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Untangling introductions and persistence in 
COVID-19 resurgence in Europe

Philippe Lemey1,2 ✉, Nick Ruktanonchai3,4, Samuel L. Hong1, Vittoria Colizza5, Chiara Poletto5, 

Frederik Van den Broeck1,6, Mandev S. Gill1, Xiang Ji7, Anthony Levasseur8, Bas B. Oude 

Munnink9, Marion Koopmans9, Adam Sadilek10, Shengjie Lai3, Andrew J. Tatem3, Guy Baele1, 

Marc A. Suchard11,12,13 & Simon Dellicour1,14 ✉

After the �rst wave of SARS-CoV-2 infections in spring 2020, Europe experienced a 

resurgence of the virus starting in late summer 2020 that was deadlier and more 

di�cult to contain1. Relaxed intervention measures and summer travel have been 

implicated as drivers of the second wave2. Here we build a phylogeographical model 

to evaluate how newly introduced lineages, as opposed to the rekindling of persistent 

lineages, contributed to the resurgence of COVID-19 in Europe. We inform this model 

using genomic, mobility and epidemiological data from 10 European countries and 

estimate that in many countries more than half of the lineages circulating in late 

summer resulted from new introductions since 15 June 2020. The success in onward 

transmission of newly introduced lineages was negatively associated with the local 

incidence of COVID-19 during this period. The pervasive spread of variants in summer 

2020 highlights the threat of viral dissemination when restrictions are lifted, and this 

needs to be carefully considered in strategies to control the current spread of variants 

that are more transmissible and/or evade immunity. Our �ndings indicate that more 

e�ective and coordinated measures are required to contain the spread through 

cross-border travel even as vaccination is reducing disease burden.

Upon successfully curbing transmission in spring 2020, many European 

countries witnessed a resurgence in cases of COVID-19 in the late sum-

mer. The number of COVID-19 infections increased rapidly, and by the 

end of October, it was clear that the continent was deep into a second 

epidemic wave. This forced governments to reimpose lockdowns and 

social restrictions in an effort to contain the resurgence. Although these 

measures reduced infection rates across Europe3, several countries 

witnessed a stabilization at high levels or even a new surge in infections. 

The spread of more transmissible variants, in particular B.1.1.7 (Alpha 

variant or 20I (V1)), which was first identified in the UK4, has consider-

ably exacerbated the challenge to contain COVID-19.

Already early on in the pandemic, modelling studies warned about 

new waves due to partial relaxation of restrictions5 or seasonal varia-

tions6. By mid-April, the European Commission constructed a road-

map to lifting coronavirus containment measures7, recommending 

a cautious and coordinated manner to revive social and economic 

activities. However, the early start of the devastating second wave 

demonstrated that there was insufficient adherence to these measured 

recommendations. Cross-border travel, and mass tourism in particular, 

has been implicated as a major instigator of the second wave. Genomic 

surveillance demonstrated that a new variant (lineage B.1.1778, 20E 

(EU1) (https://nextstrain.org/), which emerged in Spain in early sum-

mer, has spread to multiple locations in Europe2. Although this variant 

quickly grew into the dominant circulating SARS-CoV-2 strain in several 

countries, it did not appear to be associated with a higher intrinsic 

transmissibility2.

Although it appears clear that travel considerably contributed to the 

second wave in Europe, it remains challenging to assess how it may have 

restructured and reignited the epidemic in the different European coun-

tries. Even without resuming travel, relaxing containment measures 

when low-level transmission is ongoing risks the proliferation of locally 

circulating strains. Phylodynamic analyses may provide insights into 

the relative importance of persistence versus the introduction of new 

lineages, but such analyses are complicated for SARS-CoV-2 for different 

reasons. Phylogenetic reconstructions may be poorly resolved owing 

to the relatively limited SARS-CoV-2 sequence diversity9. This is further 

confounded by the degree of genetic mixing that can be expected from 

unrestricted travel before the lockdowns in spring 2020.
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Mobility data predicts SARS-CoV-2 spread

We analysed SARS-CoV-2 B.1 (20A) genomes from 10 European countries 

for which a minimal number of genomes from the second wave were 

already available on 3 November 2020. Using a two-step procedure 

that relied on subsampling relative to country-specific case counts 

(see Methods), we compiled a dataset of close to 4,000 genomes sam-

pled between 29 January and 31 October 2020 (Extended Data Table 1). 

To achieve maximum resolution in our evolutionary reconstructions, 

we constructed a Bayesian time-measured phylogeographical model 

that integrates mobility and epidemiological data. Our approach 

simultaneously infers phylogenetic history and ancestral movement 

throughout this history while also identifying the drivers of spatial 

spread10. We used the latter functionality to determine the most appro-

priate mobility or connectivity measure. Specifically, we considered 

international air transportation data, the Google COVID-19 Aggregated 

Mobility Research Dataset (also referred to here as ‘mobility data’), and 
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Fig. 1 | Mobility, genome sampling, case counts and phylogeographical 

summaries through time for 10 European countries. a, The country-specific 

Google mobility influx in the 10 countries during 2-week intervals. b, The 

weekly genome sampling by country used in the phylogeographical analysis.  

c, For each country, the ratio of introductions over the total viral flow from and 

to that country (in 2-week intervals) and a monthly normalized entropy 

measure summarizing the phylogenetic structure of country-specific 

transmission chains are shown. The posterior mean ratios of introductions are 

depicted with circles that have a size proportional to the total number of 

transitions from and to that country and the grey surface represents the 95% 

highest posterior density (HPD) intervals. The posterior mean normalized 

entropies and 95% HPD intervals are depicted by dotted lines. These 

normalized entropy measures indicate how phylogenetically structured the 

epidemic is in each country, and ranges from 0 (perfectly structured, for 

example, a single country-specific cluster) to 1 (unstructured interspersion of 

country-specific sequences across the entire SARS-CoV-2 phylogeny). The 

introduction ratios and normalized entropy measures are superimposed on 

the incidence of COVID-19 (daily cases per 106 people) reported for each 

country through time (coloured density plot). The two vertical dashed lines 

represent the summer time interval (15 June and 15 August 2020) for which we 

subsequently evaluate introductions versus persistence (see Fig. 2).
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the social connectedness index of Facebook, as covariates of phylogeo-

graphical spread (Extended Data Fig. 1). The Google mobility dataset 

contains anonymized mobility flows aggregated over users who have 

turned on the location history setting, which is off by default (see Meth-

ods). The social connectedness index reflects the structure of social 

networks and has been suggested to correlate with the geographical 

spread of COVID-1911. To help to inform the phylogenetic coalescent 

time distribution, we parameterized the viral population size trajec-

tories through time as a function of epidemiological case count data 

for the countries under investigation.

Analyses using both time-homogeneous and time-inhomogeneous 

models offered strong support for mobility data as a predictor of spatial 

diffusion whereas air transportation data and the social connectedness 

index offered no predictive value (Extended Data Table 2). The fact 

that mobility data encompassing both air and land-based transport 

are required to explain COVID-19 spread highlights the need to con-

sider both types of transport in containment strategies. To ensure that 

containment strategies were accommodated by our reconstructions, 

we further extended our time-inhomogeneous approach to model 

biweekly variation in the overall rate of spread between countries as a 

function of mobility (see Methods and Extended Data Table 2).

Dynamic viral transmission through time

We use our probabilistic model of spatial spread informed by genomic, 

mobility and epidemiological data to characterize the dynamics of 

spread throughout the epidemic in Europe. We first focus on the ratio 

of introductions over the total viral flow in and out of each country over 

time and the genetic structure of country-specific transmission chains 

(Fig. 1). For the latter, we use a normalized entropy measure that quanti-

fies the degree of phylogenetic interspersion of country-specific trans-

mission chains in the SARS-CoV-2 phylogeny (see Methods). Although 

estimates for individual dispersal between pairs of countries can also 

be obtained (Extended Data Fig. 2), we remain cautious in interpreting 

these as direct pathways of spread because the genome sampling only 

covers a restricted set of European countries. The mobility to and from 

each country within our 10-country sample covers between 64% and 

96% of the mobility of these countries to and from all countries within 

Europe (Extended Data Table 3 and Extended Data Fig. 3), except for 

Norway (27%), for which other Scandinavian countries account for 

considerable mobility connections (61%), and the UK (49%), for which 

Ireland accounts for a large fraction of mobility connections (38%).

According to the proportion of introductions, we estimate more viral 

import than export events for Switzerland, Norway, the Netherlands 

and Belgium throughout most of the time period under investigation. 

According to the estimated phylogenetic entropy, these countries 

also experienced many independent transmission chains since the 

epidemic started to unfold. This is consistent with country-specific 

studies; for the first wave in Belgium, for example, about 331 individual 

introductions were estimated in the ancestry of a limited sample of 

740 genomes12. For Portugal, we also estimate higher proportions of 

introductions early in the first wave but with a subsequent decline to 

predominantly export events. France, Italy and Spain, on the other 

hand, are characterized by a relatively high viral export during the first 

wave. The proportion of introductions remained relatively low for Italy 

and Spain after the first wave, whereas in France these proportions 

were high from mid-June until the end of July. However, the absolute 

number of transitions in our sample are low during this time period. 

These countries also had comparatively lower entropy values early 

in the epidemic, with an increase for France by the start of summer 

and a more gradual increase over time for Italy. In Spain, however, the 

genetic complexity of the SARS-CoV-2 transmission chains remained 

limited. In the UK and Germany, the viral flow in and out of the country 

was initially relatively balanced. A recent large-scale genomic analysis 

in the UK indicates that this can imply very high absolute numbers of 

cross-country transmissions, as more than 2,800 independent intro-

duction events were identified from the analysis of 26,181 genomes13. 

Although our sample is limited compared to this UK-focused analysis13, 

our reconstructions also recover major influx from Spain, France and 

Italy during the first wave in the UK (Extended Data Fig. 2). We estimate 

an increase in the proportion of introductions for the UK from mid-June, 

indicating an important viral import relative to export around this time. 

The phylogenetic entropy also peaked around this time. In Germany, the 

proportions increased slightly later in the summer with a concomitant 

rise in phylogenetic entropy.

Introductions thrive in low incidence

To assess the effect of summer travel on the second wave in the dif-

ferent countries, we use our genomic–mobility reconstruction to 

estimate both the number of lineages persisting in each country and 

the number of newly introduced lineages, and how these proliferated 

early in the second wave. We focus on a 2-month time period between 

15 June 2020—when many EU and Schengen-area countries opened 
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Fig. 2 | Posterior estimates for the relative importance of lineage 

introduction events in 10 European countries. We report three summaries 

(posterior mean and 95% HPD intervals) for each country: the ratio of unique 

introductions over the total number of unique persisting lineages and unique 

introductions between 15 June and 15 August 2020 (1), the ratio of descendant 

lineages from these unique introduction events over the total number of 

descendants circulating on 15 August 2020 (2) and the ratio of descendant taxa 

from these unique introductions over the total number of descendant taxa 

sampled after 15 August 2020 (3) (see Extended Data Fig. 4). The dots are 

numbered and the sizes are proportional to: (1) the total number of unique 

lineage introductions identified between 15 June and 15 August 2020; (2) the 

total number of lineages inferred on 15 August 2020; and (3) the total number 

of descendant tips after 15 August 2020.
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their borders to other countries—and 15 August 2020, before which the 

majority of holiday return travel is expected for many countries. We 

identify the number of lineages circulating in each country on 15 August 

and determine whether they result from a lineage that persisted since 

15 June or from a unique introduction after this date (independent of 

the number of descendants for this lineage on 15 August; Extended 

Data Fig. 4). In Fig. 2, we plot (1) the ratio of these unique introductions 

over the total unique lineages (unique introductions and persisting 

lineages); (2) the proportion of descendant lineages on 15 August that 

resulted from the unique introductions over the total descendants 

circulating on this date; and (3) the proportion of descendant tips 

(sampled genomes) after 15 August that resulted from the unique 

introductions over the total number of descendant tips (see Methods 

and Extended Data Fig. 4). We estimate a posterior mean proportion 

of unique introductions that is close to or higher than 0.5 except for 

Spain and Portugal. This indicates that by 15 August, a relatively large 

fraction of circulating lineages in each country was produced by new 

introductions over summer. Because the B.1.177/20E (EU1) variant 

that was predominantly disseminated through summer travel does 

not appear to be particularly more transmissible2, this is unlikely to 

be due to strong intrinsic advantages of the newly introduced viruses.

The two proportions of descendants from these introductions on 

15 August and after this date measure the relative success of newly 

introduced lineages compared to persisting lineages, indicating consid-

erable variation in onward transmission. In Fig. 2, the country estimates 

are ordered according to decreasing average incidence during the 

15 June–15 August time period, suggesting that incidence may shape the 

outcome of the introductions. In countries that experienced relatively 

high summer incidence (for example, Spain, Portugal, Belgium and 

France), the introductions lead to comparatively fewer descendants on 

15 August or after. We find a significant overall association between the 

incidence and the difference in the logit-scaled proportion of unique 

introductions and the logit-scaled proportion of their descendants on 

15 August (P = 0.007) as well as between the incidence and the differ-

ence in the logit-scaled proportion of unique introductions and the 

logit-scaled proportion of descendant tips after 15 August (P = 0.019) 

(Extended Data Fig. 5). With comparatively few descendants from intro-

ductions (Fig. 2), Norway may to some extent be an outlier because 

lineages estimated as persisting in this country could in fact be intro-

ductions from other Scandinavian countries that are not represented 

in our genome sample. We recover qualitatively similar, but more vari-

able and statistically unsupported associations between the success of 

introductions and incidence for the 2-month time periods before and 

after the 15 June–15 August time period (Extended Data Fig. 5). This 

indicates that the comparatively higher proportion of introductions 

as well as the more stable and lower incidence between 15 June and 
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15 August provided the ideal conditions for a process of genetic drift 

by which introductions were able to fuel transmission.

Our estimates show that introductions in the UK particularly ben-

efited from the conditions for successful onward transmission (Fig. 2), 

with a considerable fraction of introductions originating from Spain 

(Extended Data Fig. 6), reflecting the spread of B.1.177/20E (EU1), which 

rapidly became the most dominant strain in the UK2. Our analysis cap-

tures the expansion of this variant as well as that of B.1.160/20A.EU2, 

which together account for more than 25% of the genomes in our data-

set. Although Spain was indeed inferred to be the origin of B.1.177/20E 

(EU1), the UK also considerably contributed to its spread (Fig. 3). The 

earliest introduction from Spain to the UK was estimated around the 

time Spain opened most EU borders (21 June) (Fig. 3). Although intro-

ductions from Spain to other countries soon followed, we estimate a 

similar rate and amount of spread from the UK to other countries before 

these other countries also further disseminated the virus. Although 

inferred from a limited sample, this illustrates a dynamic pattern of 

spread and the importance of the early establishment of B.1.177/20E 

(EU1) in the UK that probably served as an important secondary centre 

of dissemination. We note, however, that this pattern may be affected 

by the intensive and continuous genomic surveillance in the UK, which 

may also be reflected in our subsample of the available data. Although 

the UK is also involved in the spread of B1.160/20A.EU2, this variant has 

been largely disseminated from France (Fig. 3). The fact that this variant 

expanded later in France and subsequently also started to spread later 

compared to B.1.177/20E (EU1) (Extended Data Fig. 7) may explain why 

the latter spread more successfully.

Discussion

Our Bayesian phylogeographical approach builds on a rich history 

of identifying drivers of spatial spread, with applications to various 

pathogens at different spatial scales, ranging from air transporta-

tion for influenza at a global scale10 to gravity model transmission for 

Ebola in West Africa14. Such studies use a relatively limited genomic 

sample to gain insights into viral transmission dynamics. This is also 

the case in our application to SARS-CoV-2 in Europe for which we fur-

ther extend the phylodynamic data integration approach to confront 

the lack of resolution offered by SARS-CoV-2 genomic data. A con-

certed effort in containing international spread further sets apart 

the COVID-19 pandemic from these earlier events. For this reason, 

we have now incorporated variation in mobility over time to account 

for the effect of these measures. Our reconstructions show that the 

composition of lineages circulating towards the end of the summer 

was to an important extent shaped by introductions in most of the 

European countries. The relative success of onward transmission of 

the introduced lineages appears to be shaped by the local incidence 

of COVID-19 during summer.

Our results should be interpreted in light of several important limita-

tions. In addition to a limited overall size, the genome data only cover 

a selection of European countries, suggesting that we are missing 

transmission events that involve unsampled countries. This may be 

important for Norway, for example, which according to our mobility 

data, is largely connected to other Scandinavian countries. We also lack 

sampling from eastern Europe, which was to a large extent spared by 

border controls and lockdowns during the first wave, but witnessed 

high excess mortality rates during the second wave. The emergence 

of more transmissible variants has led to more intensified genomic 

surveillance, so similar phylodynamic reconstructions may now be 

performed on a wider scale.

The pandemic exit strategy offered by vaccination programmes is a 

source of optimism that also sparked proposals by EU member states to 

issue vaccine passports in a bid to revive travel and rekindle the economy. 

In addition to implementation challenges and issues of fairness, there are 

risks associated with such strategies when immunization is incomplete, 

as probably will be the case for the European population this summer. 

A recent modelling study for the UK suggests that vaccination in adults 

alone is unlikely to completely halt the spread of cases of COVID-19 and 

that lifting containment measures early and suddenly can lead to a large 

wave of infections15. A gradual release of restrictions was shown to be 

critical for minimizing the infection burden15. We believe that travel 

policies may be a key consideration in this respect because similar con-

ditions may arise to the ones that we demonstrated to provide fertile 

ground for viral dissemination and resurgence in 2020. This may now 

also involve the spread of variants that are more transmissible and/or 

evade the immune responses triggered by vaccines and previous infec-

tions. Well-coordinated European strategies will therefore be required to 

manage the spread of SARS-CoV-2 and reduce future waves of infection, 

with hopefully a more unified implementation than hitherto observed.
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Methods

Data reporting

No statistical methods were used to predetermine sample size. The 

experiments were not randomized and the investigators were not 

blinded to allocation during experiments and outcome assessment.

Sequence data and subsampling

We used a two-step genome data collection procedure. We first evalu-

ated the available genomes from European countries in GISAID16 on 

3 November 2020. We selected genomes from Belgium, France, Ger-

many, Italy, the Netherlands, Norway, Portugal, Spain, Switzerland and 

the UK primarily based on the availability of genome data from both the 

first and second wave at that time but also because of their high ratio of 

genomes to positive cases. A total of 39,812 genomes were available for 

these countries on 3 November 2020; the available number of genomes 

per country is listed in Extended Data Table 1. Portugal represented an 

exception because data for this country were limited to the first wave 

at that time, but we included genomes from Portugal because of its 

potential importance as a summer travel location.

We aligned the genomes from each country using MAFFT v.7.45317 

and trimmed the 5′ and 3′ ends and only retained unique sequences 

from each location. To further mitigate the disparities in sampling, we 

subsampled each country proportionally to the cumulative number 

of cases on 21 October 2020 (the most recently sampled sequence at 

the time) by setting an arbitrary threshold of 6.5 sequences per 10,000 

cases, with a minimum number of 100 sequences per country. To maxi-

mize the temporal and spatial coverage in each country, we binned 

genomes by epi-week and sampled as evenly as possible, sampling from 

a different region within the country when available. Only sequences 

from the B.1 lineage with the D614G substitution and exact sampling 

dates were selected for the analyses. From the final aligned sequence 

set, we removed 12 potential outliers, based on a root-to-tip regression 

applying TempEst v.1.5.318 to a maximum-likelihood tree inferred with 

IQTREE v.2.0.319, yielding a dataset of 2,909 genomes (Extended Data 

Table 1).

Because of the nature of genome sequence accumulation, fewer 

recently sampled genomes were available for most countries on 

3 November 2020 (relative to the case counts at this time). Because 

our primary goal was to assess the persistence and introduction of line-

ages leading up to the second wave, we sought to augment our dataset 

with more recent genomes, having already performed analyses on the 

initial dataset. In the section on Bayesian evolutionary reconstructions, 

we outline how we updated these analyses accordingly. On 5 January 

2021, we updated our dataset by adding more than 1,000 non-identical 

sequences collected between 1 August and 31 October (out of a total 

of 56,395 available genomes; the available and selected numbers of 

genomes per country are listed in Extended Data Table 1). For Portugal, 

we extended this period back to 22 June (the most recent sampling date 

for the previous Portuguese selection). We downloaded all new B.1 

sequences with the D614G substitution collected during the selected 

time period from GISAID and performed the following subsampling. 

The number of genomes to add per country was obtained by raising the 

threshold ratio of sequences/cases to 8.5 and increasing the minimum 

number of sequences to 200. To bias the temporal coverage towards 

more recent samples, the genomes from each country were binned by 

week and sampled such that the number of sequences added per week 

was proportional to an exponential function of the form et/4, where 

t = 0 represents 1 August and t = 13 is 31 October. For Portugal, we did 

not use this preferential sampling as we needed to include close to all 

available genomes to increase the number of genomes to 200. The 

selected sequences were deduplicated and outliers were removed as 

described in the previous paragraph. With the additional selection of 

1,050 genomes, we obtained a dataset of 3,959 genomes (Extended 

Data Table 1).

Mobility data

We analysed four different mobility and connectivity measures: air 

traffic flows, a social connectedness index provided by Facebook, as 

well as aggregated Facebook20 and Google international mobility data. 

Air traffic flow data were obtained from the International Air Trans-

port Association (http://www.iata.org) and based on the number of 

origin–destination tickets while also taking into account connections 

at intermediate airports21. We used monthly air traffic data between 

the 10 European countries under investigation for the time period 

between January 2020 and October 2020. The social connectedness 

index (SCI) is an anonymized snapshot of active Facebook users and 

their friendship networks to measure the intensity of social connect-

edness between countries (https://data.humdata.org/)22. In practice, 

the SCI measures the relative probability of a Facebook friendship link 

between two users of the application in different countries. We used 

the SCI calculated for the 10 European countries represented in our 

genomic sample as of August 2020.

The Google COVID-19 Aggregated Mobility Research Dataset contains 

anonymized mobility flows aggregated over users who have turned on 

the location history setting (on a range of platforms23), which is off by 

default. To produce this dataset, machine learning is applied to logs 

data to automatically segment it into semantic trips24. To provide strong 

privacy guarantees, all trips were anonymized and aggregated using a dif-

ferentially private mechanism25 to aggregate flows over time (see https://

policies.google.com/technologies/anonymization). This research was 

done on the resulting heavily aggregated and differentially private data. 

No individual user data was ever manually inspected, only heavily aggre-

gated flows of large populations were handled. All anonymized trips were 

processed in aggregate to extract their origin and destination location 

and time. For example, if users travelled from location a to location b 

within time interval t, the corresponding cell (a, b, t) in the tensor would 

be n ± η, where η is Laplacian noise. The automated Laplace mechanism 

adds random noise drawn from a zero-mean Laplace distribution and 

yields (ε, δ)-differential privacy guarantee of ε = 0.66 and δ = 2.1 × 10−29 

per metric. Specifically, for each week W and each location pair (A,B), we 

compute the number of unique users who took a trip from location A to 

location B during week W. To each of these metrics, we add Laplace noise 

from a zero-mean distribution of scale 1/0.66. The parameter ε controls 

the noise intensity in terms of its variance and δ represents the deviation 

from pure ε privacy. The closer these parameters are to zero, the stronger 

the privacy guarantees. We used aggregated mobility flows between the 

10 European countries and summarized them by 2-week or monthly time 

periods between January 2020 and October 2020.

Finally, we also considered international mobility data from Facebook 

mobility data as an alternative to Google mobility data. These data are 

based on the numbers of Facebook users moving over large distances, 

such as air or train travel. Counts of international travel patterns are 

updated daily based only on users who have opted to share precise loca-

tion data from their device with the Facebook mobile app through loca-

tion services. Also in this case, we used aggregated mobility flows between 

the 10 European countries and summarized them by month between Janu-

ary 2020 and October 2020. Because international aggregate mobility 

data obtained from Google and Facebook are highly correlated (monthly 

Spearman correlation ranging from 0.84 to 0.92) (Supplementary Fig. 1), 

we only included the Google aggregate mobility data as a covariate in the 

phylogeographical analyses. We note that the mobility data are subject 

to limitations as these may not be representative of the population as 

whole and their representativeness may vary by location.

Bayesian evolutionary reconstructions

Joint sequence–trait inference with a time-homogeneous gen-

eralized linear model of discrete trait diffusion. We performed a 

Bayesian evolutionary reconstruction of timed phylogeographical 

history using BEAST 1.1026, incorporating the genome sequences, their 

http://www.iata.org
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country and date of sampling, epidemiological and mobility and/or 

connectivity data. Because of the relatively low degree of resolution 

offered by the sequence data, our full probabilistic model specification 

focuses on (1) relatively simple model specifications and (2) informing 

parameters by additional non-genetic data sources. We modelled se-

quence evolution using an HKY85 nucleotide substitution model with 

a gamma-distributed rate variation among sites and a strict molecular 

clock model. Our genome set includes three genomes from an early 

outbreak in Bavaria, which was caused by an independent introduc-

tion from China27,28. We therefore constrained these genomes as an 

outgroup in the analysis, which according to root-to-tip regression 

plots as a function of sampling time resulted in a better correlation 

coefficient and R2 compared to the best-fitting root under the heuristic 

mean residual squared criterion18 (Supplementary Fig. 2).

As a coalescent tree prior, we modelled the effective population 

size trajectory as a piecewise constant function that changes values 

at pre-specified times (following a previously published study29), with 

log-transformed population sizes modelled as a deterministic function 

of log-transformed counts of cases of COVID-19 (following a previous 

publication30). This reduces the nonparametric skygrid parameteriza-

tion to a generalized linear model (GLM) formulation with an estimable 

regression intercept (α) and coefficient (β). In this parameterization, a 

coefficient estimate centred around 0 would imply constant population 

size dynamics through time. We specified 2-week intervals and sum-

marized as a covariate the total case counts over these time intervals for 

the 10 countries of sampling (obtained from https://www.ecdc.europa.

eu/en/covid-19/data). The earliest interval with non-zero cases counts 

was from 14 January 2020 to 28 January 2020; before 14 January 2020, 

the log-transformed and standardized case count covariate was set to 

the equivalent of 1 case. We also tested whether a lag time was required 

for the case count covariate using marginal likelihood estimation31. 

Specifically, we shifted the case counts by 1, 2, 3 and 4 weeks before 

summarizing them according to 2-week intervals and estimated the 

model fit of these covariates against case counts without lag time (Sup-

plementary Table 1). To mitigate the computational burden associated 

with the marginal likelihood estimation procedure, we performed these 

analyses on a subset of 1,000 genomes (obtained using the Phylogenetic 

Diversity Analyzer tool32). We estimated the highest (log-transformed) 

marginal likelihood for a two-week lag time (Supplementary Table 1) 

and used this for the case count covariate in our analyses.

Similar to sequence evolution, we modelled the process of tran-

sitioning through discrete location states (countries of sampling) 

according to a continuous-time Markov chain (CTMC)33. We used a 

parameterization that models the log-transformed transition rates 

as a log-linear function of mobility and connectivity covariates10. The 

Bayesian implementation of this model simultaneously estimates 

the phylogenetic history, ancestral movement and the contribution 

of covariates to the movement patterns10. Although we mainly use 

this approach to obtain well-informed phylodynamic estimates, we 

also make use of its capacity to identify the most-relevant mobility 

measure to inform our reconstructions. As covariates we considered 

the SCI of Facebook, air transportation data and mobility data. For 

the two time-variable mobility measures, we used the average of the 

log-transformed and standardized monthly mobility measures as a 

single covariate in our time-homogeneous phylogeographical GLM 

model. In this GLM formulation, we estimate the positive effect sizes 

for each covariate as well as their inclusion probability through a 

spike-and-slab procedure10. Although we subsampled the number 

of SARS-CoV-2 genomes per country in proportion to case counts, 

they do not fully correspond because we used a minimum number 

of genomes for countries with low case counts. We therefore evalu-

ated whether this resulted in signal for sampling bias by including an 

origin and destination covariate in the GLM based on the residuals for 

a regression analysis between genomes and case counts (following a 

previously published study14). We performed this analysis using a set of 

empirical trees (see ‘Time-inhomogeneous reconstructions’) applying 

both a time-homogeneous and time-inhomogeneous model, but found 

no support for these additional covariates (Supplementary Table 2).

We performed inference under the full model specification using 

Markov chain Monte Carlo (MCMC) sampling and used the BEAGLE 

library v.334 to increase computational performance. We specified 

standard transition kernels on all parameters, except for the regres-

sion coefficients of the piecewise-constant coalescent GLM model. 

For these parameters, we implemented new Hamiltonian Monte Carlo 

transition kernels to improve sampling efficiency. These kernels use 

principles from Hamiltonian dynamics and their approximate energy 

conserving properties to reduce correlation between successive sam-

pled states, but require computation of the gradient of the model 

log-posterior with respect to the parameters of interest, in addition 

to efficient evaluation of the log-posterior that BEAGLE provides. To 

accomplish this, we extended our previous analytic derivation of the 

gradient of the log-transformed density from the skygrid coalescent 

model with respect to the log-transformed population sizes35 to now 

be with respect to the regression coefficients using the chain rule and 

their regression design matrix.

Owing to the dataset size, MCMC burn-in takes up considerable 

computational time. We therefore iterated through a series of BEAST 

inferences, initially only considering sequence evolution and subse-

quently adding the location data, to arrive at a tree distribution from 

which trees were taken as starting trees in our final analyses. The latter 

was composed of multiple independent MCMC runs that were run suf-

ficiently long to ensure that their combined posterior samples achieved 

effective sample sizes larger than 100 for all continuous parameters.

Data augmentation through online BEAST. As we updated our data-

set after the initial analyses of the 2,909 genome collection using the 

approach discussed (see ‘Bayesian evolutionary reconstructions’), 

we sought to capitalize on these efforts to limit the burn-in for sub-

sequent analyses of the 3,959 dataset. Specifically, we adopted the 

distance-based procedure to insert new taxa into a time-measured 

phylogenetic tree sample as implemented in the BEAST framework 

for online inference36. We subsequently use the augmented tree as the 

starting tree for the analyses of the updated dataset.

Time-inhomogeneous reconstructions. To accommodate the time 

variability of the mobility measures, we constructed epoch model ex-

tensions of the discrete phylogeography approach that allow specifying 

arbitrary intervals over the evolutionary history and associating them 

with different model parameterizations37. As a complement to testing 

covariates of spatial diffusion using a time-homogeneous model, we 

used the epoch extension to specify monthly intervals, enabling us to 

incorporate monthly mobility matrices (air transportation data were 

available only as monthly numbers), but assuming time-homogeneous 

effect sizes and inclusion probabilities. Monthly covariates were again 

log-transformed and standardized after adding a pseudo-count to each 

entry in the monthly matrices.

In addition, we performed another analysis in which we relaxed the 

constant-through-time inclusion probability of the covariates. In this 

model specification, each interval is associated with a specific set of 

indicator variables to represent the inclusion or exclusion of covariates, 

but we pool information about predictor inclusion across the intervals 

using hierarchical graph modelling38. This approach uses a set of indica-

tor variables to model covariate inclusion at the hierarchical level but 

enables interval-specific inclusion or predictors to diverge from the 

hierarchical level with a non-zero probability (with the number of dif-

ferences modelled as a binomial distribution38), which was set to 0.10 

in our study. We estimated hierarchical and interval-level inclusion 

using the spike-and-slab procedure38.

Finally, we performed an analysis using the time-inhomogeneous 

model in which the interval-specific transition rates are modelled as 

https://www.ecdc.europa.eu/en/covid-19/data
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a function of the single covariate that is supported by the analyses 

above leveraging aggregate mobility. We incorporated more variability 

through time by specifying 2-week intervals (similar to the coalescent 

GLM interval specification). In addition, we add time-homogeneous 

random effects to the phylogeographical transition rate parameteriza-

tion to account for potential biases in the ability of mobility to predict 

phylogeographical spread. Although the posterior mean estimates 

for these random effects vary, only very few indicate that individual 

phylogeographical transition rates significantly deviate from the 

mobility data (Supplementary Fig. 3). The time-inhomogeneous GLM 

approach that we use enables the modelling of relative differences in 

transition rates, but also the overall rate of migration between coun-

tries varies through time, and importantly, this is strongly affected by 

intervention strategies. To accommodate these dynamics, we further 

extend this model by incorporating a time-inhomogeneous overall 

CTMC rate scaler and parameterize it as a log-linear function of the 

total monthly between-country log-transformed and standardized 

mobility (time-variable rate scalar GLM in Extended Data Table 2). To 

generate realizations of the discrete location CTMC process and obtain 

estimates of the transitions (Markov jumps) between states under this 

model, we used posterior inference of the complete Markov jump his-

tory through time10,39.

Although the epoch model enables us to flexibly accommodate 

time-variable spatial dynamics, it considerably increases the compu-

tational burden associated with likelihood evaluations. To efficiently 

draw inferences under this model for our large dataset, we fit the 

time-inhomogeneous spatial diffusion process to a set of trees inferred 

under the time-homogeneous GLM diffusion model described above. 

Although likelihood evaluations remain computationally expensive, 

even with the speed-up offered by GPU computation with BEAGLE, 

eliminating simultaneous tree estimation tremendously reduces the 

parameter space, requiring only modest MCMC chain lengths to ade-

quately explore it. Model and inference specifications for the different 

analyses are available as BEAST XML input files on GitHub (https://

github.com/phylogeography/SARS-CoV-2_EUR_PHYLOGEOGRAPHY) 

and Zenodo (https://doi.org/10.5281/zenodo.4876442).

Posterior summaries. We assessed MCMC mixing (for example, using 

effective sample sizes) and summarized continuous parameter estimates 

using Tracer v.1.7.140. Credible intervals were computed as 95% HPD in-

tervals. Trees were visualized using FigTree v.1.4.4 (available at https://

github.com/rambaut/figtree/releases). In terms of phylogeographical 

estimates, we mainly focused on (1) transitions to each location and from 

each location (based on Markov jump estimates) instead of pairwise 

transitions; (2) ratios of these transitions and (3) how these transitions 

structured transmission chains in individual countries. Transitions to and 

from each location avoid drawing conclusions about direct migration 

between countries, which can be tenuous given the incomplete genome 

coverage of Europe, while their ratios avoid using absolute numbers of 

transitions, which are highly sample-dependent. Phylogeographical 

inference is limited to reconstructing the transitions in the ancestral 

history of a sample of sequences, which will only be a small fraction of the 

actual migration events especially when these events result in insufficient 

onward transmission to be captured in our limited sample. In addition, 

SARS-CoV-2 genome data can be poorly resolved and identical genomes 

in different locations are consistent with hypotheses that involve both a 

sparse and a rich number of virus flows between these locations. As the 

data hold little information to distinguish these hypotheses, we only 

consider sparse scenarios by including only unique sequences for each 

location. A joint inference of sequence evolution and discrete spatial 

diffusion would err on the side of sparse hypotheses anyway because it 

will tend to cluster identical sequences that share a location. Despite the 

general underestimation of spatial dispersal, a phylogeographical infer-

ence is still likely to capture the transition events with important onward 

transmission, and evaluating the importance of such events relative 

to persistence is a major focus of this study. Cryptic transmission also 

complicates the ability to reconstruct spatial dispersal, but we expect 

this to be equally likely for introductions and persistence and therefore 

focus on their ratio for each location.

We provide three new tree sample tools in the BEAST codebase on 

GitHub (https://github.com/beast-dev/beast-mcmc) to obtain pos-

terior summaries of location transition histories using posterior tree 

distributions annotated with Markov jumps:

(1) TreeMarkovJumpHistoryAnalyzer enables the collection of 

Markov jumps and their timings from a posterior tree distribution 

annotated with Markov jumps histories in a .csv file for further analyses.

(2) TreeStateTimeSummarizer decomposes the total tree time into 

the times associated with contiguous partitions of a tree estimated to 

be in a particular location state, with the partitions determined by the 

Markov jumps. An arbitrary lower- and upper-time boundary can be 

specified to restrict the summary to a particular time interval in the evo-

lutionary history. We use the time estimates for the separate partitions 

associated with each state to calculate an entropy measure that sum-

marizes the genetic make-up of country-specific transmission chains. 

Specifically, we use for each location a normalized Shannon entropy:

∑
n

p p−
1

ln( )
ln( ), (1)

i

n

i i

where pi is the proportion of time associated with that location for 

partition i of a phylogeographical tree and n represents the number 

of partitions for that location in the tree.

(3) PersistenceSummarizer also uses posterior tree distributions 

annotated with Markov jumps to summarize the number of lineages 

at a particular point in time (evaluation time (Te); see Extended Data 

Fig. 5), which location states they are associated with, since what time 

point in the past they have maintained that state and how many sampled 

descendants they have after time Te (Extended Data Fig. 5). In addition, 

it enables summarizing how long these lineages have circulated inde-

pendently before Te, so before sharing common ancestry with other 

lineages that maintained the same location state. This information 

allows us to determine how many lineages are circulating at Te that stem 

either from a unique persistent lineage (maintaining the same location 

states) or unique introduction event since a particular time before Te 

(ancestral time (Ta) in Extended Data Fig. 5). The association between 

incidence and the difference in the logit proportion of unique intro-

ductions and the logit proportion of their descendants on 15 August 

was evaluated using a P value obtained by a linear regression analysis.

Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this paper.

Data availability

BEAST XML input files are available on GitHub (https://github.com/

phylogeography/SARS-CoV-2_EUR_PHYLOGEOGRAPHY) and Zenodo 

(https://doi.org/10.5281/zenodo.4876442). The SARS-CoV-2 genome 

data required to run these XML files can be downloaded from https://

www.gisaid.org; all GISAID accession numbers are listed in the GISAID 

acknowledgements table (Supplementary Table 3).

The Google COVID-19 Aggregated Mobility Research Dataset and the 

Facebook mobility data are not publicly available owing to stringent 

licensing agreements. Information on the process of requesting access 

to the Google mobility data are available from A.S. (sadilekadam@

google.com) and the COVID-19 Community Mobility Reports that were 

derived from the Google data are publicly available at https://www.

google.com/covid19/mobility/. The Facebook mobility data are made 

available through the Data for Good programme (https://dataforgood.

fb.com) under the terms of a data license agreement that defines the 
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allowed terms of use by partners (contact: disastermaps@fb.com). 

Once a request for access from a partner institution is vetted and an 

appropriate data license agreement is signed, then access is granted 

through Facebook’s web-based spatial visualization tool called GeoIn-

sight. Air travel data were obtained from the International Air Transport 

Association (http://www.iata.org).

log-transformed and standardized among-country mobility and 

air travel data are specified in the available BEAST XML files (https://

github.com/phylogeography/SARS-CoV-2_EUR_PHYLOGEOGRAPHY 

and https://doi.org/10.5281/zenodo.4876442). COVID-19 incidence data 

were obtained from https://www.ecdc.europa.eu/en/covid-19/data.

Code availability

The code to run the BEAST analyses is available in the hmc_develop 

branch of the BEAST codebase on GitHub (https://github.com/

beast-dev/beast-mcmc) and Zenodo (https://doi.org/10.5281/

zenodo.4895235). The tools TreeMarkovJumpHistoryAnalyzer, TreeS-

tateTimeSummarizer and PersistenceSummarizer are available from 

the master branch in the same codebase.
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(a) Interna�onal air traffic data

(b) Interna�onal Facebook mobility data (and SCI)

(c) Interna�onal Google mobility data

Facebook SCI

Extended Data Fig. 1 | Monthly international mobility data matrices for air traffic and Google and Facebook mobility data. a–c, International air traffic data 

(a), international Facebook mobility data (b), and international Google mobility data (c). For Facebook data (b), we also report the single SCI matrix.
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Extended Data Fig. 2 | Estimated introductions through time in the 10 

European countries and circular migration flow plots summarizing the 

estimated transitions between the countries for different time intervals 

throughout the evolutionary history of SARS-CoV-2. a, The introductions 

through time serve as an illustration and are based on the Markov jump history 

in the maximum clade credibility tree. We note that the posterior distribution 

of trees is accompanied by considerable uncertainty about the location of 

origin, destination and timing of the transitions that is difficult to 

appropriately visualize. The grey box represents the time period from 15 June 

to 15 August 2020. b, The circular migration flow plots are based on the 

posterior expectations of the Markov jumps. The sizes of the plots reflect the 

total number of transitions for each period. In these plots, migration flow out 

of a particular location starts close to the outer ring and ends with an 

arrowhead more distant from the destination location.
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Extended Data Fig. 3 | Pairwise mobility data among the 10 countries included in the phylogeographical analysis and other European countries. Heat-map 

cells are coloured according to international Google mobility data for the time period between January and October 2020.
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Extended Data Fig. 4 | Conceptual representation of persistent lineages 

and introductions during the time interval delineated by the evaluation 

time and the ancestral time. At evaluation time (Te), we evaluate how many 

lineages are circulating in the location of interest; in this case, 12 lineages 

(lineages in other locations are represented by thick grey branches). We 

subsequently identify whether these lineages maintained this location up to 

ancestral time (Ta) in their ancestry or whether they result from an introduction 

event in the time interval of interest. By determining whether other lineages 

circulating in the location of interest at Te are descendants of the same 

persistent lineage or whether they share an introduction event, we identify the 

unique persistent lineages or introductions, in this case 2 and 4 lineages, 

respectively. In addition to the proportion of unique introductions (p1 = 4/6), 

we also summarize the proportion of their descendants at Te (p2 = 9/(9 + 3) in 

this case) and the proportion of their descendants in terms of sampled tips 

after Te (p3). Those tips are not shown here but are conceptually represented for 

both introductions and persistent lineages by ovals.
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Extended Data Fig. 5 | Scatter plots of the difference in the logit proportion 

of unique introductions and the logit proportion of their descendants on 

15 August against the incidence and the difference in the logit proportion 

of unique introductions and the logit proportion of descendant tips after 

15 August against incidence. Left, the difference in logit proportions of 

unique introductions (p1) and their descendants (p2). Right, the difference in 

logit proportions of unique introductions (p1) and descendant tips (p3). Data 

are shown for the periods between 15 April and 15 June, between 15 June and 

15 August, and between 15 August and 15 October. The P values in the lower 

right corner of the plots are the p-values for the hypothesis tests based on the 

t-statistic evaluating whether the regression coefficient in a linear regression 

model is different from 0.
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Extended Data Fig. 7 | Phylogeographical transitions for lineages 

B1.177/20E (EU1) and B1.160/20A.EU2. Cumulative phylogeographical 

transitions are summarized as posterior mean estimates with 95% HPD 
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Extended Data Table 1 | Genome sampling by country, collected on 3 November 2020 and updated on 5 January 2021

The numbers in between brackets represent the number of available genomes that were subsampled. *For Portugal, almost all available genomes were included to increase the number of 

genomes to 200.
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Extended Data Table 2 | Parameter estimates for the various Bayesian time-measured phylogeographical models

The coalescent GLM parameterizes biweekly effective population sizes as a log-linear function of COVID-19 incidence data, with α and β representing the log intercept and log regression 

coefficient. In the time-inhomogeneous spatial diffusion models, no coalescent prior was used as these models were fitted onto posterior trees inferred from the time-homogeneous model 

(see Methods). For the spatial GLM model, we report inclusion probability estimates through the expectations of the Boolean indicators (δ) associated with each predictor and log conditional 

effect sizes (the regression coefficient conditional on the predictor being included in the model, β|δ = 1). The SCI is based on Facebook data. For the model with time-variable inclusion 

probabilities, we report the parameters at the hierarchical level (δh and β|δh, see Methods). In the model with a time-variable rate scalar, we parameterize this rate scalar as a log-linear function 

of the overall between-country mobility, with α and β representing the log intercept and log regression coefficient. 

Using a time-homogeneous model of spatial diffusion, we estimate a maximum inclusion probability for the mobility data whereas air transportation data and SCI offer no predictive value. 

We also estimate a strong positive association between the change in the viral population size through time and COVID-19 incidence in the coalescent GLM. We further confirm the support 

for the mobility covariate in a time-inhomogeneous spatial model that incorporates monthly mobility measures, with either constant or time-variable inclusion probabilities. In addition to 

parameterizing the relative rates of spread between countries according to this covariate, we extend our time-inhomogeneous approach to also model biweekly variation in the overall rate 

of spread between countries as a function of mobility measures (time-variable rate scalar GLM). This approach estimates a positive association between the overall rate of spatial spread and 

mobility data.



Extended Data Table 3 | Mobility percentage to or from each country within 
our 10-country sample

For each country, the mobility to or from each country within in our dataset is listed as a percentage of the total 

between-country mobility within Europe. The pairwise mobility measures summarized in this table are shown in 

Extended Data Fig. 3.
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