
Untangled Monotonic Chains and

Adaptive Range Search✩

Diego Arroyueloa,1, Francisco Claudeb, Reza Dorrigivb, Stephane Durocherc,
Meng Heb, Alejandro López-Ortizb, J. Ian Munrob, Patrick K. Nicholsonb,

Alejandro Salingerb, Matthew Skalac,∗

aYahoo! Research Latin America, Chile
bCheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
cDepartment of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada

Abstract

We present the first adaptive data structure for two-dimensional orthogonal
range search. Our data structure is adaptive in the sense that it gives improved
search performance for data that is better than the worst case [8]; in this case,
data with more inherent sortedness.

Given n points on the plane, the linear-space data structure can answer
range queries in O(log n+ k+m) time, where m is the number of points in the
output and k is the minimum number of monotonic chains into which the point
set can be decomposed, which is O(

√
n) in the worst case. Our result matches

the worst-case performance of other optimal-time linear-space data structures,
or surpasses them when k = o(

√
n). Our data structure can be made implicit,

requiring no extra space beyond that of the data points themselves [16], in which
case the query time becomes O(k logn+m). We also present a novel algorithm
of independent interest to decompose a point set into a minimum number of
untangled, similarly directed monotonic chains in O(k2n+ n logn) time.

✩This research was supported through the NSERC Discovery Grants Program, the Canada
Research Chairs Program, and an NSERC Strategic Grant on Optimal Data Structures for
Organization and Retrieval of Spatial Data. A preliminary version of these results appeared
at the International Symposium on Algorithms and Computation [2].

∗Corresponding author.
Email addresses: darroyue@dcc.uchile.cl (Diego Arroyuelo),

fclaude@cs.uwaterloo.ca (Francisco Claude), rdorrigiv@cs.uwaterloo.ca (Reza Dorrigiv),
durocher@cs.umanitoba.ca (Stephane Durocher), mhe@cs.uwaterloo.ca (Meng He),
alopez-o@cs.uwaterloo.ca (Alejandro López-Ortiz), imunro@cs.uwaterloo.ca (J. Ian
Munro), p3nichol@cs.uwaterloo.ca (Patrick K. Nicholson), ajsalinger@cs.uwaterloo.ca
(Alejandro Salinger), mskala@ansuz.sooke.bc.ca (Matthew Skala)

1Much of this work took place while this author was a visitor at the University of Waterloo.

Preprint submitted to Elsevier December 17, 2010

Manuscript



1. Introduction

Applications in geographic information systems, among others, require struc-
tures that can store and retrieve spatial data efficiently in both space and time.
In this work we describe a data structure and corresponding algorithm for two-
dimensional orthogonal range search, a commonly encountered spatial data re-
trieval problem. Our data structure is adaptive, giving improved query perfor-
mance for data with more inherent sortedness; and can be implicit, requiring
no added storage space beyond that of the data points themselves. Along the
way we present an algorithm of independent interest for decomposing a set of
points into untangled monotonic chains.

The problem of two-dimensional orthogonal range search can be defined as
follows: let P = {p1, p2, . . . , pn} be a set of n points in the plane, and let
r = [x1, x2] × [y1, y2] be a query range. The orthogonal range search problem
asks for all points in P ∩ r, that is, all pi ∈ P such that x1 ≤ x(pi) ≤ x2 and
y1 ≤ y(pi) ≤ y2, where x(pi) and y(pi) denote the x and y coordinate values of
point pi respectively. An orthogonal range search data structure preprocesses
the set P in order to efficiently answer orthogonal range queries; a natural goal
is to balance the conflicting objectives of minimizing both the space required by
the data structure and the time required to answer queries.

Our data structure is inspired by the range-trees of Lueker [14], which achieve
fast queries at the cost of superlinear storage space for two dimensions by in-
dexing along one dimension with a balanced binary tree, and then making each
node of that tree the root of another tree that indexes the second dimension.
The important insight is that if our data were monotonic, with the same order-
ing along both dimensions, then we could support fast query time like that of
range trees while only requiring a single linear-space tree. Our data might not
be monotonic in general, but we can always partition it into monotonic chains.
The resulting data structure consumes O(n) space and can answer queries in
worst-case time O(k logn + m), where n is the number of points in the data
set, m is the number of points returned, and k is the number of chains in a
minimal decomposition, which is O(

√
n) in the worst case. The data structure

can be made implicit, requiring no storage space beyond that necessary to store
the point coordinates while keeping the query time of O(k logn + m); or, in
the alternative, we can apply the fractional cascading technique of Chazelle and
Guibas [6] to reduce the query time to O(log n+ k +m) with O(n) space.

For optimal query performance it is preferable that the monotonic chains
should be untangled. That is, when successive vertices are connected by line
segments, the chains should not intersect each other. This requirement does
not increase the minimal number of chains. We present a novel algorithm for
finding a minimal set of untangled chains (all monotonic in the same direction) in
O(k2n+n logn) time; this solution for the untangling problem is of independent
interest.

2



2. Previous Work

Because of its importance, the two-dimensional orthogonal range search
problem has received significant attention in the literature, and many data struc-
tures are known, providing different trade-offs of time and space. Decomposition
of points into monotonic chains has also been well studied. We review here the
main related existing work.

2.1. Minimal monotonic chain decompositions

Any set of n points can be partitioned into some number k of chains such that
for each chain the y coordinate is monotonically increasing or decreasing as the
x coordinate increases. When all chains must be ascending (or all descending),
the problem of finding a minimal chain decomposition is well studied. With
worst-case data the minimal number of chains all in the same direction may
be Θ(n), even given a choice of the direction. Supowit gives an algorithm for
minimizing the number of chains in one direction with worst-case running time
Θ(n logn) [18], which is optimal [5].

If both ascending and descending chains are allowed simultaneously, then
the minimal number of chains is O(

√
n), and finding a decomposition into the

minimal number of chains is NP-hard [9]. However, an algorithm of Fomin,
Kratsch, and Novelli achieves a constant-factor approximation of the minimal
number of chains in O(n3) time [10]. An algorithm of Yang, Chen, Lu, and
Zheng generates a decomposition into at most ⌊

√

2n+ 1/4−1/2⌋ chains of both
types (which is the minimal number for worst-case data) in O(n3/2) time [19],
using techniques developed by Bar-Yehuda and Fogel [3]. They do not prove any
guaranteed approximation factor when the minimal number of chains is o(

√
n),

but comment that in practical experiments their algorithm often achieves very
close to the constant-factor approximation value.

2.2. Data structures for orthogonal range search

Many efficient data structures exist for the two-dimensional orthogonal range
search problem. For instance, R-trees [11] are a multidimensional extension of
B-trees. An R-tree is a height-balanced tree where each node represents a
rectangular region of the underlying space. Thus, the data structure divides the
space with hierarchically nested (and possibly overlapping) minimum bounding
rectangles. The search algorithm descends the tree, recursing into every subtree
whose bounding rectangle overlaps the query. In the worst case a search could
be forced to examine the entire tree in O(n) time, even when the query rectangle
is empty. However, R-trees are simple to implement, use linear space, tend to
perform much better in practice than the theoretical worst case, and are popular
as a result.

Range trees [14] support multidimensional range queries by generalizing bal-
anced binary search trees to multiple dimensions. The data points are indexed
along one dimension in a standard balanced binary search tree. At each node
v of that tree, we collect all the descendants of v and store a new balanced
binary search tree of all those points indexed along the second dimension. A

3



Table 1: Summary of orthogonal range query results; n is the number of points in the database,
m is the number of points returned, and k is the number of chains.

Data structure Ref. Worst-case search time Space

R-trees [11] O(n) O(n)
kd-trees [4, 15] O(

√
n+m) implicit

PR-trees [1] O(
√
n+m) O(n)

Range trees [14] O(log n+m) O(n log n)
Nekrich [17] O(log n+m logǫ n) O(n)
This paper O(log n+ k +m) O(n)
This paper O(k logn+m) implicit

rectangle query descends the first tree to do a one-dimensional range search in
O(log n) time, then searches along the other dimension for an overall time of
O(log2 n+m). More advanced techniques, like fractional cascading [6], allow the
two-dimensional search time to be reduced to O(log n+m); and the technique
can also be extended to higher dimensions at some cost in search time.

Alternative solutions exist that require linear space like R-trees but improve
on the worst-case search time. Kanth and Singh show thatO(

√
n+m) worst-case

search time is optimal for non-replicating (or linear-space) data structures [12].
Bentley achieves it with kd-trees [4], which recursively divide a k-dimensional
space with hyperplanes. Munro describes an implicit kd-tree, with optimal
search time and no storage used beyond that of the points themselves [15].
Arge et al. describe priority R-trees, or PR-trees [1], also with O(

√
n + m)

worst-case search time. In a recent result, Nekrich [17] presents a data structure
that uses linear space with search time O(log n+m logǫ n), trading suboptimal
performance in m for better performance in n. See Table 1 for a comparison of
methods.

To summarize, R-trees are practical, but do not have proven good worst-case
search times, and range trees have an impractical O(n log n) space requirement.
There are alternative solutions requiring linear space and providing better search
time. However, none of these can profit from “easy” data. Here we present
an adaptive data structure. When the data can be decomposed into a small
number of monotonic chains, our search performance improves. If the number
of chains k = o(

√
n), we surpass the performance of optimal-time linear-space

data structures [1, 4, 12, 15].

3. Finding Untangled Chains

In the next section we describe an adaptive algorithm and data structure
for two-dimensional orthogonal range search on data decomposed into a union
of monotonic chains. The data structure performs better when there are fewer
chains. Furthermore, although the worst-case asymptotic time does not depend
on this, we can search more efficiently by assuming that the chains are untangled:
successive data points can be connected with line segments with no segments

4



Figure 1: Untangling a pair of segments.

intersecting. That raises the question of how to find an optimal untangled chain
decomposition, which we resolve in this section.

Although our data structure asks for an optimal decomposition into chains
with both ascending and descending monotonic chains allowed, it actually func-
tions by splitting the points into the two directions as a preprocessing step
and then considering the two directions separately; chains are only required to
be untangled with respect to other chains of the same type. The untangling
problem of interest to us, then, is how to decompose a set of points into a mini-
mal number of untangled chains all in one direction (without loss of generality,
descending). We assume that points in the input set are in general position.

As shown in Fig. 1, we can remove any single intersection from a chain
decomposition by replacing two intersecting segments (represented by solid lines
in the figure) with two that do not intersect (represented by dashed lines). The
number of chains remains unchanged, and the operation strictly reduces the
total Euclidean length of all chains. Only a finite number of distinct values
are possible for the total length, so it follows that any set of chains can be
transformed in a finite time into an untangled set of the same number of chains,
and the minimum number of untangled chains is the same as the minimum
number of possibly-tangled chains.

However, that argument proves only that the time to find the untangled
chains is finite. Finding tangles to remove requires a search, and each untangling
move could introduce many new tangles as the new segments intersect other ex-
isting segments, making the untangling procedure expensive. Van Leeuwen and
Schoone show that such a process must terminate after O(n3) moves [13]. They
describe an O(n2) exhaustive search to find each tangle, for an overall time of
O(n5). Their work is on postprocessing of Travelling Salesman Problem solu-
tions, for which a polynomial-time solution suffices. We describe an algorithm
for finding a minimal number of untangled chains in O(k2n + n logn) time,
where k is the number of chains.

3.1. Untangling Monotonic Chains

Given two points pi, pj ∈ P , we say that the edge or line segment 〈pi, pj〉 is
valid if x(pi) ≤ x(pj) and y(pj) ≤ y(pi). We also say that points pi and pj are
compatible if either 〈pi, pj〉 or 〈pj , pi〉 is valid. A chain is a sequence of edges
C = {〈p1, p2〉, 〈p2, p3〉, . . . , 〈pm−1, pm〉} where each one is valid. Define pts(C)

5



to be the set of all endpoints of edges in C. A subchain S of C is a contiguous
subset of the edges {〈pi, pi+1〉, . . . , 〈pi+ℓ−1, pi+ℓ〉}, where i + ℓ ≤ m. We call ℓ
the length of S. We refer to the start and end points of a subchain as terminals.

Now we can define the basic concept of tangling.

Definition 1. If two chains C1 and C2 contain edges e ∈ C1 and f ∈ C2 such
that e intersects f , such an intersection is called a tangle. A pair of chains is
tangled if one or more tangles exist between those two chains. Often we refer
to a single chain as tangled, and in this context the existence of another chain
with which it is tangled is implied.

Our goal is to generate the minimum number of descending and untangled
chains. We start with the algorithm proposed by Supowit [18] for finding a
minimal number of same-direction monotonic chains (possibly tangled). Let A
be a chain and miny(A) = min{y|(x, y) ∈ pts(A)}. Let P = {p1, p2, . . . , pn}
be the data points sorted by increasing x-coordinate. Supowit’s algorithm does
a left-to-right pass over P , either adding each point to an existing chain, or
creating a new chain for the point. Upon processing a point pi, all points pj
with j < i are already part of some chain. Among all existing chains whose right
endpoint is above pi, the algorithm adds pi to the chain whose right endpoint is
lowest. If no such chain exists, a new chain is created with pi as the only point.
The pseudocode of Supowit’s algorithm is shown in Algorithm 1.

Algorithm 1 – Supowit(p1 . . .pn)

1: S ← ∅

2: for i = 1 . . . n, where x(pi) < x(pj) ∀i < j ≤ n do
3: let S′ = {A ∈ S,miny(A) ≥ y(pi)}
4: if S′ 6= ∅ then
5: let A0 = argminA{miny(A), A ∈ S′}
6: append pi to pts(A0)
7: else
8: add pi as a chain to S
9: return S

We will show that any tangles produced by Algorithm 1 are of a special
form that enables us to perform the untangling efficiently. For convenience we
define notation for the sets of edges that could ever exist, edges that come from
Algorithm 1, and some geometric sets used in the proofs.

Definition 2. For a given set of points P , let L(P ) contain every valid mono-
tonic descending edge between two points in P . That is, given two points
pi, pj ∈ P , 〈pi, pj〉 ∈ L(P ) if and only if x(pi) ≤ x(pj) and y(pj) ≤ y(pi). Fur-
thermore, for a given set of points P , define L∗(P ) to contain every edge of
every chain created by running Algorithm 1 on P .

Definition 3. An edge 〈pi, pj〉 with endpoints pi and pj induces two open
half-planes. Define H+(〈pi, pj〉) as the open half-plane that contains the point

6



S

a

q2

C1

C2

p1

pℓ

q1

a

S

b

bc

c

d

d

p2

pℓ−1

Figure 2: (Left) Valid tangles (v-tangles) generated by Algorithm 1. (Right) Two examples
of invalid tangles, which cannot be generated by Algorithm 1. The segment S represents an
arbitrary subchain of C1.

(x(pi) + 1, y(pi) + 1). Similarly, define H−(〈pi, pj〉) as the open half-plane that
contains the point (x(pi)− 1, y(pi)− 1).

Now we define the special form of well-behaved tangles as follows.

Definition 4. Suppose we have two chains C1 and C2 with edges 〈q1, q2〉 ∈ C2

and 〈p1, p2〉, . . . , 〈pℓ−1, pℓ〉 ∈ C1 such that p1 ∈ H−(〈q1, q2〉), pℓ ∈ H−(〈q1, q2〉),
and pi ∈ H+(〈q1, q2〉) for all 1 < i < ℓ. We call such a tangle a valid tangle,
abbreviated as v-tangle. Fig. 2 shows examples of valid and invalid tangles. In
the figure, S stands for a subchain and the dotted lines show the new edges that
would be added by untangling the v-tangle. We call 〈q1, q2〉 the upper part of
the v-tangle, and 〈p1, p2〉, . . . , 〈pℓ−1, pℓ〉 the lower part.

Now we can prove the following lemma.

Lemma 1. All tangles created by Algorithm 1 are v-tangles.

Proof. Suppose Algorithm 1 on input point set P generated chains C1 and C2

with a tangle between edges 〈pi, pi+1〉 ∈ C1 and 〈pj , pj+1〉 ∈ C2. We will show
that for every possible ordering of these points the created tangle is a v-tangle;
otherwise we reach a contradiction. For this purpose, we will fix 〈pi, pi+1〉 and
consider the cases where pj and pj+1 are located in each of the quadrants defined
by pi and pi+1, respectively. We will name each case a-b, where a and b are the
quadrants where pj and pj+1 are located, respectively (see Fig. 3).

• 1-1 (and, symmetrically, 3-3): In these cases no tangle exists; 〈pi, pi+1〉
does not intersect with 〈pj , pj+1〉.

• 2-2 (and 2-3, 1-2, 1-3): Upon processing pj+1, Algorithm 1 would have
connected this point to pi, since pi is lower than pj and would have not

7



12

3 4

pi+1

pj+1
pj

pi

Figure 3: Possible cases for Lemma 1. The configuration in this example is 4-2.

yet been connected to a point to its right. Therefore these cases cannot
occur in the output of Algorithm 1.

• 2-1 (and symmetrically 4-3): Since 〈pi, pj〉 /∈ L∗(P ), there must exist edges
〈pi−ℓ, pi−ℓ+1〉, . . . , 〈pi−1, pi〉 ∈ C1 for some ℓ ≥ 1 such that 〈pj , pi−ℓ+1〉 ∈
L(P ) and 〈pj , pi−ℓ〉 /∈ L(P ). Such a point pi−ℓ must exist and it must be
the case in which x(pi−ℓ) ≤ x(pj), because otherwise, Algorithm 1 would
have added pj to C1. Hence, the edges 〈pi−ℓ, pi−ℓ+1〉, . . . , 〈pi−1, pi〉 form
the lower part of a v-tangle.

• 2-4 (and 1-4, symmetrically 4-2 and 3-2): Since 〈pi+1, pj+1〉 ∈ L(P ) but
〈pi+1, pj+1〉 /∈ L∗(P ), there exist edges 〈pi+1, pi+2〉, . . . , 〈pi+ℓ, pi+ℓ+1〉 ∈
C1 for some ℓ ≥ 1 such that 〈pi+ℓ, pj+1〉 ∈ L(P ) and 〈pi+ℓ+1, pj+1〉 /∈
L(P ). Such a point pi+ℓ+1 must exist and it must be the case that
x(pi+ℓ+1) ≤ x(pj), because otherwise, Algorithm 1 would have added
pj to C1. Therefore, 〈pi+1, pi+2〉, . . . , 〈pi+ℓ, pi+ℓ+1〉 is the lower part of a
v-tangle.

• 4-1 (and 4-4, 3-1, 3-4): Upon processing pi+1, Algorithm 1 would have
connected this point to pj instead of pi, since pj is lower than pi and
would have not yet been connected to a point to its right. �

Since only v-tangles are possible in the output of Algorithm 1, there is an
intuitive ordering on the set of chains. Loosely speaking, if chain C1 starts
on one side of C2, then it must end on that side as well; since all tangles are
v-tangles, the number of times C1 crosses C2 must be even. To formalize this
ordering, suppose we run Algorithm 1 on P and it generates k chains. We can
create a set of k points Q = {q1, . . . , qk} such that x(qi) < x(qi+1), no two
points in Q are compatible with each other, but every point in Q is compatible
with every point in P . Formally, 〈qi, qj〉 /∈ L(P ∪ Q) for all 1 ≤ i, j ≤ k where
i 6= j, and for all q ∈ Q and p ∈ P , 〈q, p〉 ∈ L(P ∪ Q). Then, if we execute
Algorithm 1 again on P ∪Q, each qi will be added to a single chain Ci, and we
can order the chains based on these points. Thus, Ci and Cj , for 1 ≤ j < i ≤ k,
are referred to as the upper chain and lower chain, respectively. We will assume
we have such a set at the beginning of the chains and another at the end in
order to avoid special boundary cases. Note that because k ≤ n, adding these
2k extra points does not affect the asymptotic running time of the algorithm.

With this ordering in mind, we now discuss how to untangle a v-tangle.

8



Remark 1. Given a v-tangle, as shown at left in in Fig. 2, we can untangle it
by using the dotted lines as edges. Essentially, this is moving S to be part of
C2. It does not matter how the points move among chains.

We use this idea in Algorithm 2, which will become a building block for the
final untangling algorithm. We call it the untangling pass.

Algorithm 2 – Untangling-Pass(P)

1: Run Supowit(P ) to get chains C1, . . . , Ck where Ck is the uppermost chain
2: for i = k down to 1 do
3: for j = i− 1 down to 1 do
4: Find and untangle all v-tangles between Ci and Cj

5: Return C1, . . . , Ck

Since we are removing tangles in a specific way, we have to argue that all
the tangles we encounter by running an Untangling-Pass are in fact v-tangles.
The following lemma makes that argument.

Lemma 2. Suppose a v-tangle between Ci and Cj is untangled by Algorithm 2,
where Ci is the upper chain. Any tangles between Ci and Cℓ where ℓ < j may
have been altered. However, the remaining tangles are still v-tangles.

Proof. Before the tangle is removed, there is a v-tangle tij between Ci and Cj .
Suppose there exists another v-tangle tiℓ between Ci and Cℓ, where ℓ < j, which
is altered by untangling tij . Then there must also be a v-tangle tjℓ between Cj

and Cℓ (unless tij and tjℓ are nested, in which case it is easy to see that tiℓ
does not exist after untangling). Since ℓ < j, there is an edge e ∈ Cj which is
the upper part of tjℓ (recall Definition 4). The edge e must also be involved in
the tangle tij as one of the edges in the lower part of that tangle. Let edge f
be the upper part of tij . If both endpoints of e are in H+(f), then tiℓ becomes
tjℓ. Otherwise, e must also be one of the two intersecting lower edges in tij . By
untangling tij we are adding a new edge e′ to Ci, where e′ shares one of the
endpoints of e. This leads to one of two cases:

1. e′ ∈ Ci is now the upper part of a v-tangle with Cℓ; or

2. e′ is not involved in a tangle with Cℓ, and therefore it is not a problem. �

In order to argue that all the tangles existing when we untangle the upper
chain from the rest are v-tangles, we need to prove a slightly stronger statement
that will help with the induction required in the following steps of the proof.

Lemma 3. Consider the set of points P ′ in chains C1, . . . , Ck−1 after run-
ning the first iteration of Untangling-Pass (i.e., i = k on line 2 of Algorithm
2). If we run Algorithm 1 with input P ′, the resulting set of chains is exactly
C1, . . . , Ck−1.

9



Proof. Consider the uppermost chain Ck and any v-tangle formed in part by
the edges 〈p1, p2〉, 〈p2, p3〉, . . . , 〈pℓ−1, pℓ〉 in chain Cj , j < k, at the moment we
untangle it from Ck. The untangling process will add p2, . . . , pℓ−1 to Ck and
create the edge 〈p1, pℓ〉. We need to prove that this edge would have been
created by Algorithm 1 if the points R = {p2, . . . , pℓ−1} had been removed.

Assume pℓ had been connected to a different point pr 6= p1. In that case
we know that 〈pr, pℓ〉 ∈ L∗(P \R). Thus, y(pr) ≤ y(p1), and both points must
be available when pℓ is added. This implies that pr was available when we
processed p2, . . . , pℓ originally. Let r′, 2 ≤ r′ ≤ ℓ, be the minimum such that
y(pr′) ≤ y(pr). Since pr was available, pr′ would have been connected to pr
originally, contradicting the existence of Cj . �

Ideally, after running the untangling pass algorithm on point set P , we would
like all tangles to be removed. Unfortunately, it could be the case that when
untangling a pair of chains Ci and Cj (where Cj is the upper chain), a new
tangle between Cj and a chain Cu with u > j is created.2 However, these
tangles can only be of a special kind, which we call reverse v-tangles.

Definition 5. Suppose we have two chains C1 and C2 with edges 〈q1, q2〉 ∈ C1

and 〈p1, p2〉, . . . , 〈pℓ−1, pℓ〉 ∈ C2 such that p1 ∈ H+(〈q1, q2〉), pℓ ∈ H+(〈q1, q2〉),
and pi ∈ H−(〈q1, q2〉) for all 1 < i < ℓ. We call such a tangle a reverse v-tangle.
The right bottom tangle in Fig. 2 is a reverse v-tangle.

The following lemmas show that an untangling pass can only create reverse
v-tangles.

Lemma 4. When i = k − 2 in Algorithm 2, only reverse v-tangles can exist
between chains Ck and Ck−1.

Proof. Untangling Ck with Ci, 1 ≤ i < k, will never create a tangle between
the intermediate chains Cj and Ck, where i < j < k, since every untangling
operation only adds points to the upper chain that are higher than existing
edges. Combining this fact with Lemmas 2 and 3, the upper chain k is untangled
from all the other chains just before we start untangling chain k − 1.

Now, the only possibility remaining is that the upper chain gets tangled as
a consequence of untangling Ck−1 with Ci, 1 ≤ i < k − 1, in Algorithm 2. We
now argue that only reverse v-tangles can be created between Ck and Ck−1.

Consider a v-tangle like the one depicted in Fig. 4. Recall that an untangling
operation would create the edges shown in dotted lines, plus the edge 〈c, d〉. In
order for this operation to create a tangle between Ck−1 and Ck, either a point
q ∈ pts(Ck) has to be in the triangle A created by the left dotted line, or a point
r ∈ pts(Ck) must be in the triangle B created by the right dotted line.

Since the upper chain is untangled from the rest of the chains, if it contains a
point in either of the two triangles, then the chain must enter and exit through

2The previous version of this work [2] overlooked this situation, hence the different strategy
described in the present version.

10



S

s

q

r

a

b

Ci

Cj

A

B

c

d

Figure 4: Illustration of cases considered in Lemma 4.

the dotted line, forming a reverse v-tangle, otherwise it would have been tangled.
Note that this argument extends to the case when q or r are subchains. �

Lemma 5. If any tangles exist after one pass of Untangling-Pass, then they
must be reverse v-tangles.

Proof. Consider i = k in Algorithm 2. By Lemma 4, Ck can only participate
in reverse v-tangles with chain Ck−1 after iteration i = k − 1. If we remove
Ck−1 when running i = k − 2, Lemma 4 holds for Ck and Ck−2, so all tangles
between Ck and lower chains after Untangling-Pass are reverse v-tangles.

For every i ∈ {1, . . . , k − 1}, the arguments hold because we have a set
of chains possessing the same properties as that returned by Algorithm 1 (by
Lemma 3); in other words, the same situation as if the untangled upper chain
had not existed. �

We can now state our untangling algorithm, shown in Algorithm 3. The
algorithm executes k passes of Algorithm 2, extracting the current lowest chain
at the end of each pass. We prove the correctness of the untangling algorithm
by induction. The base case is that after the first pass of the algorithm, the
first (lowest) chain has been untangled.

We use the notation Cp
q to denote chain q output by Supowit’s algorithm

in pass p, and C̄p
q denotes chain q after Algorithm 3 has completed pass p.

Occasionally, we use Ĉp
q to refer to chain q at some intermediate stage during

untangling pass p. Finally, let E(p) denote the set of all edges that existed

during pass p. Note that
⋃k

q=1

(

Cp
q ∪ C̄p

q

)

⊆ E(p), but other edges may be
created or destroyed during pass p.

Note that Algorithm 1 is equivalent to Bar-Yehuda and Fogel’s algorithm
for computing layers of minima [3]. Therefore, chains generated by Algorithm
1 have the following useful property [3]:

Definition 6. For points a and b we say a is dominated by b, b dominates
a, or a ≺ b, if x(a) ≤ x(b) and y(a) ≤ y(b). Supowit’s algorithm creates

11



Algorithm 3 – Untangled-Chains(P )

1: Let k ← minimum number of chains to cover P
2: Add k dummy points at the left such that they are pairwise incompatible

with each other, but each one is compatible with every point in P .
3: Add k dummy points at the right such that they are pairwise incompatible

with each other, but each one is compatible with every point in P .
4: Let F = ∅

5: for p = 1 to k do
6: Obtain Cp, . . . , Ck using Untangling-Pass(P )
7: P ← P \ pts(Cp)
8: F = F ∪ {Cp}
9: Return F

chains that have the following recursively-defined property: pts(C1) contains
all points in P which do not dominate any other points in P . For 2 ≤ i ≤ k,
let P ′

i = P \ {⋃i−1

j=1 pts(Cj)}. The set pts(Ci) contains all points in P ′

i which
dominate at least one point in pts(Ci−1), but dominate no other points in P ′

i .
We refer to this property as the dominance property.

Lemma 6. After one Untangling-Pass, C̄1
1 has no tangles.

Proof. By Lemma 5, if the lower chain is tangled after an Untangling-Pass
then it is a reverse v-tangle. Consider the edge e ∈ C̄1

1 for which there is a
point a ∈ H−(e). If many such points exist, choose a to be one which does not
dominate any other. By the dominance property, a ∈ pts(C1

1 ), which means
that an edge e′ ∈ E(p) must have existed such that a ∈ H+(e′) and e′ was the
upper part of a v-tangle involving a. However, by Lemmas 1 and 2, we arrive
at a contradiction: one of the endpoints of e must be in H+(e′) and would in
the lower part of the v-tangle involving a. �

Now we show that no tangles will be created involving the p-th chain after
pass p. Showing this will prove the correctness of the untangling algorithm.
Assume that C̄p

1 , . . . , C̄
p
p are all mutually untangled, and C̄p

p is untangled with

all chains above. Note that C̄p
p = C̄q

p = Cq
p for p < q ≤ k, since the algorithm

does not touch C̄p
p after pass p.

Lemma 7. If C̄q
p is involved in a tangle for p < q ≤ k, then the tangle must be

a v-tangle.

Proof. If a tangle forms that is not a v-tangle, it implies that a point from P \
(pts(C̄p

1 )∪ · · ·∪ pts(C̄p
p )) is located below C̄q

p , which contradicts the assumption

that C̄q
p is untangled with all chains above. �

Using Lemma 7, we can now rule out the possibility of v-tangles occurring
with C̄p

p in subsequent passes through a series of lemmas. The following defini-
tions are required for Lemmas 8 to 11:

12



Definition 7. A point b is called a displaced point if b ∈ pts(Cp
i ), and b ∈

pts(Cp+1
i+1 ), where 1 ≤ p < k and p ≤ i < k. If a point is not displaced between

passes p and p+ 1 we refer to it as original.

Lemma 8. If an edge 〈b1, b2〉 output by Supowit’s algorithm at the beginning
of pass p+ 1 was not output by Supowit’s algorithm at the beginning of pass p,
then either b1 or b2 is a displaced point.

Proof. The proof follows by an invariant property on the edges in the chains,
starting from Cp+1

p+1 . When we remove C̄p
p after the untangling pass in pass

p, consider the set R = pts(Cp
p ) \ pts(C̄p

p ). Since Cp+1
p+1 is maximal by the

dominance property, R will be inserted into pts(Cp+1
p+1 ). The set of points in

S = pts(Cp
p+1) \ pts(Cp+1

p+1 ) will be points such that for all s ∈ S, there exists an
r ∈ R such that r ≺ s. All of the edges in Cp

p+1 which do not have endpoints
in S, and which have not been replaced by edges containing endpoints from R,
remain in the output at the beginning of pass p+1. Thus the property holds for
Cp+1

p+1 . By setting R = pts(Cp
p+i)\pts(Cp+1

p+i ) and S = pts(Cp
p+i+1)\pts(Cp+1

p+i+1)
for 1 ≤ i < k − p we can continue this argument, proving the lemma. �

Next we have two lemmas to show that points displaced between pass p and
p + 1 were involved in an untangling operation during pass p. The first shows
the existence of sequences of points based on the dominance property, and the
second uses these sequences to show that the v-tangles must have existed. The
second lemma is the key lemma used in the proof of correctness.

Lemma 9. If aq is a displaced point from Cp
q to Cp+1

q+1 , then there must exist a
sequence of points ap, . . . , aq−1 such that for p ≤ i ≤ q− 1 < k, ai is a displaced

point from Cp
i to Cp+1

i+1 and ai ≺ ai+1.

Proof. Follows from the dominance property: since the chains are maximal,
aq would not move to a higher chain unless another point dominated by aq took
its place. �

Lemma 10. If aq is a displaced point from Cp
q to Cp+1

q+1 , then there must have
been an edge e ∈ E(p) such that aq ∈ H+(e), and e was the upper part of a
v-tangle involving aq during pass p.

Proof. We give a proof by induction. In the base case, a point which moves
from Cp

p to Cp+1
p+1 must have been involved in a v-tangle, since we remove C̄p

p

from consideration in pass p+ 1. Inductive step: Consider a sequence of points
ap, . . . , aq from Lemma 9, such that for p ≤ i ≤ q−1 < k, ai is a displaced point

from Cp
i to Cp+1

i+1 and ai ≺ ai+1. Assume that there exists edges ei ∈ E(p) such
that ai ∈ H+(ei) and ai is in the lower part of a v-tangle that has upper part ei.
Consider aq, and assume that no edge eq ∈ E(p) exists such that aq ∈ H+(eq)
and aq is part of a v-tangle that has upper part eq. Since aq−1 ≺ aq, eq−1 comes
from a chain Cp

q+j′ for j′ ≥ 1; such an edge cannot come from Cp
q due to the

13



orientation of aq and aq−1. However, this implies that aq ∈ H+(eq−1). Since
Cq+j′ is untangled with Cq before Cq−1, aq would be untangled with eq−1, and
we have arrived at a contradiction. �

We now make use of Lemma 10 to complete the inductive step of the proof
of correctness.

Lemma 11. Any sequence of untangling operations occurring in pass p + 1
cannot form a v-tangle with Cp+1

p .

Proof. Suppose a v-tangle v1 is created in pass p + 1, and the lower part of
v1 consists of a subchain of Cp+1

p . For such a tangle to have been created,
either v1 was output by Supowit’s algorithm at the beginning of pass p + 1,
or a sequence of untangling operations occurred, starting with v-tangle vt and
ending with the creation of v1. This follows from Lemmas 1 and 7, and the
untangling pass (Algorithm 2). It also must be the case that at least one of the
tangles in the sequence vt, . . . , v1 contains displaced points. Otherwise, all of
the edges participating in the sequence would have been present in pass p by
Lemma 8.

Before continuing, we require the following definition. Consider an edge
e ∈ E(p+1), such that e is the upper part of a v-tangle v, and the lower part of
v is a subchain S. We define an edge e′ ∈ E(p) to be equivalent to e if for each
a ∈ pts(S) where a ∈ H+(e), a ∈ H+(e′) and S forms a valid v-tangle with e′.

Consider the v-tangle with the largest index t′, 1 ≤ t′ ≤ t, such that vt′

consists of displaced points which cause vt′ (i.e., vt′ would not exist if the
displaced points in vt′ were not present). If the displaced points are in the
upper part of vt′ , t

′ ≥ 1, we will show that an edge equivalent to the upper part
of vt′ existed in pass p. Similarly, if the displaced points are in the lower part of
vt′ , t

′ > 1, we show that an edge equivalent to the upper part of vt′−1 existed in
pass p by assuming the existence of an edge equivalent to the upper part of vt′ .
As an invariant property, this is sufficient to prove the lemma. We now describe
these two cases:

1. The upper part of v-tangle vt′ contains at least one displaced point. Call
the upper part of the tangle, from left to right, 〈u1, u2〉 and the points in
the lower part {l1, . . . , lℓ} where l1 and lℓ are the points which are not in
H+(〈u1, u2〉). Without loss of generality, assume that u1 is a displaced
point. By Lemma 10, there exists an edge e ∈ E(p) such that u1 was
in the lower part of a v-tangle with e. If u2 ∈ H+(e) we are done. If
not, then consider the first original point b1 to the left of u1, such that
b1 ∈ H−(e). By Lemmas 1 and 2, and the existence of e, any original
points to the right of b1 and to the left of u1 must have been involved in
the lower part of a v-tangle during pass p. If u2 is an original point then
we have shown the existence of an edge e′ ∈ E(p) equivalent to 〈b1, u2〉;
thus, for each l ∈ {l2, . . . , lℓ−1}, l ∈ H+(e′). Otherwise, u2 is a displaced
point, and we can locate b2, the first original point to the right of u2, such
that 〈b1, b2〉 satisfies the invariant.

14



2. The lower part of v-tangle vt′ contains a subchain A of displaced points:
use Ĉp+1

q to denote the lower chain, and Ĉp+1
r the upper chain, for some

p < q < r ≤ k. Let e = 〈u1, u2〉 be the upper part of vt′−1 after vt′ is
untangled. Since t′ > 1, if u1 or u2 is a displaced point, we can apply
the argument from case 1. Therefore, we assume that both u1 and u2 are
original points. Consider the points b1 and b2, connected to the left and
right terminals of A, respectively. Also consider the subchain A′ of points
displaced from Cp+1

q by A:

(a) If A′ = ∅ then e′ = 〈b1, b2〉 ∈ E(p). If u1 = b1 and u2 = b2 we are
done since e′ is equivalent to e. Otherwise, note that either u1 = b1
or u2 = b2 by the assumption that A causes vt′ and that no endpoint
in e is a displaced point. In either case, we can apply the invariant
that an edge equivalent to the upper part of vt′ existed in pass p,
which in turn applies the existence of e′, an edge equivalent to either
〈u1, b2〉 or 〈b1, u2〉, depending on which point differs.

(b) Likewise, if A′ 6= ∅, then by Lemma 10 there existed a series of
untangling operations by which all of the points in A′ were removed
from Cp

q during pass p. As in the previous subcase, this resulted in
the formation of an edge equivalent to 〈u1, u2〉.

Since we can maintain the invariant property in both cases, we arrive at a
contradiction, completing the lemma. �

Lemma 11 implies that no further v-tangles will be formed with C
p

p in any
pass after pass p. Since, by Lemma 7, only v-tangles could be formed, this
completes the proof of the correctness of the algorithm.

Theorem 1. For a set of points P , let k be the minimum number of ascending
(or descending) monotonic chains into which we can decompose P . We can
generate a set of k untangled ascending (or descending) monotonic chains in
O(k2n+ n logn) time using Algorithm 3.

Proof. Lemmas 1–11 guarantee that Algorithm 3 generates a minimal set of
untangled chains, so it remains only to establish its running time.

It is clear that untangling two chains Ci and Cj takes time proportional

to the sum of the chain lengths. Let ℓfi represent the final length of Ci after
the algorithm terminates, and ℓsj represent the length of Cj at the start of the
algorithm. Then the running time for one untangling pass can be expressed as:

k
∑

i=1

i−1
∑

j=1

(ℓfi + ℓsj) =

k
∑

i=1

(i − 1)ℓfi +

k
∑

i=1

i−1
∑

j=1

ℓsj

≤ k





k
∑

i=1

ℓfi +

k−1
∑

j=1

ℓsj





≤ 2kn .

15



Initially running Algorithm 1 requires O(n log n) time to sort the points.
However, observe that running Algorithm 1 k times where each pass generates
at most k chains takes O(kn log k + n logn) time, since we only need to sort
the points once [7]. Therefore, the cost of running k passes of Algorithm 1 is
absorbed by the k passes of Algorithm 2, and the running time of Algorithm 3
is O(k2n + n logn) time. In the worst case, when k = Θ(

√
n), this becomes

O(n2). �

4. Adaptive Orthogonal Range Search

If the data points form a single monotonic chain, then the answer to any
orthogonal range query must be a contiguous interval of the ordered list of
points, and we can find it with two binary searches to identify its start and
end. We can store such a data set in O(n) space (for instance, in an array)
and answer queries in O(log n+m) time, where n is the number of data points
and m is the number of points returned by the query. Now assume that as
a preprocessing step the data points have been decomposed into a minimal
number k of monotonic chains. If we store each chain in sorted order and search
them all, the query time becomes O(k logn + m). That is the basic concept
underlying our data structure.

A truly optimal decomposition into monotonic chains in both directions
would require solving the NP-hard problem of optimally determining whether
to assign each point to an ascending or descending chain, but we can come
within a constant factor in O(n3) time with the algorithm of Fomin, Kratsch,
and Novelli [10], and that is sufficient to preserve the asymptotic search time
of our data structure. The O(n3/2) algorithm of Yang, Chen, Lu, and Zheng
offers no guarantee of a minimal decomposition, but appears to come close in
practice and may be preferable in real applications [19]. In either case, once we
have a decomposition of the data points into chains, we separate the ascending
and descending chains, and treat the two directions separately, building a data
structure for each and running every query on both.

The two-direction minimization algorithms are used only to decide for each
point whether it will go into the ascending or descending structure. Having made
that decision, we run the algorithm of the previous section to find a minimal
set of untangled chains for each direction; doing so cannot increase the number
of chains further.

Without loss of generality, we describe the data structure for descending
chains here. The ascending case is symmetric. Let {C1, C2, . . . , Ck} be the
set of untangled descending chains, and let ℓi be the length of Ci. Let r =
[x1, x2] × [y1, y2] be the query range. The points (x1, y1) and (x2, y2) are the
lower left and upper right corners of the query range.

We first find the set of chains that intersect r. Since the chains are untangled
and we store them ordered from left to right as described in the previous section,
we can find the first chain to pass above the point (x1, y1) and the last chain to
pass below the point (x2, y2), and know that all chains intersecting the query
range must be between those two chains in the ordering. Evaluating whether a

16



point is above or below a chain can be accomplished by a simple binary search
over the chain in O(log n) time, so with two binary searches over the chains
we can find the start and end of the range of chains that might intersect r, in
O(log k logn) time. Let k′ ≤ k be the number of chains in that subset.

For each of the k′ chains that might intersect r, we can perform two more
binary searches to find the start and end of the interval of data points within
the chain that are actually included in the query range. Note that because of
the monotonicity of the chain, this must be a contiguous interval. The time to
perform these searches is O(log ℓi) for each of the k′ chains, and since

∑k
i=1 ℓi =

n, the time for this step is O(k′ log(n/k′)).
The number of points m returned by the query also places a lower bound of

Ω(m) on the running time. Summing the times gives the following lemma:

Lemma 12. Given a set of n points which can be decomposed into k monotonic
chains, we can in O(n3) time construct a linear-space data structure answering
two-dimensional orthogonal range search queries in O(log k log n+k′ log(n/k′)+
m) time, where m is the number of points returned and k′ ≤ k depends on the
query.

Our algorithm is adaptive in the sense that if we have a good set of points,
then we will have a small k and this leads to a better search time. The value
of m depends on the given query; k′ depends on the query and the details of
how the chain decomposition was done. The O(n3) preprocessing time may be
improved to O(n2) in practical cases when the partitioning algorithm of Yang,
Chen, Lu, and Zheng gives acceptable results [19]. We can also improve the
data structure in one of two other ways: by applying fractional cascading, or by
storing it implicitly.

4.1. Fractional cascading

Observe that the basic algorithm performs binary searches for the same keys
in separate ordered lists (namely, the chains). Thus, we can use the technique
of fractional cascading [6] to speed up the query time and achieve the following
result.

Theorem 2. Given a set of n points which can be decomposed into k monotonic
chains, we can in O(n3) time construct a linear-space data structure answering
two-dimensional orthogonal range search queries in either O(log n+k+m) time
or O(log k logn + k′ +m) time, where m is the number of points returned and
k′ ≤ k depends on the query.

Proof. To check whether the query rectangle [x1, x2]×[y1, y2] intersects a given
chain Ci, it is sufficient to perform binary searches on the list of x-coordinates
(or y-coordinates) of the points on Ci using x1 and x2 (or y1 and y2) as search
keys. We can then determine whether Ci intersects any of the four edges of
the query rectangle using the results of the above four binary searches. This
also finds which edge, if any, of Ci intersects each edge of the query rectangle.

17



Therefore, we can report the points on Ci that are located in the query range
in O(log n+ ki) time, where ki is the number of such points.

To answer orthogonal range search queries using our data structure, we
can perform two binary searches on the list of x-coordinates of the points on
each chain, and two binary searches on the list of y-coordinates for each chain.
Thus, we can store the sorted lists of x-coordinates and y-coordinates corre-
sponding to the monotonically increasing chains separately, and use the tech-
nique of fractional cascading [6] to speed up the query time without increasing
the asymptotic space cost of our data structure. We augment the data struc-
ture for the monotonically decreasing chains using the same approach. This
yields a data structure of linear space that supports orthogonal range search in
O(log n+ k +m) time.

The bound of O(log k logn + k′ +m) time can be achieved by locating the
start and the end of the range of chains that might intersect the query rectangle,
and then using fractional cascading to compute the answer starting from the
uppermost chain in this range. �

4.2. Implicit storage

A data structure is implicit if it uses no additional storage beyond the space
required to encode the data and a constant number of parameters [16]. We now
show that our data structure can also be made implicit.

Corollary 1. A set of n points in the plane can be arranged as an array of n
coordinate pairs so that any orthogonal range query over this point set can be
answered in O(log k log n+ k′ log(n/k′) +m) time with O(1) working space.

Proof. Our adaptive algorithm assumes that the coordinates of the points are
stored in such a manner that, given two integers i and j, the coordinates of
the j-th leftmost point in the i-th monotonic chain can be retrieved in constant
time. An obvious way to achieve this is to store the coordinate pairs of the
points in the same monotonic chain from left to right as a sub-array, and then
concatenate all such sub-arrays into a single array. The number, k, of chains
and the indices of the entries storing the coordinate pairs of the leftmost points
in each chain are also stored. Thus, (k + 1)⌈logn⌉ additional bits of storage
are required to store the point coordinates. We now show how to encode such
information by permuting the coordinate array.

Let ℓi be the number of points in the i-th monotonic chain, Ci, for i =
1, 2, . . . , k. Then

∑k
i=1 ℓi = n. We first construct an array A[1..n] storing the

coordinate pairs of all the points as follows: We start with the first chain, and
if it has an even number of points, we store the coordinate pair of the j-th
leftmost point of Ci in A[j], for j = 1, 2, . . . , ℓ1. Otherwise, we store all but
the rightmost point in A[1..j − 1] in the same order. We use the next ℓ2 entries
of A to store the points of C2 from left to right if ℓ2 is even, and otherwise,
we use the next ℓ2 − 1 entries to store all but the rightmost point in C2. We
repeat this process until the points in Ck (with the possible exception of its
rightmost point) are stored. After completing the above process, all the points

18



in a monotonic chain with an even number of points are stored in A, but the
rightmost points in chains with odd numbers of points are not stored. We store
these missing points in the last v entries of A, where v is the number of chains
with odd numbers of points, sorted by the number of the chain each such point
is in. This way all the points are stored in A, and the following property of A
is immediate:

Property 1. Given an odd integer i, where 1 ≤ i < n−k, the two points whose
coordinate pairs are stored in A[i] and A[j] are in the same monotonic chain.
This first point is also to the left of the second such point.

To perform our adaptive range search algorithm on a point set whose co-
ordinates are stored in A, we require the following additional information: the
integer k; an integer, si, for each chain Ci that stores the index of the entry that
stores the coordinates of the leftmost point in this chain if ℓi > 1 (if ℓi = 1, set
si to be si+1); an integer, ri, for each chain Ci that stores 1 if ℓi is even; and
the index of the entry in A that stores the rightmost point in Ci if ℓi is odd.
The above information occupies (2k + 1)⌈logn⌉ = O(

√
n logn) bits.

We next encode the above information by permuting the arrayA. Property 1
guarantees that, if we swap the pair (A[i], A[i + 1]), where i is an odd number
and 1 ≤ i < n − k, we can still retrieve the coordinates of the point originally
stored in A[i] in constant time, as it is to the left of the point stored in A[i+1].
Thus, our adaptive range search algorithm works on A with the same additional
information if we swap elements of A using the method described above. By
permuting each pair of data points in A[1..n − k] using this approach, we can
encode ⌊(n − k)/2⌋ bits (this is because we can encode a 1 bit by swapping a
pair in the above way, and a 0 bit by leaving the pair as it is). Therefore, we
can encode the additional information of O(

√
n logn) bits by permuting A, for

sufficiently large n, and we denote the permuted array of A by A′. With A′,
we can decode k in O(log n) time and the entry in A that stores the leftmost
point of Ci in O(log n) time. After we get the index of the entry storing the
leftmost point of Ci, we can also retrieve any other point (with perhaps the
exception of the rightmost point) of Ci in O(1) additional time. If ℓi is odd,
the rightmost point of Ci can be retrieved in O(log n) time. All this enables
us to perform our adaptive range search algorithm using A′ without storing
additional information, and the claim of this corollary follows immediately. �

5. Conclusions

We have presented a new data structure, for two-dimensional orthogonal
range search, that is adaptive to the minimum number of monotonic chains into
which the input points can be partitioned. For data which is considered easy in
this sense, our data structure outperforms existing alternatives, either in query
time or space requirements. Furthermore, we show that our structure can be
made implicit, requiring only constant space in addition to the space required
to encode the input points.

19



A recent study [7] compares our data structure in practice against available
implementations of kd-trees and range trees, showing not only that our adaptive
data structure is competitive in terms of query time against these well known
structures, but that it also outperforms them for various practical data sets,
even without fractional cascading.

As a contribution of independent interest, we show how to partition a set of
two-dimensional points into a minimal number of untangled monotonic chains.
This decomposition is a key element of our data structure, and could also be
useful in other geometric applications.

Natural directions for future work include extending our structure to higher
dimensions—which would involve adapting our untangling algorithm to higher
dimensions as well—and adapting our structure to answer other kinds of queries
than orthogonal.

References

[1] L. Arge, M. de Berg, H.J. Haverkort, K. Yi, The priority R-tree: A practi-
cally efficient and worst-case optimal R-tree, ACM Transactions on Algo-
rithms 4 (2008) 9:1–9:30.

[2] D. Arroyuelo, F. Claude, R. Dorrigiv, S. Durocher, M. He, A. López-Ortiz,
J.I. Munro, P.K. Nicholson, A. Salinger, M. Skala, Untangled monotonic
chains and adaptive range search, in: Y. Dong, D.Z. Du, O. Ibarra (Eds.),
20th International Symposium on Algorithms and Computation (ISAAC
2009), volume 5878 of LNCS, Springer, 2009, pp. 203–212.

[3] R. Bar-Yehuda, S. Fogel, Partitioning a sequence into few monotone sub-
sequences, Acta Informatica 35 (1998) 421–440.

[4] J.L. Bentley, Multidimensional binary search trees used for associative
searching, Communications of the ACM 18 (1975) 509–517.

[5] P.A. Bloniarz, S.S. Ravi, An Ω(n logn) lower bound for decomposing a set
of points into chains, Information Processing Letters 31 (1989) 319–322.

[6] B. Chazelle, L.J. Guibas, Fractional cascading: I. a data structuring tech-
nique, Algorithmica 1 (1986) 133–162.

[7] F. Claude, J.I. Munro, P.K. Nicholson, Range queries over untangled
chains, in: E. Chávez, S. Lonardi (Eds.), Proceedings of the 17th Sympo-
sium on String Processing and Information Retrieval (SPIRE 2010), volume
6393 of LNCS, Springer, 2010, pp. 82–93.

[8] E.D. Demaine, A. López-Ortiz, J.I. Munro, Adaptive set intersections,
unions, and differences., in: Proceedings of the Eleventh Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2010), ACM Press, N.Y.,
2000, pp. 743–752.

20



[9] G. Di Stefano, S. Krause, M.E. Lübbecke, U.T. Zimmermann, On mini-
mum k-modal partitions of permutations, Journal of Discrete Algorithms
6 (2008) 381–392.

[10] F.V. Fomin, D. Kratsch, J.C. Novelli, Approximating minimum cocolor-
ings, Information Processing Letters 84 (2002) 285–290.

[11] A. Guttman, R-trees: a dynamic index structure for spatial searching,
SIGMOD Record (ACM Special Interest Group on Management of Data)
14 (1984) 47–57.

[12] K.V.R. Kanth, A. Singh, Optimal dynamic range searching in non-
replicating index structures, in: 7th International Conference on Database
Theory (ICDT ’99), Proceedings, volume 1540 of LNCS, Springer, 1999,
pp. 257–276.

[13] J. van Leeuwen, A.A. Schoone, Untangling a traveling salesman tour in the
plane, in: Proceedings of the 7th Conference on Graphtheoretic Concepts
in Computer Science (WG 81), Hanser Verlag, München, Germany, 1981,
pp. 87–98.

[14] G.S. Lueker, A data structure for orthogonal range queries, in: 19th An-
nual Symposium on Foundations of Computer Science (FOCS ’78), IEEE
Computer Society Press, Long Beach, Ca., USA, 1978, pp. 28–34.

[15] J.I. Munro, A multikey search problem, in: Proceedings of the 17th Aller-
ton Conference on Communication, Control and Computing, University of
Illinois, pp. 241–244.

[16] J.I. Munro, H. Suwanda, Implicit data structures for fast search and update,
Journal of Computer Systems Sciences 21 (1980) 236–250.

[17] Y. Nekrich, Orthogonal range searching in linear and almost-linear space,
Computational Geometry 42 (2009) 342–351.

[18] K.J. Supowit, Decomposing a set of points into chains, with applications
to permutation and circle graphs, Information Processing Letters 21 (1985)
249–252.

[19] B. Yang, J. Chen, E. Lu, S.Q. Zheng, A comparative study of efficient
algorithms for partitioning a sequence into monotone subsequences, in:
J. yi Cai, S.B. Cooper, H. Zhu (Eds.), Theory and Applications of Models
of Computation, 4th International Conference (TAMC 2007), Proceedings,
volume 4484 of LNCS, Springer, 2007, pp. 46–57.

21


