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Abstract. The following problem was raised by M. Watanabe. Let P be a self-intersecting
closed polygon with n vertices in general position. How manys steps does it take to untangle
P , i.e., to turn it into a simple polygon, if in each step we can arbitrarily relocate one of
its vertices. It is shown that in some cases one has to move all but at most O((n log n)2/3)

vertices. On the other hand, every polygon P can be untangled in at most n −�(
√

n) steps.
Some related questions are also considered.

1. Introduction

Suppose we have a self-intersecting closed polygon P on the screen of our computer,
whose vertices are p1, p2, . . . , pn in this order, and no three vertices are collinear. We
are allowed to modify P so that in each step we can grab a vertex and move it to an
arbitrary new position. (For simplicity, we assume that the screen is very large, so we
are not limited by its size.) At the 5th Czech–Slovak Symposium on Combinatorics in
Prague in 1998, Mamoru Watanabe asked the following question. Is it true that every
polygon P can be untangled, i.e., turned into a noncrossing polygon, in at most εn steps,
for some absolute constant ε < 1?

The aim of this note is to answer this question in the negative.
Given another closed polygon Q with vertices q1, q2, . . . , qn (in this order), let

f (P, Q) denote the number of “common points” of P and Q, i.e., the number of indices
i , for which qi = pi . Let f (P) denote the largest number of points that can be kept fixed
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Fig. 1. For a star-polygon P with n vertices, we have f (P) = (n + 1)/2.

when we untangle P . Using our notation,

f (P) = max
Q

f (P, Q),

where the maximum is taken over all noncrossing closed polygons with n vertices. See
Fig. 1.

It is easy to see that every polygon P can be untangled in at most n − √
n moves.

That is, we have

Proposition 1. For every polygon P with n vertices, we have f (P) >
√

n.

Proof. Assume without loss of generality that pn is a vertex of the convex hull of
{p1, p2, . . . , pn}, and let pσ(1), pσ(2), . . . , pσ(n−1) be the other points of P , listed in
clockwise order of visibility around pn . According to a well-known lemma of Erdős and
Szekeres [ES], every sequence of length k has a monotone subsequence of length �√k	.
Therefore, there is a sequence 1 ≤ i1 < i2 < i3 < · · · ≤ n − 1 of length �√n − 1	
such that either σ(i1) < σ(i2) < σ(i3) < · · · or σ(i1) > σ(i2) > σ(i3) > · · · is
true. In either case, the points pn, pσ(i1), pσ(i2), . . . induce a noncrossing closed poly-
gon Q0. Let Q denote the n-gon obtained from Q0 by subdividing its sides with as
many points as necessary, to achieve that the index of every point pn, pσ(i1), pσ(i2), . . .

be the same in P as in Q. Clearly, we have f (P, Q) ≥ �√n − 1	 + 1 >
√

n, as
required.

Our main result can now be formulated as follows.

Theorem 2. For every sufficiently large n, there exists a closed polygon P with n
vertices, which cannot be untangled in fewer than n − c(n log n)2/3 moves. That is, we
have f (P) ≤ c(n log n)2/3, where c is a constant.
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Let G be a graph with vertex set V (G) and edge set E(G), respectively. A drawing
of G is a representation of G in the plane such that every vertex corresponds to a point,
and every edge is represented by a Jordan arc connecting the corresponding two points
without passing through any vertex other than its endpoints. Two edges are said to cross
each other if they have an interior point in common. The crossing number cr(G) of G is
defined as the minimum number of crossing pairs of arcs in a drawing of G.

For any partition of the vertex set of G into two disjoint parts, V1 and V2, let
E(V1, V2) ⊆ E(G) denote the set of edges with one endpoint in V1 and the other in
V2. Define the bisection width of G as

b(G) = min|E(V1, V2)|,
where the minimum is taken over all partitions V (G) = V1 ∪ V2 such that |V1|, |V2| ≤
2n/3.

Theorem 2 is established by a random construction. The proof is based on the fol-
lowing consequence of a weighted version of the Lipton–Tarjan separator theorem for
planar graphs.

Lemma 3 [PSS], [SV]. Let G be a graph of n vertices with degrees d1, d2, . . . , dn .
Then

b2(G) ≤ (1.58)2

(
16 cr(G) +

n∑
k=1

d2
k

)
,

where b(G) and cr(G) denote the bisection width and the crossing number of G,
respectively.

Corollary 4. Let G be a graph of n vertices with degrees d1, d2, . . . , dn . Then, for any
edge disjoint subgraphs G1, G2, . . . , Gj ⊆ G, we have

j∑
i=1

b(Gi ) ≤ 1.58 j1/2

(
16 cr(G) +

n∑
k=1

d2
k

)1/2

.

Proof. Let dik denote the degree of the kth vertex in Gi . Corollary 4 immediately
follows from Lemma 3. Indeed, applying Lemma 3 to each Gi separately and adding up
the resulting inequalities, we obtain

j∑
i=1

b2(Gi ) ≤ (1.58)2

(
16

j∑
i=1

cr(Gi ) +
j∑

i=1

n∑
k=1

d2
ik

)

≤ (1.58)2

(
16 cr(G) +

n∑
k=1

d2
k

)
.

Therefore, we have(
j∑

i=1

b(Gi )

)2

≤ j
j∑

i=1

b2(Gi ) ≤ (1.58)2 j

(
16 cr(G) +

n∑
k=1

d2
k

)
,

as required.
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Corollary 5. Let G be a graph of n vertices with degrees d1, d2, . . . , dn . Then, for any
1 < s ≤ n, one can remove at most

8.6
(n

s

)1/2
(

16 cr(G) +
n∑

i=1

d2
i

)1/2

edges from G so that every connected component of the resulting graph has fewer than
s vertices.

Proof. Partition G by subsequently subdividing each of its large components into two
roughly equal parts as follows. Start the procedure by deleting b(G) edges of G so that
it falls into two parts, each having at most 2

3 |V (G)| = 2
3 n vertices. As long as there is a

component H ⊂ G whose size is at least s, by the removal of b(H) edges, cut it into two
smaller components, each of size at most 2

3 |V (H)|. When there are no such components
left, stop.

Let H denote the family of all components arising at any level of the above procedure
(e.g., we have G ∈ H if G is connected). Define the order of any element H ∈ H as the
largest integer k, for which there is a chain

H0
⊂
�= H1

⊂
�= · · · ⊂

�= Hk (1)

in H such that Hk = H . For any k, let Hk denote the set of all elements of H of order
k. Thus, H0 is the set of the components in the final decomposition.

For any fixed k, the elements ofHk are pairwise (vertex) disjoint. Recall that in a chain
(1) we have |V (H1)| ≥ s and the ratio of the sizes of any two consecutive members is at
least 3/2. Therefore, the number of vertices in any element of Hk is at least (3/2)k−1s,
which in turn implies that for k ≥ 1,

jk := |Hk | ≤ n

(3/2)k−1s
= (2/3)k−1n

s
.

Applying Corollary 4 to the subgraphs in Hk , we obtain that the total number of edges
removed, when they are first subdivided during our procedure, is at most

1.58 · (2/3)(k−1)/2
(n

s

)1/2
(

16 cr(G) +
n∑

i=1

d2
i

)1/2

.

Summing up over all k ≥ 1, we conclude that the total number of edges deleted during
the whole procedure does not exceed the number claimed.

2. Proof of Theorem 2

We start with an auxiliary lemma.

Lemma 6. Let Hb denote the graph (cycle) defined on the vertex set V = {1, 2, . . . , t},
whose edges are (1, 2), (2, 3), . . . , (t, 1). Let Hr be a randomly selected Hamilton cycle
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on the same vertex set, i.e., let

E(Hr ) = {(σ (1), σ (2)), (σ (2), σ (3)), . . . , (σ (t), σ (1))},
where σ is a random permutation of V . Then, for every s < t and K , the probability
that the crossing number of H = Hb ∪ Hr is at most K satisfies

Prob[cr(H) ≤ K ] ≤
(

t

D

)2 (2t

s

)D st−D

(t − D)!
,

where D = �35
√

t (K + t)/s�.

Proof. We refer to the edges of Hb and Hr as black and red edges, respectively.
Let s be a positive integer. The degree of every vertex in H is at most 4, so by Corol-

lary 5 we can delete at most 8.7[t (16 cr(H)+16t)/s]1/2 = 34.8[t (cr(H)+ t)/s]1/2 ≤ D
from H so that all components of the resulting graph have fewer than s vertices.

Consequently, if we want to give an upper bound on Prob[cr(H) ≤ K ], it is sufficient
to bound the probability that H can be decomposed into sets of size smaller than s by the
deletion of precisely D black and precisely D red edges. In what follows, we estimate
this probability.

If we succeed in deleting the edges as required, then we can (greedily) group the
components of the remaining graph into at most 2t/s parts, each having fewer than
s vertices. Let H denote the resulting partition of V . The D black edges that are
deleted can be chosen in

( t
D

)
different ways. The remaining black edges form D paths.

Each set in H is the union of the vertex sets of a few of these paths, thus there are at
most (2t/s)D possibilities for the partition H, once the deleted black edges have been
chosen.

We consider the red Hamiltonian cycle to be picked with an orientation. There are( t
D

)
different ways in which to pick the starting points of the D deleted red edges.

The probability that a randomly selected red Hamiltonian cycle “respects” a fixed
partition of V into parts of size smaller than s, except for the edges originating at a fixed
set of size D, is at most st−D/(t − D)!. Indeed, when we start drawing Hr randomly at a
point, and we reach a vertex x which is not the starting point of a deleted red edge, then
the probability that the endpoint of the red edge starting at this point belongs to the part
of the partition which contains x is less than s divided by the number of vertices in V
not yet visited by the initial portion of Hr . Summarizing: the probability that H can be
decomposed into sets of size smaller than s by the deletion of D black and D red edges
is at most (

t

D

)2 (2t

s

)D st−D

(t − D)!
,

and the lemma follows.

Now we are in a position to establish Theorem 2.
Consider a regular n-gon and let p1, p2, . . . , pn be a random permutation of its

vertices. Let P denote the closed polygon obtained by connecting the pi ’s in this order.
We claim that with high probability f (P) ≤ c(n log n)2/3, where c is a constant.
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For any positive integer t , we have f (P) ≥ t if and only if there is a t-element subset
T ⊆ {p1, p2, . . . , pn} such that there is a noncrossing closed polygon Q with vertices
q1, q2, . . . , qn, in this order, with qi = pi whenever pi ∈ T .

To estimate the probability of this event for a fixed t-element set T , define two
Hamilton cycles, Hb and Hr , on the vertex set T as follows. Let Hb consist of all edges
of the convex hull of T . These edges are called black. A vertex pi ∈ T is connected to
another vertex pj ∈ T by an edge of Hr , if pi and pj are consecutive in the cyclic order
induced on T by the random permutation. That is, if i < j , then there is no index k with
i < k < j such that pk ∈ T or there is no index k with k < i or j < k with pk ∈ T .
The edges in Hr are said to be red. Let H = Hb ∪ Hr .

Suppose now that there is a noncrossing closed polygon Q with vertices q1, q2, . . . , qn,

such that qi = pi whenever pi ∈ T . By slightly changing the positions of its vertices not
belonging to T , if necessary, we may achieve that no three vertices of Q are collinear.

Consider the drawing of H , in which every vertex is represented by itself, every black
edge is represented by a straight line segment, and every red edge by the corresponding
portion of Q. In this drawing, there is no crossing between edges of the same color. Since
every edge of Q can cross the black cycle (the boundary of the convex hull of T ) in at
most two points, we obtain the number of crossings, and hence cr(H), are at most 2n.
Thus, we have

Prob[ f (P) ≥ t] ≤
(

n

t

)
Prob[cr(H) ≤ 2n].

Notice that any fixed set T uniquely determines Hb, but Hr is a uniformly distributed
random Hamiltonian cycle on T determined by the random permutation p1, . . . , pn .
After substituting t = 150(n log n)2/3 and applying Lemma 6 with K = 2n and s =
101n1/3 log4/3 n, Theorem 2 follows by computation:

Prob[ f (P) ≥ t] ≤
(

n

t

)(
t

D

)2 (3t

s

)D st−D

(t − D)!
.

Here D = �35
√

t (K + t)/s� < t/log n and hence we get

Prob[ f (P) ≥ t] ≤ 2−t .

3. Related Problems and Remarks

1. Proposition 1 (with a weaker constant) also follows from the main result in [PW]:
Every planar graph with m vertices admits a crossing-free drawing in the plane such
that its vertices are mapped into arbitrarily prespecified points and each of its edges are
represented by a polygonal curve with fewer than Cm bends, where C is a constant.
(Apply this result to the cycle with vertices p�√Cn	, p�2

√
Cn	, p�3

√
Cn	, . . . , where each

of these points has to be mapped into itself.)
2. It is easy to see that any polygon of n vertices and only one crossing pair of edges

can be untangled in �n/4	 moves. Indeed, deleting the two crossing edges, the polygon
falls into two disjoint paths. Let p1, . . . , pm , m ≤ n/2, denote the vertices of one of these
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Fig. 2. A polygon with one crossing which cannot be untangled in few moves.

paths in their natural order. We move p1 close to the crossing of the two deleted edges
and we move pi close to pm+2−i for i = 2, . . . , �m/2	. One can do this in a way to obtain
a simple polypon. Figure 2 shows an example of a polygon with a single crossing that
cannot be untangled with o(n) moves and it seems that one cannot untangle it moving
substantially fewer than n/4 vertices.

Obviously, if a polygon has c crossings, then it can be untangled without moving
the vertices of its longest crossing-free section, whose length is at least �n/(2c)	. This
bound is naturally far from being optimal.

More generally, we can raise the following:

Problem 1. Let P be a polygon of n vertices with the property that every edge of P
crosses at most k other edges. Is it true that P can be untangled so that at least ckn
vertices remain fixed, for a suitable constant ck > 0 depending only on k?

The answer to this question is in the affirmative in the special case when every edge
e of the polygon is disjoint from all other edges, whose distances from e along P are
larger than a constant k.

3. One can ask similar questions for straight-line drawings of planar graphs rather
than closed polygons. Now we are allowed to relocate any vertex, keeping all of its
connections straight. Our goal is to eliminate all crossings, moving as few vertices as
possible.

Problem 2. Let P be a (not necessarily crossing-free) straight-line drawing of a planar
graph with n vertices. Can P be untangled leaving nε vertices fixed, for an absolute
constant ε > 0?
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4. Corollary 5 is of some independent interest. In a forthcoming paper, Djidjev and
Vrto [DV] establish a similar relation between the cutwidth and the crossing number of
a graph, but neither of the two statements implies the other.
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