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Abstract. The branching of un,symmetric equilibrium states from axisymmetric
equilibrium states for clamped circular plates subjected to a uniform edge thrust and
a uniform lateral pressure is analyzed in this paper. The branching process is called
wrinkling and the loads at which branching occurs are called wrinkling loads. The non-
linear von Karman plate theory is employed. The wrinkling loads are determined by
solving numerically the eigenvalue problem obtained by linearizing about a symmetric
equilibrium state. The post-wrinkling behavior is studied by a perturbation expansion
in the neighborhood of the wrinkling loads.

1. Introduction. The nonlinear axisymmetric bending and buckling of circular
plates have been investigated extensively for a variety of boundary and loading con-
ditions. In this paper we shall study axially unsymmetric equilibrium states of clamped
circular plates that are deformed by uniform axisymmetric surface and edge loads.
We employ the nonlinear von Karman plate theory [1]. This yields a boundary-value
problem, which we call Problem B, for a coupled system of two fourth order partial
differential equations.

In particular, we shall seek unsymmetric states that branch from non-trivial axisym-
metric equilibrium states. We refer to this as wrinkling (cf. [2]) and the branch points,
i.e. the loads at which branching is initiated, as the wrinkling loads. To determine the
wrinkling loads, we linearize unsymmetric solutions of Problem B about axisymmetric
solutions. The eigenvalues of the resulting eigenvalue problem are wrinkling loads.
Since the coefficients in the differential equations of the eigenvalue problem are functions
of the axisymmetric solutions, the eigenvalue parameter appears nonlinearly.

We solve the eigenvalue problem numerically by a difference method that is es-
sentially equivalent to a procedure used by Huang [3] in a related study of the buckling
of spherical caps. The coefficients in the differential equations of the eigenvalue problem
are approximated by solving numerically the axisymmetric Problem B by the shooting
method described in [4], We use a formal perturbation expansion to analyze the un-
symmetric states near the wrinkling loads. The resulting linear problems are solved
numerically by the shooting and parallel shooting methods [4],
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If the plate is deformed by a uniform edge thrust only and the axisymmetric state
is a buckled equilibrium state, then the wrinkling is also called secondary buckling.
Friedrichs and Stoker [5] conjectured that secondary buckling may occur for simply
supported circular plates. Morozov [6] showed that for sufficiently large edge thrusts,
unsymmetric equilibrium states exist for the simply supported circular plate. In addition,
these unsymmetric states have less potential energy than all axisymmetric states for
the same value of the edge thrust. However, Morozov did not show that secondary
buckling occurs. Yanowitch [2] previously obtained results related to [6] for other
boundary and loading conditions. In this paper we obtain approximations of secondary
buckling loads for the clamped circular plate.

In the pure bending problem the edge thrust vanishes and the plate is deformed
only by the uniform surface pressure. The wrinkling loads are then the values of the
pressure at which unsymmetric states bifurcate from the unique axisymmetric state.

In the combined loading problem, the edge thrust and the pressure do not vanish.
We analyze this problem by keeping the thrust fixed and then increasing the pressure
from zero until wrinkling occurs. The axisymmetric state is the one obtained by this
loading process. If the thrust exceeds the lowest buckling load of the plate and the
pressure is zero, then the axisymmetric state is the lowest buckled state. The pressure
is then applied in the "direction that the plate is buckled;" i.e., the pressure acts to
increase the amplitude of the buckled state.

2. Formulation. The radius and thickness of the circular plate are denoted by
R and t. The applied axisymmetric loads are a uniform radial edge stress T and a uniform
surface pressure p. We employ a polar coordinate system r, 6 with respect to the plate's
center. The displacement normal to the midplane, and the midplane (membrane) stresses
are denoted respectively by W*(;r, 6), <rr(r, 0), ae(r, 6) and arB(r, 0). (The subscripts on cr
indicate components of stress. Subscripts r, 0 or x on any other variable indicate partial
differentiation.) The Airy stress function F*(r, S) is defined by

<7, = r~\rF* + FfL), ae = F* , <rrS = -(r"1^), . (2.1)

We define dimensionless variables and parameters by

x s r/R, W(x, 6) = CW*{r, e)/t, F(x, 6) s (C2/E?)F*(r, 6),

\ = -C\T/E)(fi/t)\ P = C\p/E){R/t)\ C = [12(1 - v2)]u\ (2.2)

Here E is Young's modulus and v is Poisson's ratio. The edge thrust parameter X is
positive when T < 0, i.e. when the thrust is compressive. The boundary value problem
of the von Karman plate theory, which we call Problem B, is given by

for x < 1, 0 < 6 < 2t, (2.3a)A2F = -(1/2) [IF, W],
A2W = P + [F, IF],

TF(1, e) = Wx(l, e) = 0, (2.3b)

F(l, e) = 0; FX 1, d) = -X, 0 < e < 2tt. (2.3c)

Here the Laplacian A and the nonlinear operator [y, h\ are defined for any two functions
g(x, 6) and h(x, 6) by
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A g = gxx + (1 /x)gx + (1 /x2)gee ,

[g, h] - x + x hoe] + Kx gx + x g2x[x ] J •
(2.4)

The boundary conditions (2.3b) imply that the edge is clamped and the conditions
(2.3c) imply, using (2.1) and (2.2), that 6) — T and are(R, 0) = 0. If P ^ 0 (P = 0)
and X = 0 (X > 0), then we refer to Problem B as a pure bending (buckling) problem.
If P 9^ 0 and X 7^ 0, then Problem B is the combined loading problem.

We denote any axisymmetric solution of Problem B by {W0(x), F0(x)}. We define
new dependent variables a(x) and y(x) by

<*(z) = W'0(x), y(x) = F'0(x), (2.5)

where a prime denotes differentiation with respect to x. Then Problem B for axisym-
metric solutions is reduced to [7]

Ly = — (l/2)a2, Lot = a7 + (P/2)x2, ^ ^

«(0) = 7(0) = 0, a(l) = 0, 7(1) = — X,

where the differential operator L is defined by

Lv(x) = x[(xv)' /x]'. (2.7)

We refer to the boundary-value problem (2.6) as Problem S. If X < 0 then Problem S
has a unique solution [8], If X is positive and sufficiently large then Problem S may have
non-unique solutions.

We seek unsymmetric solutions of Problem B which branch from a solution of
Problem S. For the pure buckling problem this corresponds to studying secondary
buckling from a buckled axisymmetric state. The physical mechanism that initiates
wrinkling is suggested by the following properties of the solutions of Problem S (see,
e.g., [5, 7]). We define a dimensionless, axisymmetric circumferential membrane stress
t(x) by

t(x) = C\R/t)\e{r)/E. (2.8)

In Fig. 1 we present graphs obtained from a numerical solution of Problem S with
P = 0 [7]. As X increases, a strip of large circumferential compressive stress develops
adjacent to the edge of the plate. The "width" of the strip decreases and the compres-
sive stress intensity increases as X increases. Thus for sufficiently large X the strip may
buckle unsymmetrically like a ring, i.e. the plate may buckle about the axisymmetric
buckled state by wrinkling near the edge into an unsymmetric state. Secondary buckling
is related to von Ivarman's concept of the ultimate load of rectangular plates buckled
by an edge thrust [9]. The width of the strip is related to the "effective width" of rec-
tangular plates.

In Figs. 2 and 3 we present graphs obtained from numerical solutions [7] of Problem
S with X = 0, X = 80, respectively. Thus wrinkling may occur for sufficiently large P
for the pure bending and the combined loading problems by the same mechanism as
in the pure buckling problem.

3. The wrinkling loads. To determine the wrinkling loads we express unsymmetric
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Fig. 1. The dimensionless axisymmetric circumferential membrane stress for the pure buckling problem,
Problem S with P = 0, for an increasing sequence of values of X. The solutions correspond to equilibrium

states on the branch emanating from the lowest axisymmetric buckling load \ = Xi = 14.7.

solutions {W(x, 6; P, X), Fix, 9; P, X)} of Problem B in the form

W(x, 6; P, X) = W0(x; P, X) + tw(x, 6; P,\, e) ^ ^

Fix, 6; P, X) = F0(x; P, X) + ejix, 6; P, X, e)

where {W0 , F0\ is a solution of Problem S and e is a small parameter. We insert (3.1)
into (2.3) and obtain
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A2/ + [W0 , w] = (—e/2)[w, »],

A2w — [W0 , f] — [F0 , w\ = «[/, w], (3.2)

w = wx = / = /# = 0, a: = 1.

62,600

Fig. 2. The dimensionless, axisymmetric, circumferential membrane stress for the pure bending prob-
lem, Problem S with X = 0, for an increasing sequence of values of P. A ring of large compressive stress
develops near the boundary as P increases. The width of the ring decreases and the intensity of the stress

increases as P increases. This indicates the possibility of wrinkling near the edge.
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24,500

Fig. 3. r(x) for Problem S with X = 80 and an increasing sequence of values of P. For P = 0, the
solution corresponds to an axisymmetric buckled state on the branch that bifurcates from X = Xi. The
development of a compressive ring as P increases, and the consequent possibility of wrinkling, is evident

from the graphs.

We linearize (3.2) by setting e = 0 in (3.2). This yields the eigenvalue problem

A2/(0> + [W0 , wm] = 0,

AV0) - [Wo , /<0>] - [F0 , u>(0)] = 0, (3.3)

„««> = «,<•> = /»> = /<0> = 0, x = I.

where wm = w(x, 6; P, X, 0), /C0) = f(x, 6; P, X, 0).
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For any pair of values of (P, X), w<0) = /<0) = 0 is a solution of (3.3). For the combined
loading problem, we shall determine for fixed values of X and a specific solution of
Problem S, the eigenvalues P = P0(X) of (3.3), i.e. the values of P for which (3.3) has
nontrivial solutions. The eigenvalues are wrinkling loads. Since {W0(x; P, X), F0(x; P, X)}
is a solution of Problem S, the eigenvalue parameter appears nonlinearly in (3.3). For
the pure buckling problem (P = 0) and a specific axisymmetric buckled state, we shall
determine values of X for which (3.3) has nontrivial solutions. Then X is the eigenvalue
parameter in (3.3). The eigenvalues are secondary buckling loads.

The eigenfunctions of (3.3) are separable. Without loss of generality they are given
by*

(3.4)

(3.5)

/(0> = yn(x-,P, X) sin nd,

w(0) = zn(x; P, X) sin nd

for n = 1, 2, ■ • ■ . Here {yn , zn} satisfy

Llyn + [Fo , z„]° = 0,

LX - [Wo , yn]° - [F0 , aj° = 0,

Vn = y'n = 2» = z'n = 0, for x = 1, (3.6a)

where [$0 , h]° and the differential operators Ln are defined by

L„h(x) = (1 /x)(xh')' — (n2 /x2)h, n = 1, 2, • • • ,

[$0 , h]° = (l/x){*Zh" + KW - (?n2/x)h]}.

Since the stresses and displacements are bounded and single-valued at x = 0, we
conclude from (2.1), (2.2), (3.1) and (3.4) that

2/„(0) = 2.(0) =0, n = 1, 2, ■ • • . (3.6b)

These equations also imply that ^(0) = 2^(0) = 0, n = 2, 3, ■ • ■ , and ^'(O) and £((0)
are arbitrary. However, we shall not explicitly need to use these conditions on the
derivatives. Thus the wrinkling loads P = P0(X, n) are determined by solving the
eigenvalue problems (3.5) and (3.6).

4. The numerical determination of the wrinkling loads. We numerically deter-
mined eigenvalues of (3.5) and (3.6) by a finite difference method essentially equivalent
to the method used by Huang [3] in a related study of spherical caps. Thus we define
new dependent variables un{x) and v„(x) by un = y" and vn = z'J. Then (3.5) is equivalent
to the following system of four second-order equations:

Mnu + Qny + (1 /x){W'0v + W'0'[z' - (n/x)z\\ = 0,

M„v + Qnz - (1 /x)\W'0u + W'0'[y' - (n2/x)y]\

- (1 /x){F'0v + F'0'[z' - (n2/x)z]} = 0, (4.1)

y" = u, z" = v,

* We can choose the coordinate system so as to remove a possible phase shift in 0.
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for the four-component vector

s(x) = (4.2)

y(x)

z(x)

u(x)

y(x).

We have omitted the subscript n on s and its components in (4.1) to simplify the notation.
The operators Mn and Qn are defined by

MJi = h" + -h' - (1 +22"2) h,
(4.3)

Qnh = (l±^h,+nW_=J)h.
x x

To obtain numerical solutions of (4.1) and (3.6), we divide the unit interval into N
equal intervals by the net points,

xj = j8, j = 0, 1, • • • , N, where 5 = l/N. (4.4)

Furthermore, we define the exterior net point xN+i by xN+1 = (N + 1)5. At each point
Xi, x2, • • ■ , xN , we approximate the derivatives in (4.1) by centered difference quotients.
We also use central difference approximations for the derivatives in (3.6a). This yields
the following system of algebraic equations for the mesh vectors S,- :

^,S,+1 + BjSj + C,S,_! = 0, j = 1, 2, • • • , N (4.5)

■DSjv+i + iSjv — DSif-i = 0. (4.6)
The four-component mesh vectors S, are assumed to converge to s(a:I) as 5 —> 0 for
j = 0, 1, ■ • • , N. The 4X4 matrices Aj , Bf , C,- , j = 1, 2, • • • , N, and D and E are
defined in Appendix A.

We conclude from the definition of C\ in Appendix A and (3.6b) that

G\S0 = 0 (4.7)

for arbitrary values of w(0) and v(0). Thus S0 is eliminated from (4.5). We eliminate
Sjv+i from (4.5) by using (4.6). The system (4.5) and (4.6) is then reduced to

QS = 0. (4.8)
Here Q is the block tridiagonal matrix defined by

'B1 A, 0 0 0 • • • 0

c2 b2 a2 0 0 • • • 0

0 C3 B3 A3 0 • • • 0
Q = [Ci , Bi , At] =

0

0 Cn-i Bn-i A v—i

0 C,0v B% .

(4.9)
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and and C " are defined by
K s -DA-n'Bn + E, CnN = -D{A~NlCN + I). (4.10)

I is the 4X4 unit matrix. The composite vector S has the components Si , S2, • • • , .
The values of P for which the algebraic system (4.8) has nontrivial solutions are

approximations to the wrinkling loads P0(\ n). To determine these values, we factor Q
into the product of a lower block triangular matrix L and an upper block triangular
matrix U, i.e.

Q = LU. (4.11)
Using the notation of (4.9), the block triangular matrices are given by

L = [U , I, 0], U m [0, U< , A,}. (4.12)

The 4X4 scalar matrices lt and U,- are defined by

h - c{u;l,,
U, ^Bi + C.Q,., , j = 2, 3, ••• , N - 1,
U1 = B, , (4.13a)

In ^ C°NU~NL, ,

Un = B"n + C°Qa-i ,

and the matrices Q, are recursively defined by

Qo = 0, Qj = , j = 1, 2, • ■ • , N - 1. (4.13b)
Therefore the factoring (4.11) is possible if and only if UL , U2 , • • • , UN-, are non-
singular.

We assume that the factoring is possible. Since det L = 1, (4.8) is equivalent to

US = 0. (4.14)

Therefore (4.8) has nontrivial solutions if and only if det U = 0. Since Ui , f7a , • • • ,
Un-i are non-singular, the condition det U = 0 is equivalent to

4>(P, n, X) = det UN = 0. (4.15)

The factoring was possible for all the calculations that were performed. Thus the wrinkling
loads P0(\, n) are approximated by the roots of (4.15).

Approximations for the roots of (4.15) were obtained by a chord method. That is,
for each pair (X, n) we evaluated <£ for an increasing sequence of values of P and then
located the sign changes in 4>. The results are discussed in the next section.

To evaluate for each pair (X, P), we require W0(xj ; P, X) and Fa(xj ; P, X), j =
0,1, ■ ■ ■ , N and their derivatives; see (4.13a), (4.10) and Appendix A. Approximations
of them were obtained from an accurate numerical solution of Problem S using the
shooting method described in [4], The net used in the solution of Problem S contained
the net (4.4).

When a root of (4.15) was determined, we obtained an eigenvector of (4.14) by first
evaluating S N as the normalized eigenvector of the 4X4 system

UNSN = 0. (4.16)
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Then it follows from (4.12) and (4.14) that the remaining components of S are deter-
mined by solving the recursions

U,Si = -A,Si+1 , j = N - 1, N - 2, ■ ■ ■ , 1. (4.17)

The subvectors S! , • • • , SN-! are uniquely determined in terms of SA- by (4.17) since
the U\ , j = 1, 2, • • ■ , N — 1 are nonsingular.

Acceptable values of S were determined from test calculations of P0 for sequence
of decreasing values of 8. We concluded that S = .02 was adequate for the accuracy
we desired in most of the calculations.

5. The numerical results for the wrinkling loads. The roots of (4.15) were deter-
mined by first fixing X and finding the roots of (4.15) for a sequence of values of n. Then
X was changed and the process was repeated. We determined only one root for each pair
(X, n), although other much larger roots may exist. Thus for each X that we considered
there were many roots, one for each value of n. In Table I we present the numerical
approximations of P0(0, n) for the pure bending problem for several values of n.

TABLE I

Numerical wrinkling loads for the pure bending problem

Po(0, n)

14

62,600

13

62,800

15

64,025

We denote the smallest positive wrinkling load for fixed X by Pe(X) and the cor-
responding value of n by nc(X), i.e. Pc(\) = P0(X, nc(X)). We refer to Pc as the critical
wrinkling load. In Table II and Fig. 4 we summarize numerically-determined values
of P„(X) and ne(X). For X < 100, /\(X) is essentially a linear function. It is approximated
by

Pc = 62600 - 480X, -5 < X < 100. (5.1)
We observe that for X > 100, nc decreases as X increases.

According to the mechanism described in Sec. 2, wrinkling is caused by the large
circumferential compressive stresses adjacent to the edge of the plate in the symmetric
state. This stress results from the combined effects of P and X. Since small (large) values
of X create weak (strong) compressive strips, large (small) values of P are required to
induce wrinkling. This explains the decrease of fc(X) as X increases in the range — 5 <
X < 100.

At X = 110, the plate wrinkles without lateral pressure. Thus X = 110 is a secondary
buckling load for the pure buckling problem. Other secondary buckling loads occur at
X = 133 and X = 152.5. Presumably there are others for larger values of X. We observe
that for the pure buckling problem, nc(X) increases with the magnitude of the secondary
buckling loads.

The interval 100 < X < 110 presumably is a transition region in which the dominant
cause of wrinkling shifts from P to X. For X > 110 the wrinkling is primarily a con-
sequence of the compressive ring supplied by the edge thrust. We observe that except
near the secondary buckling loads, nc(\) generally increases.
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TABLE II

Numerically-determined critical wrinkling loads

-5

10

20

40

60

80

100

110

120

130

131

133

134

135

140

150

152.5

160

180

200

14

14

13

13

13

12

11

10

10

10

10

11

12

12

13

15

17

64,960

62,600

57,750

52,900

43,650

34,105

24,500

14,500

750

1,000

600

1,500

1,600

800

600

600

1,000

1,600

The numerical eigenfunctions evaluated from (4.16) and (4.17) are sketched in Figs.
5 for representative values of X. The eigenfunctions essentially vanish near the center
of the plate and then vary rapidly to a maximum near the edge. Thus when the plate
wrinkles, the interior deforms nearly axisymmetrically. The unsymmetric deformation
occurs near the edge, as we suggested in Sec. 2.
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60 80 100 120 140 160 180

Fig. 4. The numerical results for the critical wrinkling load PC(X).

The pure bending problem was studied previously by Panov and Feodosev [10]
by a Galerlcin procedure. Approximations were obtained in the form

W = (1 - x2)\A + Bx4 cos nd) (5.2)

for any integer n > 2. We denote the Panov and Feodosev wrinkling loads and critical
wrinkling load by P*„(n) and P*. Their results are summarized in Table III (cf. Table I).
Since P* = /J*(2) = 0, Panov and Feodosev found that in addition to the axisymmetric
state there is an unsymmetric state which branches from P = 0. However, this un-
symmetric state is spurious because of Piechocki's [11] uniqueness theorem. This theorem
states that there is a unique solution of Problem B with X = 0 for all sufficiently small
P. Since we can establish the existence of a solution of Problem S with X = 0 for all
sufficiently small P using, for example, the analysis in [7], we conclude that an unsym-
metric solution cannot branch from P = 0. Furthermore, we observe by comparing
Tables I and III that Panov and Feodosev's wrinkling loads and corresponding wave
numbers differ substantially from the present results. Thus, (5.2) may be too inaccurate
to adequately describe the wrinkling of the plate.

6. The post-wrinkling behavior. We employ a formal perturbation expansion to
obtain approximations of the solution of Problem B for P near the eigenvalues P0 of
(3.3). Thus we assume that w, / and P in (3.1) are analytic in e for sufficiently small e
and that P(e) —> P0 as e —> 0. That is, we seek solutions of Problem B in the form (3.1)
with

oo

w(x, 0;P(e), t) = F. w{m)(x, 6)em,
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Fig. 5a. The y component of the numerically-determined and normalized eigenfunctions (wrinkling
modes) at P = Pc for a sequence of values of X. The value of n for each X is given in Table II.

/(*, 6;P(e),e) = Efm,(x, 0)6", (6.1)
r/»"=0

p<?) = £ p.~,
0

and we expand the solution {W0(x) P(e)), F0(x; P(e))\ of Problem S in a power series
in €. We define the parameter e by

6 = ff [(W - W0)2 + (F — F0)2] dA = e2 ff (iv2 + f) dA (6.2)
where the integrals are over the unit circle. Other definitions of e can be used. The
coefficients io(rn>, /<m) and Pm are determined by substituting (3.1), (6.1) and the expan-
sions for W0 and F0 into (3.2) and (6.2). Then, by equating coefficients of the same
powers of e, we obtain a sequence of linear boundary-value problems and a sequence of
normalizing conditions. For m = 0 we obtain the eigenvalue problem (3.2) and the
normalizing condition

[J [w(0>2 + /(0)2J dA = 1. (6.3)
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X=80

O
X
N 15

10

0
J L.

.5 1.0 X

Fig. 5b. The z component of the numerically-determined eigenfunctions at P = Pc ■

Thus {wm, /<0>} is a normalized eigenfunction and P0 is the eigenvalue. For m > 0
the boundary-value problems are inhomogeneous and the corresponding homogeneous
problems have nontrivial solutions since they are the same as (3.2). The solvability
conditions for the inhomogeneous problems then give Pm as integrals of ww and /a>
for k < m. The solutions of the linear boundary-value problems, which are required
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TABLE III

Panov and Feodosev [10] wrinkling loads P* (n) for the pure bending problem,

P*W 25,415

9

26,142 27,333 34,010 50,849

to evaluate these integrals, were obtained by separating out the 6 dependence. Then
the resulting boundary-value problems were solved numerically by the shooting and
the parallel shooting methods described in [4], The parallel shooting method was re-
quired for some of the equations since their coefficients are large for the values of n
that we considered. The amplitudes of the complementary solutions were determined
from the appropriate normalizing conditions in (6.3).

In all cases that we studied, Pi = 0. In Table IV we give some representative nu-
merical values of P2(X) for the solutions branching from P„(X). We observe that the
numerically-determined values of P2 are negative and small compared to Pc . To deter-
mine whether these values are numerically significant or whether they are approxima-
tions of P2 = 0, we obtained P2 for the sequence of finer meshes 8 = 1/100, 8 = 1/200
and 8 = 1/400 and representative values of X. The corresponding values of P2 changed
only slightly. Hence in the following discussion we shall assume that P2 < 0, as suggested
by the numerical results. (If indeed P2 = 0, then we must determine higher-order terms
in (6.1) to study the branching process near Pe .)

For small e we have, from (6.1),

P = Pc + P262 + 0(e3). (6.4)

We say that a solution branches down (up) from a wrinkling load P0 if it exists near
P = P0 and « = 0, only for P < P0 (>P0). The branching is downward at the values
of Pc that we studied since P2 < 0. The potential energies of the unsymmetric states
for P < Pc were less than the potential energy for the symmetric state at P = Pe .

TABLE IV

The post-wrinkling numerical results for solutions branching from P«(X)

Pc -P* X 102

62,600 4.08

10 57,750 5.74

20 52,900 7.85

40 43,650 16.18

60 34,105 39.95

80 24,500 68.02
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To interpret the numerical results we consider a hypothetical experiment in which X
is held fixed and P is increased from zero. As P increases the plate is in an axisymmetric
equilibrium state. Suppose for the present that the plate does not jump or is constrained
from jumping from the axisymmetric state to another equilibrium state. By definition,
no equilibrium states branch from the axisymmetric state for P < Pc . Since jumping
is not permitted, the plate remains in the axisymmetric state until P reaches Pc . At
P = Pc it is possible for the plate to deform continuously from the axisymmetric to
an unsymmetric state. However, the unsymmetric solution branches downward from
Pc . Since we consider P as increasing through Pe , the smooth transition to the un-
symmetric state at P = Pc cannot occur. In general, if an unsymmetric solution branches
up (down) a smooth transition from the symmetric to the unsymmetric state can occur
only for P increasing (decreasing). We have calculated P2 for the first one or two wrinkling
loads above Pc for representative values of X. In all cases we found that P2 < 0. This
does not preclude the possibility that P2 > 0 for some sufficiently large wrinkling load.
At these loads, the smooth transition to an unsymmetric state could occur.

We now permit discontinuous transitions from the symmetric to unsymmetric
states, i.e. we allow jumping to occur. Then wrinkling may occur as P approaches Pc
from below. In any real experiment the disturbances may be sufficiently large to trigger
a jump from the axisymmetric state to an unsymmetric state. The plate need not jump
to the solution branching down from Pc . It could jump to another unsymmetric state.
The possibility of jumping depends on the initial disturbances and the number and
proximity of unsymmetric solutions. However, the jumping is likely to occur for P
just below Pc since there are unsymmetric states close to the symmetric state. If the
potential energies of the wrinkled states near P = Pc are less than the corresponding
potential energy of the symmetric state then jumping might be "easier".

Thus the numerical results suggest that if wrinkling occurs at or near P = Pe then
it occurs by jumping. If wrinkling by a smooth transition from the symmetric state
is possible, then it must occur at a wrinkling load >PC .

Appendix A. The matrices of the difference equations. The sub-matrices of the
algebraic equations (4.5) and (4.6) are defined by

Aj = 5'

1 + -V W'0'(x,) j + 1
2f 82 2j j

0

-Wj'jx,) (1 + 2n2 _ F'0'(Xi)\ j + 1
2j \ 2fh2 2j J U j
-1 0 0 0

0 -1 0 0.

Bj = S~

nV-4) -n2Wl'(x,) (n , l+2n2\ SW&x,)

n2W'n

•4 t2 -2 I - l >2 Ij 8 j \ ] } j

20 r o
0 2 0 82

!pi -WW _[2+0+2»a+i!5Ksl]



UNSYMMETRIC WRINKLING OF CIRCULAR PLATES 91

C, = 85

0-(1 + 2n2) -Wj'(x,) j - 1
2f <j2 2j j

Wj'jx,) (1 + 2n2 _ j - 1
2; \-2j3 62 + 2j ) ° j

-1 0 0 0

0 -1 0 0 J
0 0 0 oj
0 0 0 0
10 0 0

0 10 0.

j = 1, 2, • • • , N — 1,

E =

10 0 0

0 10 0

0 0 0 0

0 0 0 0

An — CN — —(2/S)D.

The matrix BN is obtained by replacing the first two rows in B, by zeros.
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