
Untangling the Intricacies of Thread
Synchronization in the PREEMPT RT Linux Kernel

Daniel B. de Oliveira1,2,3, Rômulo S. de Oliveira2, and Tommaso Cucinotta3

1RHEL Platform/Real-time Team, Red Hat, Inc., Pisa, Italy.
2Department of Systems Automation, UFSC, Florianópolis, Brazil.

3RETIS Lab, Scuola Superiore Sant’Anna, Pisa, Italy.

Email: bristot@redhat.com, romulo.deoliveira@ufsc.br, tommaso.cucinotta@santannapisa.it

Abstract—This article proposes an automata-based model for
describing and validating the behavior of threads in the Linux
PREEMPT RT kernel, on a single-core system. The automata
model defines the events and how they influence the timeline of
threads’ execution, comprising the preemption control, interrupt
handlers, interrupt control, scheduling and locking. This article
also presents the extension of the Linux trace features that enable
the trace of the kernel events used in the modeling. The model
and the tracing tool are used, initially, to validate the model,
but preliminary results were enough to point to two problems
in the Linux kernel. Finally, the analysis of the events involved
in the activation of the highest priority thread is presented in
terms of necessary and sufficient conditions, describing the delays
occurred in this operation in the same granularity used by kernel
developers, showing how it is possible to take advantage of the
model for analyzing the thread wake-up latency, without any
need for watching the corresponding kernel code.

I. INTRODUCTION

Real-time Linux has been successfully used throughout

a number of academic and industrial projects as a funda-

mental building block of real-time distributed systems, from

distributed and service-oriented infrastructures for multime-

dia [1], robotics [2], sensor networks [3] and factory automa-

tion [4], to the control of military drones [5] to distributed

high-frequency trading systems [6], [7]. This is possible thanks

to a set of operations that ensure the deterministic operation

of Linux, while reducing the operating system noise. These

operations, however, require in-kernel synchronization that can

cause non-negligible delays, even for non-explicitly related

tasks [8]. The synchronization is necessary because of the non-

atomic nature of a sophisticated operating system like Linux.

The understanding of the synchronization primitives, and how

they affect the timing behavior of a thread, are fundamental

for the development of real-time software for Linux.

However, the amount of effort required to understand all

these constraints is not negligible. It might take years for a

newcomer to understand the internals of the Linux kernel.

The complexity of Linux is indeed a barrier, not only for

researchers but for developers as well. Inside the kernel,

scheduling operations interact with low-level details of the

underlying processor and memory architectures, where com-

plex locking protocols and “hacks” are used. The challenge is

then, to describe such operations, using a level of abstraction

that removes the complexity due to the kernel code. The

description must use a format that facilitates the understanding

of Linux dynamics for real-time researchers, without being too

far from the way developers observe and improve Linux.

The developers of Linux observe and debug the timing

properties of Linux using the tracing features present in the

kernel. They interpret a chain of events, trying to identify the

states that cause “latencies” in the activation of the highest

priority thread, and then try to change kernel algorithms to

avoid such delays. For instance, they use ftrace [9] or perf1

to trace kernel events like interrupt handling, wakeup of a new

thread, context switch, etc.. While cyclictest measures the

“latency” of the system.

The notion of events, traces and states used by developers

are common to Discrete Event Systems (DES). The admissible

sequences of events that a DES can produce or process can be

formally modeled through a language. The language of a DES

can be modeled in many formats, like regular expressions,

Petri nets and automata.

Paper Contributions: This article proposes an automata-

based model describing the possible interleaving sequences

of kernel events in the code path handling the execution

of threads, IRQs and NMIs in the kernel, on a single-core

system. The model covers also kernel code related to locking

mechanisms, such as mutexes, read/write semaphores and

read/write locks, including the possibility of nested locks, as

for example in the locking primitives own code.

This article also presents the extension of the kernel tracing

mechanism used to capture traces of the kernel events used

in the model, to enable validation of the model by applying a

modified perf tool running in user-space against traces cap-

tured from the live running system. Two problems were found

in the Linux kernel code, regarding scheduler and tracing,

by using our model. Finally, this paper demonstrates how the

model can improve the understanding of Linux properties in

logical terms, in the same granularity used by developers, but

without the need of reading the kernel code.

II. RELATED WORK

This section presents prior literature relevant to the work

being presented in this paper, spanning across two major areas:

use of automata in real-time systems analysis, and formal

software verification techniques successfully applied to the

verification of kernel code in operating systems.

1More information at: http://man7.org/linux/man-pages/man1/perf.1.html.

a) Automata-based real-time systems analysis: Automata

and discrete-event systems have been extensively used to

verify timing properties of real-time systems. For example,

in [10], a methodology based on timed discrete event systems

is presented to ensure that a real-time system with multiple-

period tasks is reconfigured dynamically using a safe execution

sequence. In [11], the Kronos tool is used for checking

properties of models based on timed automata.

In [12], parametric timed automata are used for the symbolic

computation of the region of the parameters’ space guarantee-

ing schedulability of a given real-time task set, under fixed

priority scheduling. Additionally, some authors [13] consid-

ered composability of automata-based timing specifications,

so that timing properties of a complex real-time system can

be verified with reduced complexity.

In [14], the TIMES tool is used with an automata-based for-

malism to describe a network of distributed real-time compo-

nents for analyzing their temporal behavior from the viewpoint

of schedulability. Similar is the approach of UPPAAL [15].

Compared to the work being presented here, the mentioned

methodologies focus on modeling the timing behavior of

the applications, and their reciprocal interferences due to

scheduling, neglecting the exact sequence of steps executed by

an operating system kernel and its process scheduler, in order

to let, for example, a higher-priority task preempt a lower-

priority one. These details can be fundamental to ensure the

build of an accurate formal model of the possible interferences

among tasks, as shown in this paper.

b) Formal methods for OS kernels: An area that is par-

ticularly challenging is the one of verification of an operating

system kernel and its various components. Some works that

addressed this problem include the BLAST tool [16], where

control flow automata have been used, combining existing

techniques for state-space reduction based on abstraction,

verification and counterexample-driven refinement, with lazy

abstraction. Interestingly, the authors applied the technique to

the verification of safety properties of OS drivers for the Linux

and Microsoft Windows NT kernels.

Chaki et al. [17] proposed MAGIC, a tool for automatic ver-

ification of sequential C programs against finite state machine

specifications. The tool can analyze a direct acyclic graph of C

functions, by extracting a finite state model from the C source

code, then reducing the verification to a Boolean satisfiability

(SAT) problem. Interestingly, MAGIC has been used to verify

correctness of a number of functions in the Linux kernel

involved in syscalls handling mutexes, sockets, and packet

sending. The tool has also been extended later to handle

concurrent software systems [18], albeit the authors focus on

verifying correctness and deadlock-freedom in presence of

message-passing based concurrency, forbidding the sharing of

variables. Authors were able to find a bug in the Micro-C/OS

source code, albeit when they notified developers the bug had

already been found and fixed in a newer release.

Another remarkable work is the lockdep mechanism [19]

built into the Linux kernel, capable of identifying errors

in using locking primitives that might eventually lead to

deadlocks. The mechanism includes detection of mistaken

order of acquisition of multiple (nested) locks throughout

multiple kernel code paths, and detection of common mistakes

in handling spinlocks across IRQ handler vs process context,

e.g., acquiring a spinlock from process context with IRQs

enabled as well as from an IRQ handler.

In [20], a formal memory model is introduced to automate

verification of consistency properties of core kernel synchro-

nization operations for a number of different architectures and

associated memory consistency models.

In [21], a model of an RT system involving Linux is

presented, with two OS domains: a real-time and a non-real-

time one. These are abstracted as a seven and three states

model, respectively. The model, however, is a high-level one

and does not consider the internal details of the Linux kernel.

To the best of our knowledge, none of the above tech-

niques ventured into the challenging goal of building a formal

model for the understanding and validation of the Linux

PREEMPT RT kernel code sections responsible for such

low-level operations such as task scheduling, IRQ and NMI

management, and their delicate interplay, as done in this paper.

The only exception is the work in [22], where the idea

of building an automata-based model for the Linux kernel

was sketched out, presenting a very preliminary model fo-

cusing on IRQ and NMI only. The present paper presents

a much more complete model, encompassing kernel events

related to NMI, IRQ, threads management and locking code

in the Linux PREEMPT RT kernel, describing internals of our

modifications to the perf tool, discussing its performance and

overheads, and presenting two major results obtained applying

the technique, that allowed us to track down problems in the

scheduler and tracing code paths within the kernel, discussed

with and confirmed by main kernel developers.

Finally work exists that tries to combine theoretical an-

alytical real-time system models with empirical worst-case

estimations based on a Linux OS [23]. There, the author

introduced an “overhead-aware” evaluation methodology for a

variety of considered analysis techniques, with multiple steps:

first, each scheduling algorithm to be evaluated is implemented

on the LITMUS RT platform, then hundreds of benchmark

task sets are run, gathering average and maximum values for

what the authors call scheduling overheads, then these figures

are injected into overhead-aware real-time analysis techniques.

Now, the key comparison point with the present work, is that

we aim at explaining at a finer-grained level of detail what

these scheduling overheads are, where they originate from

and why, when referring to the Linux kernel, and specifically

to its PREEMPT RT variant. The discussion around outliers

in [23], along with the explicit admission of the need for

removing manually some of them, witnesses the need for a

more insightful model that provides more accurate information

of said overheads. Our automata-based model, that will be

detailed in the next sections, sheds some light exactly into

this direction.

III. BACKGROUND

We model the succession of events in the Linux kernel over

time as a Discrete Event System. A DES can be described in

various ways, for example using a language (that represents

x

a
zg

b

y

a,g

a

b

Fig. 1: State transitions diagram (based on Fig. 2.1 from [24]).

the valid sequences of events that can be observed during the

evolution of the system). Informally speaking, an automaton

is a formalization used to model a set of well-defined rules

that define such a language.

The evolution of a DES is described with all possible se-

quence of events e1, e2, e3, ...en, ei ∈ E, defining the language

L that describes the system. There are many possible ways to

describe the language of a system. For example, it is possible

to use regular expressions. For complex systems, more flexible

modeling formats, like automaton, were developed. Automata

are characterized in the typical directed graph or state transi-

tion diagram representation. For example, consider the event

set E = {a, b, g} and the state transition diagram in Figure 1,

where nodes represent system states, labeled arcs represent

transitions between states, the arrow points to the initial state

and the nodes with double circles are marked states, i.e.,

safe states of the system. Formally, a deterministic automaton,

denoted by G, is a tuple G = {X,E, f,Γ, x0, Xm} where: X

is the set of states; E is the set of events; f : X × E → X

is the transition function, defining the state transition between

states from X due to events from E; Γ : X =⇒ 2E is the

active (or feasible) event function, i.e., Γ(x) is the set of all

events e for which f(x, e) is defined in the state x; x0 is the

initial state and Xm ⊆ X is the set of marked states.

For instance, the automaton G represented in Figure 1 can

be described by: X = {x, y, z}, E = {a, b, g}, f(x, a) = x,

f(x, g) = z, f(y, a) = x, f(y, b) = y, f(z, b) = z, f(z, a) =
f(z, g) = y, Γ(x) = {a, g}, Γ(y) = {a, b}, Γ(z) = {a, b, g},

x0 = x and Xm = {x, z}. The automaton starts from the

initial state x0 and moves to a new state f(x0, e) upon the

occurrence of an event e ∈ Γ(x0) ⊆ E. This process continues

based on the transitions for which f is defined.

Informally, following the graph of Figure 1 it is possible

to see that the occurrence of event a, followed by event g

and a will lead from the initial state to state y. The language

L(G) generated by an automaton G = {X,E, f,Γ, x0, Xm}
consists of all possible chains of events generated by the state

transition diagram starting from the initial state.

One important language generated by an automaton is the

marked language. This is the set of words in L(G) that

lead to marked states. The marked language is also called

the language recognized by the automaton. When modeling

systems, a marked state is generally interpreted as a possible

final or safe state for a system.

Automata theory also enables operations among automata.

An important operation is the parallel composition of two

or more automata that are combined to compose a single,

ValidationValidation

automaton.dot

Does

the model

matches

trace?

Does

the model

matches

trace?

OK

No

Yes

Informal

knowledge

Informal

knowledge

KernelKernel

ModelingModeling

TracingTracing
perf.data

Fig. 2: Modeling Phases.

augmented-state, automaton. This allows for merging two or

more automata models into one single model, constituting the

standard way of building a model of the entire system from

models of individual components [24].

A. Monolithic vs. modular modeling

In modeling complex systems using automata, there are two

possible approaches, the monolithic and the modular one [25].

In the monolithic approach the system is modeled as a single

automaton. Although this approach is good for simple systems,

it is not efficient in the modeling of complex systems, as the

number of states increases exponentially. In the modular ap-

proach, rather than specifying a single automaton, the system

is modeled as a set of independent sub-systems, where each

sub-system has its own alphabet. For systems composed of

many independent sub-systems, with several specifications, the

modular approach turns out to be more efficient.

In the modular approach, a generator of events of each sub-

system is modeled independently. The synchronization rules

of each sub-system are then stated as a set of specification

automata. Each specification synchronizes the actions of two

or more generators. The parallel composition of all the gen-

erators and specifications creates the model of the system and

its synchronizations.

IV. MODELING

Following the approach presented in Figure 2, the knowl-

edge about Linux tasks is modeled as an automaton using

the modular approach. The main sources of information, in

order of importance, are the observation of the system’s

execution using various tracing tools [9], the kernel code

analysis, academic documentation about Linux and real-time

systems [8], and hardware documentation [26].

At the same time, we observe a real system running. The

development of the model uses the Linux vanilla kernel with

the PREEMPT RT patchset applied. This work is based on the

fully-preemptive mode only, that is the mode utilized by the

real-time Linux community. The configuration options of this

kernel are based on the configuration of the Red Hat Enterprise

Linux for Real Time, an enterprise version of Linux with the

PREEMPT RT patchset, with kernel version v4.14.15-rt13.

However, the kernel was configured to run on a single CPU.

During the development of the model, the abstractions from

the kernel are transformed into automata models. Initially, the

identification of the system is made using the tracepoints

already available. However, the existing tracepoints were not

enough to explain the behavior of the system satisfactorily. For

TABLE I: Automaton and Kernel events relation. Events in

bold font were added to the kernel.

Kernel event Automaton event Description
IRQ related tracepoints

hw local irq disable irq:local irq disable Begin IRQ handler
hw local irq enable irq:local irq enable Return IRQ handler
local irq disable irq:local irq disable Mask IRQs
local irq enable irq:local irq enable Unmask IRQs
nmi entry irq vectors:nmi Begin NMI handler
nmi exit irq vectors:nmi Return NMI Handler

Preemption/Scheduler related events
preempt disable sched:sched preempt disable Disable preemption
preempt enable sched:sched preempt enable Enable preemption
preempt disable sched sched:sched preempt disable Disable preemption to call the scheduler

preempt enable sched sched:sched preempt enable
Enables preemption returning from the
scheduler

schedule entry sched:sched entry Begin of the scheduler
schedule exit sched:sched exit Return of the scheduler
sched need resched sched:set need resched Set need resched

State of the thread related events
sched waking sched:sched waking Activation of a thread
sched set state runnable sched:sched set state Thread is runnable
sched set state sleepable sched:sched set state Thread can go to sleepable

Context switch related events
sched switch in sched:sched switch Switch in of the thread under analysis

sched switch suspend sched:sched switch
Switch out due to a suspension of the thread
under analysis

sched switch preempt sched:sched switch
Switch out due to a preemption of the thread
under analysis

sched switch blocking sched:sched switch
Switch out due to a blocking of the thread
under analysis

sched switch in o sched:sched switch Switch in of another thread
sched switch out o sched:sched switch Switch out of another thread

Mutex related events
mutex lock lock:rt mutex lock Requested a RT Mutex
mutex blocked lock:rt mutex block Blocked in a RT Mutex
mutex acquired lock:rt mutex acquired Acquired a RT Mutex
mutex abandon lock:rt mutex abandon Abandoned the request of a RT Mutex

Read/Write Lock/Semaphore related events
write lock lock:rwlock lock Requested a R/W Lock or Sem as writer
write blocked lock:rwlock block Blocked in a R/W Lock or Sem as writer
write acquired lock:rwlock acquired Acquired a R/W Lock or Sem as writer
write abandon lock:rwlock abandon Abandoned a R/W Lock or Sem as writer
read lock lock:rwlock lock Requested a R/W Lock or Sem as reader
read blocked lock:rwlock block Blocked in a R/W Lock or Sem as reader
read acquired lock:rwlock acquired Acquired a R/W Lock or Sem as reader
read abandon lock:rwlock abandon Abandon a R/W Lock or Sem as reader

example, the sched:sched waking tracepoint is sufficient

to inform the activation of a thread. Although it includes the

prio field to vehicle the priority of the just awakened thread,

this is not enough to determine whether the thread has the

highest priority or not. For instance, the SCHED DEADLINE

does not use the prio field, but the thread’s absolute deadline.

When a thread becomes the highest priority one, the flag

TIF NEED RESCHED is set for the current running thread.

This causes invocation of the scheduler at the next scheduling

point. Hence, the event that most precisely defines that another

thread has the highest priority task is the event that sets the

TIF NEED RESCHED flag. Since the standard set of Linux’s

tracepoints does not include an event to notify the setting of

TIF NEED RESCHED, a new tracepoint needed to be added.

In such cases, new tracepoints were added to the kernel.

These new tracepoints are highlighted in Table I.

A. Events

Table I presents the events used in the automata modeling

and their related kernel events. When a kernel event refers to

more than one automaton event, the extra fields of the kernel

event are used to distinguish between automaton events.

Linux kernel evolves very fast. For instance, in a very recent

release (4.17), around 1.559.000 lines were changed (690000

additions, 869000 deletions) [27]. This makes natural the rise

of the question: How often do the events and abstractions

utilized in this model change? Despite the continuous evolu-

tion of the kernel, some principles stay stable for a long time.

IRQs and the possibility of masking them are present in Linux

need_resched

sched_need_resched

runnablesleepable sched_set_state_sleepable

sched_waking
sched_set_state_runnable

schedthread schedule_exit

schedule_entry

Fig. 3: Examples of generators: G05 Need Resched (on top,

left), G01 Sleepable and Runnable (on top, right) and G04

Scheduling Context (bottom).

since its very early days. The fully preemptive model, and the

functions to disable preemption are present since the early

days of the PREEMPT RT, dating back to year 2005 [28]. It

is worth noting that the scheduling and locking related events

are implementation independent. For instance, the model does

not refer to any detail about how specific schedulers’ imple-

mentations define which thread to pick next (highest priority,

earliest deadline). The same is valid for locking: the model is

independent from details about the specific implementation of

locking primitives. These might even change, but the events

and their effects in the timeline of threads stay invariable.

The abstractions used in this paper was discussed with the

main Linux kernel developers and maintainers of the real-time,

scheduling and tracing sub-systems [29], [30].

B. Modeling

The automata model have been developed using the

Supremica IDE [31]. Supremica is an integrated environment

for verification, synthesis, and simulation of discrete event

systems using finite automata. Supremica allows exporting the

result of the modeling in the DOT format that can be plotted

using graphviz [32], for example.

The model was developed using the modular approach. All

modules were developed manually. The generators are the

system’s events of Table I modeled as a set of independent

sub-systems. Each sub-system has a private set of events.

Similarly, each specification is modeled independently, but

using the events of the sub-systems of the generators it aims

to synchronize.

Examples of generators are shown in Figure 3. The

Need resched generator (G05) contains only one event

and one state. The Sleepable or Runnable generator

(G01) has two states. Initially, the thread is in the

sleepable state. The events sched waking and

sched set state runnable cause a state change to

runnable. The event sched set state sleepable

returns the task to the initial state. The Scheduling Context

(G04) models the call and return of the main scheduling

function of Linux, which is scheduler().

Table II shows statistics information about the Generators

and Specifications that compose the model. The final model is

generated from the parallel composition modular models. The

parallel composition is done via Supremica tool. The final

model has 34 events, 13906 states and 31708 transitions. The

1: Reference model: isorc.dot

2: +----> +=thread of interest - .=other threads

3: | +-> T=Thread - I=IRQ - N=NMI

4: | |

5: | | TID | timestamp | cpu | event | state | safe?

6: . T 8 436.912532 [000] preempt_enable -> q0 safe

7: . T 8 436.912534 [000] local_irq_disable -> q8102

8: . T 8 436.912535 [000] preempt_disable -> q19421

9: . T 8 436.912535 [000] sched_waking -> q99

10: . T 8 436.912535 [000] sched_need_resched -> q14076

11: . T 8 436.912535 [000] local_irq_enable -> q1965

12: . T 8 436.912536 [000] preempt_enable -> q12256

13: . T 8 436.912536 [000] preempt_disable_sched -> q18615,q23376

14: . T 8 436.912536 [000] schedule_entry -> q16926,q17108,q2649,q7400

15: . T 8 436.912537 [000] local_irq_disable -> q11700,q14046,q21391,q23792

16: . T 8 436.912537 [000] sched_switch_out_o -> q10337,q20018,q21933,q7672

17: . T 8 436.912537 [000] sched_switch_in -> q10268,q20126

18: + T 1840 436.912537 [000] local_irq_enable -> q20036

19: + T 1840 436.912538 [000] schedule_exit -> q21033

Fig. 4: Example of the perf thread model output: a thread activation.

TABLE II: Automata models.

Name States Events Transitions

G01 Sleepable or runnable 2 3 3

G02 Context switch 2 4 4

G03 Context switch other thread 2 2 2

G04 Scheduling context 2 2 2

G05 Need resched 1 1 1

G06 Preempt disable 3 4 4

G07 IRQ Masking 2 2 2

G08 IRQ handling 2 2 2

G09 NMI 2 2 2

G10 Mutex 3 4 6

G11 Write lock 3 4 6

G12 Read lock 3 4 6

S01 Sched in after wakeup 2 3 5

S02 Resched and wakeup sufficency 3 10 18

S03 Scheduler with preempt disable 2 4 4

S04 Scheduler doesn’t enable preemption 2 6 6

S05 Scheduler with interrupt enabled 2 4 4

S06 Switch out then in 2 20 20

S07 Switch with preempt/irq disabled 3 10 14

S08 Switch while scheduling 2 8 8

S09 Schedule always switch 3 6 6

S10 Preempt disable to sched 2 3 4

S11 No wakeup right before switch 3 5 8

S12 IRQ context disable events 2 27 27

S13 NMI blocks all events 2 34 34

S14 Set sleepable while running 2 6 6

S15 Don’t set runnable when scheduling 2 4 4

S16 Scheduling context operations 2 3 3

S17 IRQ disabled 3 4 4

S18 Schedule necessary and sufficient 7 9 22

S19 Need resched forces scheduling 7 27 59

S20 Lock while running 2 16 16

S21 Lock while preemptive 2 16 16

S22 Lock while interruptible 2 16 16

S23 No suspension in lock algorithms 3 10 19

S24 Sched blocking if blocks 3 10 20

S25 Need resched blocks lock ops 2 15 17

S26 Lock either read or write 3 6 6

S27 Mutex doesn’t use rw lock 2 11 11

S28 RW lock does not sched unless block 4 11 22

S29 Mutex does not sched unless block 4 7 16

S30 Disable IRQ in sched implies switch 5 6 10

S31 Need resched preempts unless sched 3 5 11

S32 Does not suspend in mutex 3 5 11

S33 Does not suspend in rw lock 3 8 16

Model 13906 34 31708

complete model has only one final state, has no forbidden

states, it is deterministic and non-blocking.

The complete model exposes the complexity of Linux. At a

first glance, the number of states seems to be excessively high.

But, for instance, as it is not possible to mask NMIs, these

can take place in all states, doubling the number of states, and

adding two more transitions for each state. The complexity,

however, can be simplified if analyzed at the generators and

specifications level. By breaking the complexity into small

specifications, the understanding of the system becomes more

natural. For instance, the most complex specification has only

seven states. The modular modeling approach can provide

a simple view of small parts of the system, facilitating the

understanding by humans, while providing the entire picture

of the system, making the validation of the trace more efficient.

C. Model Validation

The perf tracing tool was extended to automate the val-

idation of the model against the execution of the real sys-

tem. The perf extension is called thread model. The perf

thread model has two operation modes. In record mode, the

tracepoints presented in Table I are enabled, and recorded

into a perf.data file. This phase involves both the Linux

kernel tracing features and perf itself in user-space. In the

kernel, tracepoints are enabled, recording the events in the

trace buffer. This operation is done using lock-free primitives,

that do not generate events involved in the model. Hence, the

kernel part does not influence the model validation. Due to

the high granularity of data, a typical 30 seconds trace of the

system running cyclictest as workload, generates around

27000000 events, amounting 2.5 GB of data. To avoid having

to collect the trace buffer data very frequently, a 3 GB trace

buffer was allocated. The high number of events is due to

background activities from Linux. For example, the periodic

scheduler tick, RCU activities, network and disk operations,

and so on. The user-space side periodically collects the trace

from the trace-buffer, saving the data to a file. This generates

additional events that are analyzed as any regular process.

After recording, the analysis of the data is done using the

perf thread model report mode. This is the core of the

validation tool. The report mode has three basic arguments:

raw tracepoint

event

accept/deny event

output string

Run the

[re]start [re]start

Y

N automaton

Fig. 5: perf task model structure.

The model exported by Supremica in the .dot format; the

perf.data file containing the trace; and the pid of the thread

to analyze. The modules of the tool are presented in Figure 5.

The perf interface is part of perf. The Grapviz library is

used to parse the .dot file. Between these two components, the

Trace to Event Interpreter was developed. When starting,

the perf interface opens the trace file, and the Grapviz is

used to open the model. The Trace to Event Interpreter

is initialized, setting initial states and data. After the initial

setup, perf handles the raw tracepoints to the Trace to

Event Interpreter, that translates the trace to event, that

is then tried in the automaton. If the automaton accepts the

event, the regular output is printed. If not, an error message

is printed. Either way, the trace continues to be parsed and

evaluated until the end of the trace file.

The validation is done using the complete model. The

advantage of using the complete model is that one kernel

transition generates only one transition in the model. Hence

the validation of each event is done in linear time (O(1)) for

each event. This is a critical point, given the number of states

in the model, and the amount of data from the kernel. On the

adopted platform, each GB of data is evaluated in nearly 8

seconds. One example of output provided by perf thread

model is shown in Figure 4.

It is then possible to use the Supremica simulation mode

to identify the state of the automata, and the raw trace

to determine the events generated and unexpected event. If

the problem is in some automaton, it should be adapted to

include the behavior presented by the kernel. However, it

could be a problem in the kernel code or in the perf tool.

Not surprisingly, kernel bugs were found in the scheduler

and perf/trace. The first was an inefficiency bug in the kernel

schedule() function. The fix suggested by the authors was

accepted and is already included in all PREEMPT RT versions

under support [33]. The second is a bug in the trace-subsystem,

which is dropping events due to a problem in the detection of

nesting of events 2. The second problem was acknowledged

by developers, but no solution was found yet.

The source code of the model in the format used by

Supremica, the kernel patch with kernel and perf modifi-

cations and more information about how to use the model and

and reproduce the experiments are available at this paper’s

Companion Page [34].

2http://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1811261.html

V. APPLICATIONS OF THE MODEL: ANALYSIS OF

ACTIVATION OF THE HIGHEST PRIORITY THREAD

This section analyzes the models related to the activation of

the highest priority thread. This behavior is important because

it is part of the principal metric utilized by the PREEMPT RT

developers, the latency.

The generators that act during the activation of a thread are

described first, followed by the specifications. Then, specifi-

cations and generators are used to explain the possible paths,

and how they influence the activation delay.

A. Generators

The model considers three types of tasks: 1) NMI; 2) IRQs

and 3) Threads. The generator G09 in Figure 6 show the events

that represent the execution of an NMI. The NMI can always

take place, hence interfering in the execution of threads and

IRQs. The second type of tasks are IRQs. Before starting the

handling of an IRQ, the processor masks interrupts to avoid

reentrancy in the interrupt handler. Although it is not possible

to see actions taken by the hardware from the operating system

point of view, the irqsoff tracer of the Linux kernel has a

hook in the very beginning of the handler, that is used to take

note that IRQs were masked [22]. In such a way to reduce the

number of events and states, the events that inform the starting

of an interrupt handler were suppressed, and the notification of

interrupts being disabled by the hardware prior to the execution

of the handler are used as the events that notify the start of

the interrupt handler. The same is valid for the return from

the handler. The last action in the return from the handler is

the unmask of interrupts. This is used to identify the end of

an interrupt handler. A thread can also postpone the start of

the handler of an interrupt using the local irq disable()

and local irq enable() like functions. The generator G07

models the masking of the interrupts by a thread. The genera-

tor G08 models the masking of the interrupts by the hardware

to handle a hardware interrupt. These are presented in Figure 7.

A thread starts running after the scheduler com-

pletes execution. The scheduler context starts with the

event schedule entry, and finishes with the event

schedule exit, as modeled in generator G04 (Figure 3).

The context switch operation changes the context from one

thread to another. The model considers two threads. One is the

thread under analysis, and the other represents all other threads

in the system. On Linux, there is always one thread ready to

run. That is because the idle state runs as if it was a thread, the

lowest priority thread. In the initial state of the automata, any

other thread is running. The context switch operations from

or to the other threads are presented in Figure 8.

The context switch generator for the thread under analysis is

slightly different. In the initial state, the thread is not running.

After starting running, the thread can leave the processor in

three different modes: 1) suspending the execution waiting

for another activation; 2) blocking in a locking algorithm like

Mutex, or read/write semaphores; or 3) suffering a preemption

from a higher priority thread, as shown in Figure 9.

The thread is activated with the sched waking event in

the generator G01, the notification of a new highest priority

nminon_nmi nmi_exit

nmi_entry

Fig. 6: G09 NMI generator.

irqnon_irq hw_local_irq_enable

hw_local_irq_disable

disabledenabled local_irq_enable

local_irq_disable

Fig. 7: G08 IRQ Handling (Top); G07 IRQ Masking (Bottom)

generators.

preemptedrunning sched_switch_in_o

sched_switch_out_o

Fig. 8: G03 Context switch other thread generator.

not_running running

sched_switch_in

sched_switch_suspend
sched_switch_preempt
sched_switch_blocking

Fig. 9: G02 Context switch generator.

no_preempt

preempt

preempt_enable

preempt_disable

scheduling

preempt_disable_sched

preempt_enable_sched

Fig. 10: G06 Preempt disable.

thread, with set need resched event in the generator G05,

as shown in Figure 3.

The last involved generator is about preemption. In the

initial state, the preemption is enabled. But it can be dis-

abled for two main reasons: first, to guarantee that the

current thread will not be de-scheduled; second, to avoid

reentrancy in the scheduler code when already execut-

ing the scheduler. In the first case, the preempt disable

and preempt enable events are generated, the second

case generates the events preempt disable sched and

preempt enable sched. These two possibilities are mod-

eled in the G06, as shown in Figure 10.

B. Specification

In Figure 11, the specifications S02 shows the sufficient

condition for the occurrence of both sched waking

and sched need resched: they can occur only with

both preemption and IRQs disabled. By disabling

both interrupts and preemption, the automaton moves

to the state disabled, where it is possible to execute

sched waking and sched need resched. The automaton

S02 allows the sequence of events “local irq disable”,

“hw local irq disable”, giving the impression that it

does not enforce both IRQ and preemption to be disabled. In

disabled

sched_need_resched
sched_waking

p_xor_i

preempt_enable
preempt_enable_sched

local_irq_enable
hw_local_irq_enable

enabled

preempt_disable
preempt_disable_sched

local_irq_disable
hw_local_irq_disable

preempt_disable
preempt_disable_sched

local_irq_disable
hw_local_irq_disable

preempt_enable
preempt_enable_sched

local_irq_enable
hw_local_irq_enable

Fig. 11: S02 Wakeup and Need resched takes place with IRQ

and preemption disabled.

irq_disabled

no_irq

local_irq_enable

irq_runninghw_local_irq_enable

local_irq_disable

hw_local_irq_disable

Fig. 12: S17 IRQ disabled.

can_sched

schedule_entry
schedule_exit

cant_sched

local_irq_disable

local_irq_enable

Fig. 13: S05 Scheduler called with interrupts enabled.

disabled

sched_switch_in
sched_switch_suspend
sched_switch_preempt

sched_switch_in_o
sched_switch_out_o

sched_switch_blocking

p_xor_i

local_irq_enable
preempt_enable_sched

enabled

local_irq_disable
preempt_disable_sched

local_irq_disable
preempt_disable_sched

local_irq_enable
preempt_enable_sched

Fig. 14: S07 Switch with interrupts and preempt disabled.

sched

sched_switch_in
sched_switch_in_o

sched_switch_suspend
sched_switch_preempt
sched_switch_out_o

sched_switch_blocking

thread schedule_exit

schedule_entry

Fig. 15: S08 Switch while scheduling.

can_sched

schedule_entry
schedule_exit

cant_sched preempt_enable_sched

preempt_disable_sched

Fig. 16: S03 Scheduler called with preemption disabled.

fact, the specification S02 does not forbid this sequence. This

sequence is forbidden in the specification S17 IRQ disabled,

in Figure 12. The specification S17 is a classical mutual

exclusion. Interrupts are disabled either by hardware or by

software, but never by both. This specification, along with

any_thread_running

write_abandon
write_acquired
write_blocked

write_lock
mutex_abandon
mutex_acquired
mutex_blocked

mutex_lock
read_abandon
read_acquired
read_blocked

read_lock
preempt_disable_sched
preempt_enable_sched
hw_local_irq_disable
hw_local_irq_enable

local_irq_disable
local_irq_enable
preempt_disable
preempt_enable
schedule_entry
schedule_exit

p_and_i

sched_need_resched

irq_enable_sched_exit

hw_local_irq_disable
hw_local_irq_enable

preempt_and_irq_enable

preempt_enable_sched

re_scheduling
schedule_entry

irq_enabled schedule_exit

local_irq_disable
hw_local_irq_disable

preempt_enable
preempt_enable_sched

schedule_entry

sched_switch_in
sched_switch_in_o

local_irq_enable
hw_local_irq_enable

preempt_enabled

preempt_enable

hw_local_irq_disable
hw_local_irq_enable

preempt_disable_sched

preempt_disable

local_irq_enable
hw_local_irq_enable

preempt_disable_sched

sched_switch_in
sched_switch_in_o

local_irq_disable
local_irq_enable

hw_local_irq_disable
hw_local_irq_enable

schedule_entry

Fig. 17: S19 Need resched forces scheduling.

the generator of the preemption disabled (G06), gives the

properties needed to the specification S02 to have both IRQs

and preemption disabled in the disabled state.

The context switch of threads also depends on two main

specifications: S07 both preemption and IRQ should be dis-

abled. However, with a slight difference of the specification

S02: interrupts disabled in the thread context (not because

of an IRQ), and preemption disabled during a scheduler

call. Moreover, the context switch only happens inside the

scheduling context, because of the specification S08. These

specifications are presented in Figure 14 and 15, respectively.

The scheduler execution has two main specifications as well:

The specification S03, in Figure 16, restricts the execution

of the scheduler for a non-preemptive section. However, the

scheduler is always called with interrupts enabled, as modeled

in the specification S05 in Figure 13.

The main goal of the PREEMPT RT is to schedule the high-

est priority thread as soon as possible. In the terms used in the

model, the goal of the PREEMPT RT developers is to cause

sched switch in or sched switch in o events after the

occurrence of set need resched as soon as possible. The

specification S19, in Figure 17, models this property.

The specifications explained so far described the sufficient

conditions for these events. Given the sufficient conditions, the

specification S19 provides the necessary conditions to context

switch to the highest priority thread.

In the initial state, the system runs without changing

the state, unless set need resched takes place. Once

set need resched occurs, the initial state will be possi-

ble only after the context switch in of a thread. Hence,

set need resched is a necessary condition to cause a pre-

emption, causing a context switch. When set need resched

occurs, preemption and interrupts are known to be disabled

(S02). Before returning to the initial state, the set of events

that can happen are limited for those that deal with IRQ/IRQ

masking, preemption and scheduling.

The return to the initial state is possible from two

states: in the state p and i, and in the re scheduling.

The first case takes place when set need resched oc-

curs in the scheduler execution. For instance, the se-

quence “preempt disable sched”, “schedule entry”,

“local irq disable” satisfies the specification S02 for the

set need resched and S03, S05, S07 and S08 for the

context switch. This case represents the best case, where all

sufficient conditions occurred before the necessary one.

If this is not the case, the return for the initial state can

happen through a sole state, the re scheduling. From the

state p and i until re scheduling, the calls to the scheduler

function are enabled anytime sufficient conditions are met.

However, this implies that preemption was disabled to call

the scheduler (S03), which is the case of a thread running

on the way to enter in the scheduler, or already in scheduling

context (G04). This case, however, is not the point of attention

for Linux developers. The point of interest for developers

is in the cyclic part of the specification S17, between states

p and i, preempt enabled, and irq enabled, in which either

or both IRQs and preemption stays disabled, not allowing the

progress of the system. Moreover, in the states in which IRQs

are enabled, like irq enabled and preempt and irq enable,

interrupt handlers can start running, postponing the context

switch. Finally, NMIs can take place at any time, contributing

to the delay. These operations that postpone the occurrence

of the context switch are part of the latency measured by

practitioners. The latency measurements, however, does not

clarify the cause of the latency: the kernel is evaluated as a

black box. By modeling the behavior of tasks on Linux, this

work opens space for the creation of a novel set of evaluation

metrics for Linux.

VI. CONCLUSIONS

The definition of the operations of the Linux kernel that

affect the timing behavior of tasks is fundamental for the

improvement of the real-time Linux state-of-the-art. By using

the modular approach, it was possible to model the essential

behavior of Linux utilizing a set of small and easily under-

stood automata. The synchronization of these small automata

resulted in an automaton that represents the entire system. The

development of the validation method/tooling was simplified

because of the shared abstraction of “events”.

It is possible to use the model to aid the understanding of

complex behavior of Linux, with the benefit of not requiring

the knowledge of the entire model. For example, the explana-

tion presented in Section V used only a set of specifications,

not all the models. Although the authors expected that the

usage of the model could help in the debugging of Linux in

future works, the fact that the model produced practical results

already during its development was a pleasant surprise.

One main aspect of Linux is the capacity of evolving,

creating a new reality of fully distributed systems, for example,

with containers and micro-services. Verifying that the changes

in the kernel code do not create regressions, breaking the

model and the guarantees provided by the PREEMPT RT,

is a major concern of developers. The idea of using the

automata model to verify the kernel was presented to the

main Linux kernel developers, and there is a consensus that

the given approach should be integrated, mainly to improve

testing of the logical correctness of the kernel [35], but also

for timing regressions, with the creation of new metrics for

the PREEMPT RT kernel [36]. Further improvements in the

tooling should be done to arrive in such state. For instance by

improving the performance of the tracing by using eBPF. The

approach has also potential to be used in another areas of the

kernel, by the modeling of other components.

The natural continuation of this work is the modeling of

the multiprocessor behavior of Linux. Furthermore, a useful

follow-up research would be an attempt to merge this kind

of model with existing real-time schedulability analysis tech-

niques, in order to verify the usefulness of the more accurate

modeling of the OS/kernel relatively complex code, in the case

of PREEMPT RT Linux.

REFERENCES

[1] V. Vardhan, W. Yuan, A. F. H. III, S. V. Adve, R. Kravets,
K. Nahrstedt, D. G. Sachs, and D. L. Jones, “GRACE-2: integrating
fine-grained application adaptation with global adaptation for saving
energy,” IJES, vol. 4, no. 2, pp. 152–169, 2009. [Online]. Available:
https://doi.org/10.1504/IJES.2009.027939

[2] C. San Vicente Gutiérrez, L. Usategui San Juan, I. Zamalloa Ugarte, and
V. Mayoral Vilches, “Real-time linux communications: an evaluation
of the linux communication stack for real-time robotic applications,”
Aug 2018. [Online]. Available: https://arxiv.org/pdf/1808.10821.pdf

[3] A. Dubey, G. Karsai, and S. Abdelwahed, “Compensating for timing
jitter in computing systems with general-purpose operating systems,”
in 2009 IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, March 2009, pp. 55–62.

[4] T. Cucinotta, A. Mancina, G. F. Anastasi, G. Lipari, L. Mangeruca,
R. Checcozzo, and F. Rusina, “A real-time service-oriented architecture
for industrial automation,” IEEE Transactions on Industrial Informatics,
vol. 5, no. 3, pp. 267–277, Aug 2009.

[5] J. Condliffe, “U.s. military drones are going
to start running on linux,” https://gizmodo.com/
u-s-military-drones-are-going-to-start-running-on-linu-1572853572,
Jul 2014.

[6] J. Corbet, “Linux at NASDAQ OMX,” https://lwn.net/Articles/411064/,
Oct 2010.

[7] H. Chishiro, “Rt-seed: Real-time middleware for semi-fixed-priority
scheduling,” in 2016 IEEE 19th International Symposium on Real-Time
Distributed Computing (ISORC).

[8] D. B. de Oliveira and R. S. de Oliveira, “Timing analysis of the
PREEMPT RT Linux kernel,” Softw., Pract. Exper., vol. 46, no. 6, pp.
789–819, 2016.

[9] S. Rostedt, “Secrets of the Ftrace function tracer,” Linux Weekly News,
January 2010, available at: http://lwn.net/Articles/370423/ [last accessed
09 May 2017].

[10] X. Wang, Z. Li, and W. M. Wonham, “Dynamic Multiple-Period Recon-
figuration of Real-Time Scheduling Based on Timed DES Supervisory
Control,” IEEE Transactions on Industrial Informatics, vol. 12, no. 1,
pp. 101–111, Feb 2016.

[11] C. Daws and S. Yovine, “Two examples of verification of multirate timed
automata with Kronos,” in Proceedings 16th IEEE Real-Time Systems
Symposium, Dec 1995, pp. 66–75.

[12] A. Cimatti, L. Palopoli, and Y. Ramadian, “Symbolic Computation of
Schedulability Regions Using Parametric Timed Automata,” in 2008
Real-Time Systems Symposium, Nov 2008, pp. 80–89.

[13] K. Lampka, S. Perathoner, and L. Thiele, “Component-based
system design: analytic real-time interfaces for state-based
component implementations,” International Journal on Software Tools
for Technology Transfer, vol. 15, no. 3, pp. 155–170, Jun 2013.
[Online]. Available: https://doi.org/10.1007/s10009-012-0257-7

[14] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “Times:
A tool for schedulability analysis and code generation of real-time
systems,” in Formal Modeling and Analysis of Timed Systems, K. G.
Larsen and P. Niebert, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 60–72.

[15] P. Li, B. Ravindran, S. Suhaib, and S. Feizabadi, “A formally verified
application-level framework for real-time scheduling on POSIX real-
time operating systems,” IEEE Transactions on Software Engineering,
vol. 30, no. 9, pp. 613–629, Sept 2004.

[16] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstrac-
tion,” in Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’02. New York,
NY, USA: ACM, 2002, pp. 58–70.

[17] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith, “Modular veri-
fication of software components in C,” IEEE Transactions on Software
Engineering, vol. 30, no. 6, pp. 388–402, June 2004.

[18] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha, “Con-
current software verification with states, events, and deadlocks,” Formal
Aspects of Computing, vol. 17, no. 4, pp. 461–483, Dec 2005.

[19] J. Corbet, “The kernel lock validator,” https://lwn.net/Articles/185666/,
May 2006.

[20] J. Alglave, L. Maranget, P. E. McKenney, A. Parri, and A. Stern, “Fright-
ening Small Children and Disconcerting Grown-ups: Concurrency in
the Linux Kernel,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’18. New York, NY, USA: ACM,
2018, pp. 405–418.

[21] H. Posadas, E. Villar, D. Ragot, and M. Martinez, “Early model-
ing of linux-based rtos platforms in a systemc time-approximate co-
simulation environment,” in 2010 13th IEEE International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Comput-
ing, May 2010, pp. 238–244.

[22] D. B. de Oliveira, R. S. de Oliveira, T. Cucinotta, and L. Abeni,
“Automata-based modeling of interrupts in the Linux PREEMPT RT
kernel,” in 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Sept 2017, pp. 1–8.

[23] B. B. Brandenburg, Scheduling and Locking in Multiprocessor Real-
Time Operating Systems, 2011. [Online]. Available: https://cs.unc.edu/
∼anderson/diss/bbbdiss.pdf

[24] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. Springer Publishing Company, Incorporated, 2010.

[25] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1, pp.
206–230, Jan. 1987.

[26] Intel Corporation, Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual: Vol. 3, September 2016, no. 325384-060US.

[27] J. Corbet, “Statistics from the 4.17 kernel development cycle,” May
2018. [Online]. Available: https://lwn.net/Articles/756031/

[28] P. McKenney, “A realtime preemption overview,” August 2005.
[Online]. Available: https://lwn.net/Articles/146861/

[29] D. B. de Oliveira, “Mind the gap between real-time Linux and real-time
theory, Part I,” 2018. [Online]. Available: https://wiki.linuxfoundation.
org/realtime/events/rt-summit2018/schedule#abstracts

[30] ——, “Mind the gap between real-time Linux and real-time theory,
Part II,” 2018. [Online]. Available: https://www.linuxplumbersconf.org/
event/2/contributions/75/

[31] K. Akesson, M. Fabian, H. Flordal, and R. Malik, “Supremica - an
integrated environment for verification, synthesis and simulation of
discrete event systems,” in 2006 8th International Workshop on Discrete
Event Systems, July 2006, pp. 384–385.

[32] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz – open source graph drawing tools,” in International Sympo-
sium on Graph Drawing. Springer, 2001, pp. 483–484.

[33] D. B. de Oliveira, T. Cucinotta, and R. S. de Oliveira, “Modeling
the Behavior of Threads in the PREEMPT RT Linux Kernel Using
Automata,” in Proceedings of the Embedded Operating System Workshop
(EWiLi), Turin, Italy, October 2018.

[34] D. B. de Oliveira, “Companion Page for ISORC 2019 paper,” 2019.
[Online]. Available: http://bristot.me/isorc-2019/

[35] ——, “How can we catch problems that can break the
PREEMPT RT preemption model?” 2018. [Online]. Available:
https://linuxplumbersconf.org/event/2/contributions/190/

[36] ——, “Beyond the latency: New metrics for the real-time kernel,” 2018.
[Online]. Available: https://linuxplumbersconf.org/event/2/contributions/
241/

