of a

log-likelihood log p(φ(x)|e), given that x has been passed

through the frame selector s and eLSTM, resulting in e:

Lreconst = E[− log p(φ(x)|e)], (3)

where expectation E is approximated as the empirical

mean of training examples. In this paper, we consider

p(φ(x)|e)) ∝ exp(−‖φ(x) − φ(x̂)‖2), while other non-

Gaussian likelihoods are also possible.

Loss of GAN, LGAN: Following [19], our goal is to train

the discriminator such that cLSTM classifies reconstructed

feature sequences x̂ as ‘summary’ and original feature se-

quences x as ‘original’. In order to regularize this training,

we additionally enforce that cLSTM learns to classify ran-

domly generated summaries x̂p as ‘summary’, where x̂p is

reconstructed from a subset of video frames randomly se-

lected by sampling from a given prior distribution. In this

paper, for this prior, we consider the uniform distribution.

This gives:

LGAN = log(cLSTM(x)) + log(1− cLSTM(x̂))
+ log(1− cLSTM(x̂p)),

(4)

where cLSTM(·) denotes the binary soft-max output of

cLSTM.

Given the above definitions of Lreconst and LGAN, as well

as Lsparsity explained in Sec. 6, we update the parameters

θs, θe, θd and θc using the Stochastic Gradient Variational

Bayes estimation [17, 16], adapted for recurrent networks
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[3]. Algorithm 1 summarizes all steps of our training. Note

that Algorithm 1 uses capital letters to denote a mini-batch

of the corresponding variables with small-letter notation in

the previous text.

Algorithm 1 Training SUM/GAN model

1: Input: Training video sequences

2: Output: Learned parameters {θs, θe, θd, θc}.
3: Initialize all parameters {θs, θe, θd, θc}
4: for max number of iterations do

5: X ← mini-batch from CNN feature sequences

6: S ← sLSTM(X) % select frames

7: E = eLSTM(X,S) % encoding

8: X̂ = dLSTM(E) % reconstruction

9: Sp ← draw samples form the uniform distribution

10: Ep = eLSTM(X,Sp) % encoding

11: Xp = dLSTM(ESp
) % reconstruction

12: % Updates using Stochastic Gradient:

13: {θs, θe}
+
← −▽(Lreconst + Lprior + Lsparsity)

14: {θd}
+
← −▽(Lreconst + LGAN)

15: {θc}
+
← +▽(LGAN) % maximization update

16: end for

6. Variants of our Approach

This section explains our regularization of learning. We

use the following three types of regularization, which define

the corresponding variants of our approach.

Summary-Length Regularization penalizes having a

large number of key frames selected in the summary as:

Lsparsity =

∥
∥
∥
∥
∥

1

M

M∑

t=1

st − σ

∥
∥
∥
∥
∥
2

(5)

where M is the total number of video frames, and σ is an

input hyper-parameter representing a percentage of frames

that we expect to be selected in the summary. When our

approach uses Lsparsity, we call it SUM-GAN.

Diversity Regularization enforces selection of frames

with high visual diversity, in order to mitigate redundancy

in the summary. In this paper, we use two standard def-

initions for diversity regularization – namely, (i) Determi-

nantal Point Process (DPP) [38, 7, 43]; and (ii) Repelling

regularizer (REP) [45].

Following [43], our DPP based regularization is defined

as:

Ldpp
sparsity = − log(P (s)) (6)

where P (s) is a probability that DPP assigns to the se-

lection indicator s. We compute P (s;L) = det(L(s))
det(L+I) ,

where L is an M × M similarity matrix between every

two hidden states in eLSTM, I is an identity matrix and

L(s) is a smaller square matrix, cut down from L given s.

Let et be the hidden state of eLSTM at time t. For time

steps t and t′ the pairwise similarity values are defined as

Lt,t′ = stst′etet′ .

When our approach uses Ldpp
sparsity, we call it SUM-

GANdpp.

For repelling regularization, we define

Lrep
sparsity =

1

M(M − 1)

∑

t

∑

t′ 6=t

(
e
⊤
t et′

‖et‖‖et′‖

)

(7)

and call this variant of our approach as SUM-GANrep.

Keyframe Regularization is specified for the super-

vised setting where ground-truth annotations of key frames

are provided in training. This regularization enables a fair

comparison of our approach with recently proposed super-

vised methods. Note that we here consider importance

scores as 2D softmax outputs {st}, rather than scalar values

as introduced in Sec. 4. We define the sparsity loss as the

cross-entropy loss:

Lsup
sparsity =

1

M

∑

t

cross-entropy(st, ŝt). (8)

We call this variant of our approach as SUM-GANsup.

7. Results

Datasets. We evaluate our approach on four datasets:

SumMe [10], TVSum [34], Open Video Project (OVP)

[24, 2], and Youtube [2]. 1) SumMe consists of 25 user

videos. The videos capture multiple events such as cooking

and sports. The video contents are diverse and include both

first-person and third-person camera. The video lengths

vary from 1.5 to 6.5 minutes. The dataset provides frame-

level importance scores. 2) TVSum contains 50 videos from

YouTube. The videos are selected from 10 categories in the

TRECVid Multimedia Event Detection (MED) (5 videos

per category). The video lengths vary from 1 to 5 min-

utes. Similar to SumMe, the video contents are diverse and

include both ego-centric and third-person camera. 3) For

OVP, we evaluate on the same 50 videos used in [2]. The

videos are from various genres (e.g. documentary, educa-

tional) and their lengths vary from 1 to 4 minutes. 4) The

YouTube dataset includes 50 videos collected from web-

sites. The duration of the videos are from 1 to 10 minutes

and the content include cartoons, news and sports.

Evaluation Setup. For a fair comparison with the state

of the art, the keyshot-based metric proposed in [43] is used

for evaluation. Let A be the generated keyshots and B the

user-annotated keyshots. The precision and recall are de-

fined based on the amount of temporal overlap between A

and B as follows:
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precison =
duration of overlap between A and B

duration of A

recall =
duration of overlap between A and B

duration of B
(9)

Finally, the harmonic mean F-score is used as the evalu-

ation metric. We follow the steps in [43] to convert frame-

level scores to key frames and key shot summaries, and vice

versa in all datasets. To generate key shots for datasets

which only provide key frame scores, the videos are ini-

tially temporally segmented into disjoint intervals using

KTS [26]. The resulting intervals are ranked based on their

importance score where the importance score of an interval

is equal to the average score of the frames in that interval.

A subset of intervals are selected from the ranked intervals

as keyshots such that the total duration of the generated key

shots are less than 15% of the duration of the original video.

For datasets with multiple human annotations (in the

form of key shots or key frames), we follow the standard

approach described in [11, 34, 43] to create a single ground-

truth set for evaluation. While evaluating our SUM-GANsup

model, we used the same train, test and validation split as

in [43]. For fair comparison, we run it for five different ran-

dom splits and report the average performance.

Implementation Details: For fair comparison with

[43], we choose to use the output of pool5 layer of the

GoogLeNet network [38] (1024-dimensions), trained on

ImageNet [32], for the feature descriptor of each video

frame. We use a two-layer LSTM with 1024 hidden units at

each layer for discriminator LSTM (cLSTM). We use two

two-layer LSTMs with 2048 hidden units at each layer for

eLSTM and dLSTM respectively. It is shown in [35] that a

decoder LSTM which attempts to reconstruct the reverse se-

quence is easier to train. Similarly, our dLSTM reconstruct

the feature sequence in the reverse order. Note that while

presenting x and x̂ as the cLSTM input, both sequences

should have similar ordering in time.

We initialize the parameters of eLSTM and dLSTM,

with the parameters of a pre-trained recurrent autoencoder

model trained on feature sequences from original videos.

We find out that this helps to improve the overall accuracy

and also results in faster convergence.

The sLSTM network is a two-layer bidirectional LSTM

with 1024 hidden units. The output is a 2-dimensional soft-

max layer in the case of SUM-GANsup. We train our frame-

work with Adam optimizer using the default parameters.

Baselines: It is important to point out that considering

the generative structure of our approach and the definition

of the update rules in Alg. 1, it is not possible to entirely re-

place subnetworks of our model baselines. Instead, in addi-

tion to different variations of our approach defined in sec. 6,

we also evaluate the following baselines:

Method SumMe TVSum OpenVideo YouTube

SUM-GAN 38.7 50.8 71.5 58.9

SUM-GANbas 35.7 50.1 69.8 57.1

SUM-GANw/o-GAN 34.6 49.5 69.3 56.9

SUM-GANw/o-sp 37.2 50.4 71.5 58.4

SUM-GANrep 38.5 51.9 72.3 59.6

SUM-GANdpp 39.1 51.7 72.8 60.1

SUM-GANsup 41.7 56.3 77.3 62.5

Table 1: Comparison of different variations of our genera-

tive video summarization on benchmark datasets. The result

for SUM-GAN is reported for σ = 0.3.

1) SUM-GANbas which does not use the sparsity regu-

larization,

2) SUM-GANw/o-GAN which does not include LGAN

while updating {θd},
3) SUM-GANw/o-sp which does not consider random

summaries while training GAN, i.e. it replaces (4) with the

followings:

LGAN = log(cLSTM(x)) + log(1− cLSTM(x̂)).

7.1. Quantitative Results

Table 1 summarizes the accuracy of different variations

of our approach. As is expected, the model with addi-

tional frame-level supervision, SUM-GANsup, outperforms

the unsupervised variants by (2-5%).

One interesting observation is that although explicit reg-

ularization of the model with ‘diversity regularizers’ (SUM-

GANdpp and SUM-GANrep) performs slightly better than

the variant of our model with ‘length regularizer’ (SUM-

GAN) the difference is not statistically significant. Fur-

thermore, in the case of SumMe, SUM-GAN performs

better than SUM-GANrep. This is particularly important

because it verifies our main hypothesis that a good sum-

mary should include a subset of frames which provide

similar content representation as of the original frame se-

quences. This suggests that if we constrain the summary to

be shorter in length, implicitly the frames will be diverse.

We also observe that SUM-GANdpp performs better than

SUM-GANrep in all four datasets. We believe that this is

mainly because of the fact that unlike the repelling regular-

izer, DPP is non-linear and can reinforce stronger regular-

ization. Comparing the accuracy of SUM-GANw/o-GAN with

SUM-GAN shows that training with the combined losses

from the VAE and GAN improves the accuracy.

We are particularly interested in comparing our perfor-

mance in contrast with prior unsupervised and supervised

methods. This comparison is presented in table 2. As

shown, our unsupervised SUM-GANdpp model outperforms

all unsupervised approaches in all datasets. For SumMe,

our approach is almost 5% better than the state-of-the-art

unsupervised approaches. More importantly, the accuracy
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Method SumMe TVSum OpenVideo YouTube

[2] 33.7 - 70.3 59.9

[21] 26.6 - - -

[15] - 36.0 - -

[34] 26.6 50.0 - -

[4] - - 63.4 -

[23] - - 57.6 -

[44] - 46.0 - -

SUM-GANdpp 39.1 51.7 72.8 60.1

(a) Unsupervised Approaches

Method SumMe TVSum OpenVideo YouTube

[11] 39.7 - - -

[42] 40.9 - 76.6 60.2

[10] 39.3 - - -

[43] 38.6 54.7 - -

[7] - - 77.7 60.8

SUM-GANsup 41.7 56.3 77.3 62.5

(b) Supervised Approaches

Table 2: Comparison of our proposed video summarization approach compared to state of the art. The reported results from

the state of the art are from published results. Note that [42, 7] use only 39 sequences of non-cartoon videos.

Method SumMe TVSum

[42] 40.9 -

[43] 42.9 59.6

SUM-GAN 41.7 58.9

SUM-GANrep 42.5 59.3

SUM-GANdpp 43.4 59.5

SUM-GANsup 43.6 61.2

Table 3: Comparison of different variations of our gen-

erative video summarization with the state of the art for

SumMe and TVSum datasets when the training data is aug-

mented with videos from OVP and YouTube datasets. For

[43], results w/o domain adaptation are reported

of SUM-GANdpp is comparably close to the supervised

methods in TVSum, OVP and YouTube datasets.

Comparing with the state-of-the-art supervised ap-

proaches, our supervised variant, SUM-GANsup, outper-

forms in all datasets except OVP. Even in the case of OVP,

we are statistically close to the best reported accuracy with

0.4% margin. We hypothesize that the accuracy boost is

mainly because of the additional learning signal from the

cLSTM. Note that the discriminator observes a longer se-

quence and classifies based on a learned semantic represen-

tation of the feature sequence. This enables the discrim-

inator to provide a more informative signal regarding the

importance of the frames for content similarity.

Zhang et al. [43] augment the SumMe and TVSum

datasets with OVP and YouTube datasets and improve the

accuracy on SumMe and TVSum. Table 3 shows the ac-

curacy results in comparison with results reported in [43]

when training dataset is augmented. Except for SUM-

GANsup, which we use 80% of the target dataset in training,

for the unsupervised variants of our approach we use all

four datasets in training. The most important observation

is that one of our unsupervised variations, SUM-GANdpp,

outperforms the state of the art in SumMe. This shows that

if trained with more unsupervised video data, our model

Figure 4: F-score results for different values of σ on

SumMe, TvSum, OpenVideo, and YouTube.

Method SumMe TVSum

[34] - 50.0

[42] - 60.0

[43] 38.1 54.0

SUM-GAN 37.8 53.2

SUM-GANrep 38.8 54.1

SUM-GANdpp 41.2 53.9

SUM-GANsup 39.5 59.5

Table 4: Comparison of different variations of our gen-

erative video summarization with the state of the art for

SumMe and TVSum datasets when using shallow features.

is able to learn summaries which are competitive with the

models trained using key frame annotations.

Finally, we evaluate the performance of our approach for

different percentages of σ values for our SUM-GAN model.

Fig. 4 shows the resulting F-score values for different σ’s on

four different datasets. While the performance is consistent

for 0.3 ≤ σ ≤ 0.5, it drops rapidly as σ → 1 or σ → 0.

7.2. Comparison with Shallow Features

We verified the generalizability of our video summariza-

tion approach to non-deep features by evaluating our model
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(a) Sample frames from video 15 (indexed as in [34])

(b) SUM-GAN (c) SUM-GANrep

(d) SUM-GANdpp (e) SUM-GANsup

Figure 5: Example summaries from a sample video in TvSum [34]. The blue bars show the annotation importance scores.

The colored segments are the selected subset of frames using the specified method.

with the shallow features employed in [42, 43]. Table 4

shows the performance of our model compared to the state-

of-the-art models which use shallow features. Besides the

reported results in [42] for TvSum, where the shallow fea-

tures outperform the deep features, our model consistently

performs better the state of the art. Unlike [42], our model

grounded on deep features still performs better than the

same model grounded on shallow features.

7.3. Qualitative Results

To better illustrate the temporal selection pattern of dif-

ferent variations of our approach, we demonstrate the se-

lected frames on an example video in Fig. 5. The blue

background shows the frame-level importance scores. The

colored regions are the selected subsets for different meth-

ods. The visualized key frames for different variants sup-

ports the result presented in Table 1. Despite small varia-

tions, all four approaches cover the temporal regions with

high frame-level score. Most of the failure cases occurred

in videos which consist of frames with very slow motions

and no scene-change.

8. Conclusion

We propose a generative architecture based on varia-

tional recurrent auto-encoders and generative adversarial

networks for unsupervised video summarization to select

a subset of key frames. The main hypothesis is that the

learned representation of the summary video and the origi-

nal video should be similar. The summarizer aims to sum-

marize the video such that the discriminator is fooled and

the discriminator aims to recognize the summary videos

from original videos. The entire model is trained in an ad-

versarial manner where the GAN’s discriminator is used to

learn a discrete similarity measure for training the recur-

rent encoder/decoder and the frame selector LSTMs. Varia-

tions of our approach are defined using different regulariza-

tions. Evaluation on benchmark datasets show that all un-

supervised variations of our approach outperform the state

of the art in video summarization by 2-5% and provides a

comparable accuracy to the state-of-the-art supervised ap-

proaches. We also verified that the supervised variation of

our approach outperforms the state of the art by 1-4%.
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