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Untappable Key Distribution System:
a One-Time-Pad Booster

G. A. Barbosa and J. van de Graaf

Abstract—The One-Time-Pad (OTP) protocol gives unconditional secu-

rity for the information being encrypted. Correctly implemented, not even

an adversary with a quantum computer can crack it. However, the need

of sharing in a secure way supplies of symmetric random keys turned the

method almost obsolete as a stand-alone method for fast and large vol-

ume telecommunication. Basically, this secure sharing of keys and their

renewal, once exhausted, had to be done through couriers, in a slow and

costly process. This paper presents a solution for this problem providing a

fast and unlimited renewal of secure keys: An untappable key distribution

system is presented and detailed. This fast key distribution system utilizes

two layers of confidentially protection: 1) Physical noise intrinsic to the op-

tical channel that turn the coded signals into stealth signals and 2) Privacy

amplification using a bit pool of refreshed entropy run after run, to elimi-

nate any residual information. The resulting level of security is rigorously

calculated and demonstrates that the level of information an eavesdropper

could obtain is negligible. The random bit sequences, fast and securely

distributed, can be used to encrypt text, data or voice.

Keywords—Random, Physical processes, Cryptography, Privacy ampli-

fication.

I. INTRODUCTION

A
key distribution system that uses the intrinsic light noise of

an optical carrier to forbid an attacker E (or Eve) to ex-

tract clean signals from the transmitted ones was described in

Refs. [1] and [2]. The basic characteristics of that system is that

the legitimate users, A (or Alice) and B (or Bob), are not af-

fected in the same way as E by the channel’s noise. This asym-

metry is caused by a starting information shared by A and B but

not by E – it produces a measurement advantage for A and B

over Eve: Signals buried under noise for Eve and clear signals

for A or B.

This work stresses basic theoretical and practical aspects of

that physical system (Section III) and enhances its security by

an explicit privacy amplification protocol (PA) (Sections VI and

VII). The security level due to these two protection layers, phys-

ical and computational, is calculated and discussed. The physi-

cal implementation will be presented in a following work.

The use of optical noise to secure encryption of signals in

telecommunication channels was analyzed in [3] (alpha-eta en-

cryption system). This system was tested in secure networks

in US. Also in land-air tests (Optix/NuCrypt), reached market

applications (NuCrypt LCC) and produced independent devel-

opments in Japan [4]. The system discussed here is akin to

the alpha-eta (or αη) system in the use of optical noise but is

specific as a key distribution system. Furthermore, it uses true

random bit generators instead of linear feedback-shift-registers

(LFSR) used in the alpha-eta systems.

The resulting securely shared random sequences of bits can

be used for encryption in arbitrary communication channels. It
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can be used for bit-to-bit encryption as a “one-time-pad” sys-

tem, with constantly renewed keys in a fast process.

The discussed system has a basic connection in principle with

Ref. [5], where cryptography using continuous variables with

coherent states was proposed: the use of the optical noise is

also at the core of that scheme. However, several important

differences exist between these systems. Among them, optical

quantum demolition measurements are not necessary, neither

quadrature measurements. Therefore, the system discussed in

this paper is widely different and, as such, no need for compar-

isons exist.

The key distribution system presented here (as in [1]) uses

light’s noise for protection by modulating each signal represent-

ing a random bit by another randomly chosen (secret) signal

representing a physical basis. The superposition of “noise” sig-

nals, “basis modulation” and “bit” signals frustrates an attacker

trying to obtain either the basis used or the transmitted bit. A

privacy amplification protocol (PA) operates in a bit-pool con-

stantly renewed in entropy that enhances the security of the sys-

tem. The overall security achieved is calculated giving the users

a guaranteed security level.

This system is designed such that its ultimate security should

depend only on the secure transmission of the bits and their safe

storage. The system can be fully understood and signals openly

acessed by the adversary and yet full security for A and B re-

sides just on the keys (Kerckhoff’s principle).

One among the possible uses for this continuously renewable

and fast one time process, is the protection of energy infrastruc-

tures (generation, distribution and their control interconnected

by smart-grids). The proposed system provides fast and se-

cure sharing of keys between end-points connected by an optical

channel as well as a fast one-time-pad encryption.

This paper is roughly divided in two parts, one dealing with

the physical noise and other with privacy amplification aspects.

Although the subjects are different, they are intrinsically con-

nected by the architecture of the key distribution system and are

essential for a full understanding of this system.

II. PHASE MODULATION AND OPTICAL NOISE

One of the simplest ways to implement the physical part of

the scheme is using optical phase modulation of a laser beam.

This modulation is achieved by fastly modifying the refractive

index of an optical medium in the beam path before the trans-

mission channel (fiber optics or any continuous media).

Bits could be represented by a given phase, say φ1 = 0◦ for

bit 1 and bit 0 by phase φ0 = 180◦. A basis is represented

by an extra phase φb, within a manyfold of M possible values,

that is added to φ1 or φ0 producing a different resulting phase:

φb,j = φj +φb, (j = 1,0) and (b = 1,2,3 . . .M). Both bit and

basis are unknown to the adversary. Fig. 1 explain these ideas.

It represents a uniformly spaced set of bases constituted of M
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Figure 1. Wheel of phases representing encryption bases for bits. Bits 0 and

1 are represented at extremes of a basis and separated by π. Encryption bases

are separated by π/M . A bit signal represented by an amplitude and phase has

an intrinsic phase noise (given by σ2

φ
= 2/〈n〉) that may cover adjacent bases

and do not allows an attacker to identify the signal being sent. While a strong

amplitude signal allows easy identification of the bases and bit (e.g., see signal

at basis b= 2), a weak signal does not allow such identification (e.g., see signal

around basis 7 or 8). It should be emphasized that a signal representing one bit

is sent just once and never repeated.

physical phase bases (M = 15 : b= 0,1,2, . . . ,14 in this exam-

ple, closest bases are separated by an angle of 12◦). Each basis

is represented as a single line made up of a solid line continued

by a dashed one (a given phase value and this same value +180◦

represents a single basis).

The fundamental characteristics of these bases is that bits are

represented in an alternate order in neighboring bases. For ex-

ample, if Alice wants to send a bit 1 she may pick one basis, say

b = 2 (without Eve’s knowledge). In this basis, bit 1 is repre-

sented along a solid line (φ2 = 24◦). If she had picked b= 3, bit

1 would have been placed at the phase φ= (12× 3+180)◦. In

any of these cases, the closest bits in neighboring bases would

have been opposite.

The distance from the center, along any basis lines in Fig. 1,

gives the amplitude of the light field that carries the bit signal

while phases are represented around a circle as indicated. The

uncertainty in the signal to be measured (e.g., by measuring

Stokes parameters) can be represented in Fig. 1 by a smeared

figure representing uncertainties in amplitude and phase (see red

features in figure).

A difference between a strong and a weak coherent signal is

that the phase uncertainty over the average signal level with n
photons (1/

√

〈n〉) for the weak signal is larger.

The phase uncertainty can be calculated in a similar way as

done in the polarization uncertainty obtained in [1] (Eq. (2)):

Assume that a laser beam in a coherent state |Ψ0〉= |α〉 passes

through an optical modulator that produces a phase difference

φ between its two physical axis (say x and y) for an incoming

polarization state. One should recall that for a coherent state

|α|2 = 〈n〉 [13].

The optical modulator is a two-port device for an incoming

state. The modulator transforms the state |α〉 according to the

angular momentum rotation operator Jz for two states (or two

modes). These states are represented by photon annihilation

operators ax and by: Jz = (1/2)(a+x ax − b+y by) [7]. The trans-

formation produces

|Ψ(φ)〉 = e−iJzφ|Ψ0〉
= | α√

2
e−iφ/2〉x|

α√
2
eiφ/2〉y . (1)

In |Ψ(φ)〉 a phase is established due to a phase difference be-

tween two orthogonal components x and y. From this result the

overlap of two states |Ψ(φ)〉 and |Ψ(φ′)〉 can be obtained:

〈Ψ(φ)|Ψ(φ′)〉= e
−|α|2

[

1−cos(φ−φ′

2
)
]

. (2)

This overlap is a measure of the “indistinguishability” degree

between the two states. For mesoscopic states |α|2 ≫ 1 (but not

intense) and the exponential term gives a vanishing contribution

unless φ− φ′ is small. Considering ∆φ ≡ φ− φ′ ≪ 1 one has

the Gaussian distribution

〈Ψ(φ)|Ψ(φ′)〉 → e−|α|2(∆φ)2/2 . (3)

The probability for indistinguishability between φ and φ′ is

then given by

|〈Ψ(φ)|Ψ(φ′)〉|2 → e−|α|2(∆φ)2 ≡ e−(∆φ)2/(2σφ
2) , (4)

where σφ =
√

2/〈n〉.
This shows that a strong signal (large 〈n〉) has a reduced

phase uncertainty. For example, the large amplitude signal rep-

resenting a bit 0 in basis b = 2 could be easily identifiable (see

Fig. 1) by either A, B or E because the phase uncertainty is small

and no confusion is possible with a neighboring bit. Differently,

if the phase uncertainty is such (weak signal) that the obtained

signal overlaps neighboring bases (see uncertainty around basis

b = 8 in Fig. 1), the information of which basis is being used

is not available. Consequently, the bit sent cannot be identified

without a large probability of error. This noisy channel can be

referred as the αη channel.

However, if the legitimate users know which basis was used,

there is no ambiguity in bit identification. For them, bit identi-

fication is just a question of identifying if the signal is around a

given phase value φ or at φ+180◦, not between closest bases

where identification is not allowed due to the phase noise.

If the basis information is not available to Eve, her measure-

ments will produce errors in the bases or bit estimation (for ex-

ample, signals around bases 7 and 8). In other words, as the

separation between closest bases is π/M , the resolution needed

for bit or basis identification has to be better than this value.

However, the noise is tailored by the legitimate users to pro-

duce an uncertainty much larger than π/M and the attacker has

no way to reduce this noise.

With a proper choice of a separation ∆φ between bases and

average number of photons 〈n〉, not only the separation can be

set ∆φ < σ(= 1/
√

2〈n〉) but also the probability of an error by

Eve, PE
e can be set arbitrarily close to 1/2 (see Fig. 3 in [1] and

discussions therein). The derivation of Pe using POVM (Pos-

itive Operator Valued Measurement) can be found in Ref. [1].

Appendix B discuss the effect of noise in the channel in an al-

ternate way, by means of Poincaré measurements. This way, the

reader has different contexts for comparisons.
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The different amount of information between E and the legit-

imate users produce the different results between E and B in a

transmitted sequence of bits. This is made possible by informa-

tion shared beforehand in each transmission round by A and B

in the form of a secret stream with the information of the bases

being used and about which E has no information.

We will also see that this process can be continued without

limitation, without any need for A and B to meet after the first

contact.

XOR encoding?– Some questions may be asked, such as

“why this basis encoding cannot be replaced by a simple XOR

of basis(=single bit) with the bit, especially in the model where

the eavesdropper gets a perfect copy of the transmitted state?”.

The level of signals used in this implementation is such that

the term “perfect copy” does not apply. Whereas classical sig-

nals may admit the concept of a perfect copy (apart from tech-

nical noises), any “copy” of a signal in the mesoscopic range

produces a distinct output due to the inherent noise in the chan-

nel. In other words, use of signals where the signal-to-noise

ration S/N is very high (=“classical” signals) produces undis-

tinguishable copies. Of course, an XOR of classical signals pro-

duces well-defined signals and the attacker’s task will be solely

cryptanalysis of perfectly defined signals - a purely mathemati-

cal task. On the other hand, when dealing with an intrinsically

noisy channel, the first task of the adversary task is to make

sense of the signals being transmitted. Moreover, when these

signals are distributed among different physical states, the ad-

versary task to obtain even the sequence of signals to a poste-

rior cryptanalysis is shown impossible. Access to the αη chan-

nel gives the adversary very little information on the signals.

The amount of information available for cryptanalysis in the two

cases is vastly different.

III. THE TRANSMISSION AND RECEPTION SYSTEM

Alice has a physical random bit generator (PhRBG) that pro-

duces true random bits continuously. One of the basic questions

to be answered in this paper is: Given that A and B start sharing

a secret random sequence of length c0, what is a secure length

of bits to be extracted in the successive rounds of this system

after c0 have been used?

The original transmission protocol described in [1] and [2]

indicate the need for a PA protocol to be applied at the transmit-

ter and receiver stations to eliminate any information that the

attacker could have obtained in these attempts but no specific

procedure was proposed. Furthermore, in the present paper, in-

stead of assuming some repetition of bases as done in [1], the

idea of a “bit pool” is used leading to a substantial improvement

on the overall security of the system. This will be explained in

Section VII.

Basically the idea is use to PA to reduce the amount of in-

formation accessed by E to a negligible amount while giving

A and B access to a refreshed bit sequence to be used. This

frustrates even a-posteriori attacks using known-plaintext by an

adversary trying to recover past bit sequences based on the bit

sequences obtained from the plaintext used. Before explaining

the protocol within the bit-pool, a description will be given of

the physical system where the protocols will operate.

Fig. 2 sketches the main parts of the key distribution system.
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Figure 2. A simplified sketch of the sender and receiver stations used by the

legitimate users Alice and B. The fiber channel may be a single fiber with a

noiseless channel and a noisy channel. The noisy channel is used to distribute

secret random bits between Alice and Bob while the noiseless channel is used to

transmit encrypted information. These channels have to be spectrally separated

to avoid spill-overs from the intense noiseless channel to the noisy channel.

The distributed secret bits are treated and privacy amplified in a bit pool in

Alice’s and Bob’s stations. The distilled secure sequence of bits, z, is used for

encryption of text, image or voice. Signals are sent just once and never repeated.

Actually, sender and receiver systems may be contained in both A and B stations

to simultaneously offer sender/receiver capabilities.

A single optical fiber contains an optical noisy channel (αη)

and a noiseless channel, both fully accessible to Alice, Bob and

Eve. Signals from the laser (carrier) are modulated at station A

and demodulated at station B. A physical random bit generator

(PhRBG) [8] feeds a control station composed of a computer

and electronics to perform required functions such as digital to

analog (DtoA) conversion, analog to digital (AtoD), XOR, and

PA operations on a bit pool. A final stream z of secure bits is

extracted from the pool to encrypt bit-by-bit any desired data x
(“message”) (c = x⊕ z) to be sent from A to B or from B to

A by the public channel. The PhRBG continuously generates a

fast stream of random bits a that feeds the control station.

Briefly described, A and B secretely shared c0 =mn0 bits to

create n0 modulation bases to encode n0 fresh bits generated by

the PhRBG (discussed in Sections IV and VII). m is the num-

ber of bits necessary to specify each basis. Eve has full access

to both channels, noisy and noiseless. The optical signals are

created by phase modulation of a laser beam to create the in-

formation signals transmitted by the optical fiber. Signals in the

classical channel have a high signal to noise ratio (SNR), while

the noisy channel has a relatively small SNR. The noisy chan-

nel is wavelength separated from the classical channel such that

the wavelength separation avoids overlap of the wings of the

strong signals in the classical channel with the weak signal car-

ried by the noisy channel. Fig. 3 (taken from [9]) exemplifies

signal and noise levels taken at some point in a fiber network

that include optical amplifiers. The mesoscopic signals used in

the key distribution system being discussed are above the QKD

level (single photon level), but well below an intense (=classi-
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cal) signal. We define a classical signal as a signal that can be

perfectly copied or only subjected to technical noises, that could

be eliminated by improved techniques.

Wavelength Division Multiplexing (WDM, dense or coarse)

Figure 3. Different signal and noise levels due to different processes in a net-

work. The minimum noise level is the OSA noise due to the spectrum analyzer

being used while the maximum signal is due to amplified signal that also pro-

duces a relatively high amplified spontaneous emission signal (EDFA ASE) that

acts as a noise for some communication channels. Signal from an Optical Su-

pervisory Channel (OSC) is also shown.

technology can be used to set distinct channels in the same sin-

gle fiber around 1553nm. WDM wavelengths are standardized

with 100GHz spacing in optical frequencies, with a reference

fixed at 1552.52nm (193.10 THz). DWDM can use 50 GHz

channel spacing or even 25GHz spacing for up to 160 channel

operation. For a small size network, where no optical ampli-

fier is needed and only an Optical Supervisory Channel is used,

the amount of noise is much less, simplifying the setting of the

wavelengths to avoid cross-talk with the noisy channel carrying

the bits for the key distribution protocols.

The communication protocol is presented in the next section

and the operations performed by the control station will be dis-

cussed in Section VII. It is assumed that bits can be sent in runs

of size n(i), where i is the run index. It is important to realize

Figure 4. Some networking possibilities for the key distribution platform. a)

is a configuration where only A possess a PhRBG whereas in b) both A and B

have equal capabilities. In c), several receiving stations can be set for a single

key-sender.

that the separate sender and receiver station capabilities shown

in Fig. 2 and Fig. 4-(a) could also be set in a same station, where

both A or B have emission and receiver capabilities Fig. 4-(b).

In this case, there is no change in the logical procedures used,

all arguments and explanations remain valid. Networking with

more stations is also possible; see Fig. 4-(c).
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Figure 5. KeyBITS modular secure communications platform. See Fig. 2 for

more details.

In Fig. 2 an “air-gap” is indcated that separates a region (bot-

tom part) assumed free of undesired interferences of any kind,

including reception or emission of electromagnetic and acousti-

cal signals. All information going to the secluded region by the

air-gap has to be monitored so that only controlled electronic

signals are allowed in and out the air-gap. Details are not of in-

terest at this moment but the main objective of the air-gap is to

block a large number of attacks that could be launched against

an open system.

In fact, separated emitter and reception stations in Fig. 2 may

be together in both stations A and B, so that each one is au-

tonomous, in a modular unit. Fig. 5 shows a modulus of this

platform, without the modulation and demodulation units.

IV. THE PHYSICAL PROTOCOL

As shown in [1] and [2], and further discussed in Section III,

the noise in the channel combined with the use of closely sep-

arated bases reduce enormously the probability of success of

Eve. The signals she obtains do not allow her to obtain reliable

bit sequences to be analyzed. This is the physical protection

level in the key distribution scheme. However, this is not the

only level of difficult existing in the system.

A first round of sending bits will be described to establish the

basic ideas. A PhRBG continuously generates random bits a
that can be processed in a bit pool with operations fastly pro-

cessed by a FPGA or ASIC (Application-Specific Integrated

Circuit).

Initially, this bit pool starts with the shared c0 random bits,

constituted of c0 =mn0 bits to create n modulation bases. For

the sender, the total number of bits in the beginning of the pro-

cess is then n0+n0m. It should be emphasized that despite the

need of m bits to create a basis for modulate one bit, the process

has been demonstrated to be very fast in hardware.

The choice of m depends on the physical choice of the bases

to be used and the intensity of light, or average photon number

〈n〉 in the noisy optical channel (see [1] for explanations). For

example, if optical phase values are used in a circle of 2π val-

ues, a choice of M values implies a distance of π/M between

bases. A bit 1 could be represented by a phase value φ1 = π
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while a bit 0 is given φ0 = 0 in one given basis nM . In the other

closest bases nM±1, the opposite choice is adopted, alternating

ones and zeros.

The idea [1] is to set the light’s noise such that it overlaps

several physical bases. The choice of the number of bases M is

based on a POVM –Positive Operator Valued Measure– which

defines the probability of error given to the attacker (See Section

V of [1]) and it will be directly connected to the average number

of photons 〈n〉. Once M is defined, physical signals are gener-

ated creating a modulation (say, a phase φ) upon the laser beam.

This physical modulation is being called an encryption basis for

a fresh bit. To create each basis, m bits are necessary, 2m =M
or m= log

2
M :

phase basis number(for φb = 0
π

M
,1

π

M
, · · ·(M − 1)

π

M
)

≡ b(m)2m−1 + b(m− 1)2m−2 + · · ·b(1)20 . (5)

All bits of a generated by the PhRBG are represented by phase

values φa (either φ1 or φ0) and added to the corresponding

phase φb associated with the basis being used: φa+φb and sent

from A to B.

With nm bits, n modulation bases b are created. They modu-

late the n fresh bits of a0: a0⊕b. As this sequence b is known to

A and B, B could used it to demodulate the received sequence,

extracting a0 = b⊕ (a0 ⊕ b).
As a brief comment, in the BB84 protocol, two bases are de-

fined to send one bit that is carried by a single photon. The

adversary must not know in which of the two bases the bit was

encoded. In a parallel way, for the key distribution protocol

discussed in this paper, the optical noise must protect against

attempts by the adversary to know which basis was used.

Now, A and B share the sequence a0. Eve may have obtained

some statistical information t on these bits and A and B task

is to eliminate t by PA – therefore, calculation of t is essential.

This is shown ahead and with a numerical example in Fig. 6.

Another level of difficulty, computational, will be added –

usually, this level of difficulty is used as a stand-alone protec-

tion level and may be sufficient by most of the cases even with

noiseless signals. This mathematical level of protection will be

discussed as well as the effect of combining these two protec-

tion levels.

Physically leaked bits – Assume that Alice sends n (n =
Length[n0]) uniform random bits to B. Eve has complete access

to the transmission channel, close to the sender, where the sig-

nal is maximum, and disposes of the ideal equipment, subjected

to the laws of Physics, to measure and record all emitted sig-

nals. No one monitors Eve’s intrusion and will not constrain

her endeavor in anyway. However, Alice will not send bits in

a repeated way; every bit information is sent only once. This

way, Eve obtains noisy signals representing the sent bits and

will treat them individually or collectively, as she pleases.

As shown by the POVM calculation in Section V of [1], there

is a minimum probability of error Pe for Eve when measuring

any bit due to the inherent noise in the optical channel and the

M -ry bases used. Pe is a function of the average photon number

〈n〉 in the signal representing a bit and M , the number of bases

used in the M -ry communication protocol. The POVM cal-

culation utilizes the wavefunction or density matrix represent-

ing all information about the transmitted bit. This is the maxi-

mum amount of information available about a physical system.

The result of the calculation indicates the best Eve could obtain,

even with an ideal measuring system and analyzing capabilities.

For numerical examples of these results, see Fig. 3 in [1]. The

probability of having a correct bit assignment by Eve is Pr =
1−Pe. Therefore, Eve is able to statistically assign correctly or

“extract” t≡ tbit = Pr − 0.5 = 0.5−Pe of each bit.

Therefore, tbit is a extraction rate of Eve (or, leak per bit).

Fig. 6 exemplifies the behavior of log
10
tbit as a function of

M . As will be shown in Section VII, Eves probability to obtain

Figure 6. Logarithm of the loss per bit to Eve, tbit, as given by the POVM

calculation that provides Pe. Here 〈n〉= 1000.

all bits in a sequence is completely negligible.

V. SIGNAL MODULATION AND DEMODULATION

The left side of Fig. 2 shows a modulation system (at Alice’s

station) that injects signals in the “noisy” channel of the opti-

cal fiber. At the right side of the same figure (at Bob’s station)

a demodulation system extracts the signals sent by Alice, eras-

ing the signals representing the encoding bases that produce the

indistinguishability of the signals to the attacker.

The modulation and demodulations systems are discussed in

[10] and will not be discussed here. The final signal ∆i = ie −
if representing the bits as extracted by Bob, come from the two

pin detectors in the demodulation system and are proportional

to the streams of photons

〈ne〉=−
1

4
|α|2

[√
3sinϕcos2

(

∆

2

)

+
√
3cosϕsin∆−2

]

(6)

〈nf 〉=
1

4
|α|2

[√
3sinϕcos2

(

∆

2

)

+
√
3cosϕsin∆+2

]

, (7)

where ∆ is the path phase difference between the two arms of a

fiber Michelson interferometer in the bit extractor (see Fig. 2).

Fig. 7 shows plots for the direct currents ie and if for a given

laser intensity (arbitrarily taken at |α| = 10, and G = 1, ηd = 1
and a unitary time interval. ∆, set by the piezoelectric driver,

is set at ∆= π/2); G is the detector’s electronic gain and ηd is

the detector’s efficiency in the photon-to-electron conversion. It

is seen that the best resolution for bits 0 and 1 is obtained from

the difference of the two currents, or ∆i= if − ie and not from

either current outputs ie or if alone.

As was shown, physical noise can create a physical barrier to

the attacker making it impossible for him/her to extract clean bit

signals from the channel. At the same time the legitimate users
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Figure 7. Photon currents ie and if obtained from the pin diodes and the final

difference current ∆i = if − ie as a function of the input phase φ. Particular

values are indicated with φ= 0 and φ= π that represent bits 0 and 1.

extract clean signals and obtain the bits sent from the current at

the demodulator, as given by Fig. 7.

These different results for the attacker and for the legitimate

user can be understood by the overlap between two states, as

given by Eq. (2). For the legitimate user he has only to distin-

guish between a bit 0 and a bit 1 encoded by a known basis value

b, within M possible values. For him, ∆φ= π and, therefore

〈Ψ(φ)|Ψ(φ+π)〉= e−2|α|2 → 0 . (8)

This result shows a comparison between two almost orthogo-

nal states, of easy identification, with negligible overlap. On

the contrary, not knowing the basis value the adversary has a

complex measurement problem that limits his/her knowledge

according to what was shown by the POVM calculation in [1].

VI. INCREASING THE PROTECTION LEVEL

The security of the proposed key distribution system does not

stop at this physical barrier but has its security further strength-

ened by Privacy Amplification (PA). The final security then rests

on a combination of physical and mathematical protections.

Each of these aspects can be calculated as well as the amount

of information that the attacker might have obtained about the

final bit sequences being shared by A and B. This provides a

rigorous proof of the security of the system. The adopted PA

protocol will be discussed in Section VII.

In order to protect the communication on the classical chan-

nel from tampering, the system also uses a Message Authentica-

tion Code (MAC) to guarantee that the messages sent between

Alice and Bob are authentic, i.e. where not sent by someone

else. The used MAC is Galois Counter Mode. In conventional

counter mode (CTR), pseudo-random blocks are generated by

incrementing a counter and encrypting each result. The result-

ing blocks are then used as a one-time pad key, so each cipher-

text block is the xor of a key block and a message block. Galois

Counter Mode is an extension of counter mode which consists

of computing a cryptographic CRC of 128 bits by performing an

xor and a multiplication over GF (2128) (hence the name) of the

ciphertext block and some constant derived from authentication

information. Obviously, nothing in GCM prevents us from sub-

stituting blocks pseudo-randomly generated from some block

ciphered by keyblocks originating from a true random process;

GCM also works with the one-time pad.

TABLE I

PRIVACY AMPLIFICATION PROTOCOL FOR THE KEYBITS PLATFORM

PA protocol

INITIALIZATION: A and B share c0 of size and entropy ms.

ALICE

# ACTION COMMENT

1a ai = GetString(PhRBG) get bitstring from PhRBG

1b bi = ci−1[1,ms] extract ms from pool for bases b

1c Code&Send(ai, bi) send over αη channel

2 SendCC(f) send instance of universal hash f

over classical channel

3a ci = f(ci−1||ai) Alice applies PA from ms+ s bits

to ms+ s− t−λ

3b ci = f(ci−1||ai) Alice uses s= s− t−λ

bits from pool as the key stream z.

The remaining ms bits form

the bases’ bits for next round.

BOB

1a no matching step to Alice’s

1b bi = ci−1[1,ms] get bases bits from initial pool value

1c ai =Receive&Decode(bi) receive bits from αη channel

2 ReceiveCC(f) receive instance of universal hash f

3a ci = f(ci−1||ai) Bob applies PA from ms+ s bits

to ms+ s− t−λ

3b zi = Bob uses s= s− t−λ

ci[ms+1,ms+ s−t−λ] bits from pool as the key stream z.

The remaining ms bits form

the bases’ bits for next round.

VII. PRIVACY AMPLIFICATION PROTOCOL

Before discussing the PA protocol, is should be emphasized that

although the physical protocol uses a somewhat larger number

of bits (log2M ) to encode one bit, the process is continuously

sustained in rounds of s bits, in an unlimited way. This process

has been shown to be very fast in hardware. The Privacy Ampli-

fication protocol adopted uses a bit pool of constantly renewed

random bits. For details, see [6]. Fig. 2 can be used as a refer-

ence for description of the PA protocol. Before discussing the

level of security, a summary of the PA protocol steps is given in

Table I. After this summary, conditions for its applicability will

be discussed.

The first round of the protocol will be described in words:

INITIALIZATION: Alice and Bob share a starting sequence c0
of secret random bits. The sequence has size c0 =ms, where m

is the number of bits necessary to describe one of the M basis

and s is the size of the first fresh sequence of random bits to be

shared between A and B.

Alice first steps –

A1a: Alice gets a random bitstring of length s in the bit pool

fed from the PhRBG.

A1b: Alice gets the shared starting sequence c0 and partition

it in s parts with m bits each. Each subsequence of length m

randomly specifies one basis among the M bases.

A1c: Alice encodes each bit in s with the corresponding basis

and sends the signal to Bob over the noisy channel. See Section

IV for a description of the physical modulation to be used. Be-
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forehand, Alice and Bob had agreed on the PA’s security param-

eter λ and calculated the statistical fraction t of a bit (t ≡ tbit)

leaked to Eve, see Fig. 6 and Eqs. (7) to (12) in Ref.[1].

A2: Alice sends an instance of a universal hash function f(∈ F)
to Bob over a noiseless channel with public acess.

A3a: Using f Alice applies PA and reduce the total number of

bits s+ms to s = s+ms− t− λ. The eavesdropper has no

knowledge on s or on the modified ms sequence. See [6] for

details.

A3b: The reduced sequence s is the distilled fresh random se-

quence z to be used for OTP encryption. The remaining fresh

random sequence ms will form the bases for the next run.

Bob first steps –

B1a: There is no corresponding step to Alice’s 1a.

B1b: Bob gets the shared starting sequence c0 and partitions it

in s parts with m bits each. Each subsequence of length m ran-

domly specifies one basis among the M bases. Bob and Alice

are then using the same set of bases.

B1c: Bob receives the physical signals sent by Alice, demodu-

lates them (See Fig. 2) and obtain the random bit stream coded

with the sm bases. As Bob knows the bases coding, he decodes

the random stream and obtains the stream s sent by Alice.

B2: Bob receives f over the classical channel.

B3a: Using f Bob applies PA and reduce the total number of

bits s+ms to s= s+ms− t−λ.

B3b: The reduced sequence s is the distilled fresh random se-

quence z to be used for OTP encryption. The remaining fresh

random sequence m× s will form the bases for the next run.

Therefore, both Bob and Alice share a secure sequence of ran-

dom bits s to be used as OTP.

This means that the generated stream from the PhRBG at Al-

ice’s station was transferred to Bob and a distilled secure se-

quence of random bits and base bits is obtained.

The protocols proceeds to next similar runs. After n runs, Alice

and Bob share ns bits.

Preliminary conditions for the PA protocol – The protocol

for Privacy Amplification [14] (or PA) offers a powerful tool to

decrease the amount of information an adversary (E) might have

acquired on a bit string transmitted from one legitimate user (A)

to a second one (B).

In this paper, A sends n random bits to B, from which E is

able to statistically gain tbit of information per pulse sent. The

amount of gained information by the adversary over a string of

n randomly distributed bits is tn
bit

.

Among quantities or conditions that the PA protocol need to

be applicable are the statistical gain tbit as well as a bound on

the second-order conditional Rényi entropy, R2(n|V = v), as

seen by the adversary E. Here V designate the variable under

control of E that has some degree of correlation to n.

Some preliminary steps may help to calculate R2(n|V = v).
The “collision probability” for a variable X specified by a prob-

ability distributionPX(x) can be defined (see [14] for details) as

Pc(X) =
∑

xǫχ

PX(x)2 , (9)

from which the Rényi entropy of X can be calculated:

R(X) =− log
2
Pc(X) . (10)

The entropy in binary digits is also given in “bit” units, and

may be fractionary, differently from the physical bits 0 or 1

(encoded physical signals). Given an event E on X , with con-

ditional probability PX|E , one may directly write the collision

probability Pc(X|E) and the conditional Rényi entropy

R(X|E) =− log
2
P 2

X|E . (11)

The variable X of interest should represent the bit stream trans-

mitted from A to B and the event E represents Eves access to

that stream.

The mapping of PX|E in terms of the physical processes gives

PX|E → Pr = 1−Pe , (12)

and

R(X|E) =− log
2
P 2

X|E =− log
2
(1−Pe)

2
(13)

Fig. 8 shows an example of the collision Rényi entropy given by

Eq. (13) for the case of bits being transmitted with an average

number of photons 〈n〉= 1000 per bit as a function of the num-

ber M of bases used. The asymptotic limit for Rényi entropy

is

R(X|E) =− log
2
(1−Pe)

2
→ 2 /per bit , (14)

for Pe → 1/2. This result can be interpreted as follows: For

large M , Eve succeeds in obtain one collision, or statistical-

success, in every two trials. Due to the uniformity of the random

Figure 8. Example of the Conditional Rényi collision entropy of order two for

bits being transmitted with 〈n〉= 100/bit signal as a function of the number of

bases M .

sequences, for a stream of n bits the Rényi entropy will give the

corresponding limit R(n|E)→ 2×n≡ c.
The PA protocol using a compression function G within

a universal class of hash functions maps the received stream

{1,0}n onto {1,0}r. Assuming that A and B uses z ≡ {1,0}r

as their secret stream of bits, it is known that [14]

H (z|G,V = v)≥ r−
2r−c

loge 2
. (15)

Therefore, as r < n and c = 2n, then r < c. Eve’s entropy on

the keys is

H (z)−H (z|G,V = v)≃
2r−2n

loge 2
, (16)
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and goes exponentially to zero as n increases. In conclusion,

the string of r random bits can be protected by the PA protocol.

Fig. 9 exemplifies Eq. (16) for a range of n and r values.

Figure 9. An example that shows that Eve’s amount of information on the

hashed key stream is negligible (see Eq. (16)).

A. Overall security

Having demonstrated the possibility for application of the PA

protocol [14] for this key distribution scheme, one may invoke

corollary 5 of the PA theorem. In words, the expected infor-

mation of Eve about the secret key (assume length rt) is given

by the mutual information I on the secret key given the infor-

mation t acquired by Eve when Alice and Bob use a randomly

chosen function from a universal class of hash functions:

I ≤
1

ln2× 2λ
, (17)

where λ is a security parameter λ < rt − t. This way, by elim-

inating t bits of rt, Eve’s information decreases exponentially

while Alice and Bob knows s− 1/(ln2× 2λ) bits.

In a sequence of s bits sent, two factors will work against Eve.

The first one is the effect of the noisy channel on her measure-

ments and the second one is the result of applying the Privacy

Amplification protocol.

Using the probability of an error by Eve, Pe, as shown in

Section V of Reference [1], to correctly guess a particular bit

sent through the noisy channel, the “hit” probability t1 is t1 =
1−Pe. This says that Eve’s probability of obtaining all s bits

is ts = (1−Pe)
s
, because the keys are uncorrelated as well as

the physical signals that carry them. This probability gives Eve

a negligible chance of success.

The legitimate users may adopt the strategy of defining the

key sequence length s such that after sending all of them, sta-

tistically the adversary could have gained less than one bit, that

is to say s(1− Pe) < 1. In other words, the legitimate users

choose s < 1/(1−Pe). This says that the amount of t+ λ bits

to be reduced from s+ms (see Step 3a in Table I) would be

t+λ≃ λ.

The physical noise in the channel basically reduces enor-

mously the amount of information that Eve could obtain from

the channel. On the other way, if A and B use long sequences

such that s(1− Pe) ≫ 1, a larger number of bits have to be

added to λ to make effective the PA protocol. Therefore, from

now on Eq. (A) will be adopted as a condition to establish the

lengths of the key sequence runs.

After A and B have applied the PA protocol, together with the

effects of the noisy channel, the number of bits is reduced from

s to r distilled bits. The information obtained by Eve is given

by

I
r
≃

1

ln2× 2λ
. (18)

Fig. 10 gives an example of Eq. (18).

Figure 10. Eves information on r bits after Alice and Bob applies the PA pro-

tocol on the bit stream obtained from the noisy αη channel under the condition

s(1−Pe)< 1.

VIII. ADVERSARY WITH INFORMATION ON THE BIT POOL?

It may be argued that even if the adversary tries to obtain

the basis that has encoded a bit and fails, some exclusive infor-

mation on the bases’ wheel is gained. This information may be

seen as a set of bases to be excluded from the bit pool and, there-

fore, will simplify a posterior analysis. Therefore, the question

“Will this gained information increases Eve’s knowledge on the

bit pool for posterior analysis on a reduced set of unknowns?”

This question may be answered with the Mutual Information

between B (or A) and E, I(B;E). More specifically, assum-

ing that A nd B utilized (secretly) a given basis φb to encode a

bit b, 0 or π, what will be the Mutual Information I(φb;φE),
where φE is Eve’s estimated value obtained from an arbitrary

measurement?

First of all, the Mutual Information will be calculated to re-

veal the amount of information the adversary could obtain from

a bit only considering the optical noise effect on the mesoscopic

signal. This absolute measure could be compared with Mini-

mum Probability of Error by Eve PE
e already calculated in [1].

As discussed, any small amount of information leaked by the

channel can be privacy amplified.

A. Mutual Information

In order to write the Mutual Information

I(X;Y ) =H(X)−H(X|Y ) (19)

on the desired variables, one may start with the relationships

H(X|Y ) =
∑

x,y

p(x|y) log
2

1

p(x|y)
(20)

𝑛𝑛𝑛𝑛
𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀
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H(X) =
∑

x

p(x) log2
1

p(x)
→

M−1
∑

k=0

(

1

M

)

log2
1

(

1
M

)

= log2M . (21)

Therefore,

I(X;Y ) = log2M −
∑

k,kE

p(k|kE) log2
1

p(k|kE)
. (22)

Eq. (2) gives the un-normalized Conditional Probability

p(k|kE) = e−|α|2[1−cos[(π/M)(k−kE)])] . (23)

The notation designates an angle set by the legitimate users as

φ= kπ/M and an angle set by the adversary as φE = kEπ/M .

The normalized form of the Conditional Probability will be

written

pnorm(k|kE)=
e−|α|2[1−cos[(π/M)(k−kE)])]

∑M−1
k=0

∑M−1
kE=0 e

−|α|2[1−cos[(π/M)(k−kE)])]
.(24)

The Mutual Information can be written, in normalized form,

for specific values of the phases φ and φE , using pnorm(k|kE).
One obtains

I(X = φ;Y = φE) =
1

M
log2M −

e−|α|2[1−cos[(π/M)(k−kE)])]

∑M−1
k=0

∑M−1
kE=0 e

−|α|2[1−cos[(π/M)(k−kE)])]

× log2

[

e|α|
2[1−cos[(π/M)(k−kE)])]

×
M−1
∑

k=0

M−1
∑

kE=0

e−|α|2[1−cos[(π/M)(k−kE)])]

]

. (25)

One may interpret I(X = φ;Y = φE) as the average reduction

in uncertainty about φ when Eve in some way learns φE . As the

k values are uniformly distributed the entropy of φ (or k) is

H(k) =
1

M
log2

1
1
M

=
1

M
log2M , (26)

The relative reduction in uncertainty obtained by Eve can be

quantified by

rI/H ≡
I(k;kE)

H(k)

(

0≤ rI/H ≤ 1
)

. (27)

Fig. 11 shows I(k = 20;kE)/H(k = 20) for |α|2 = 〈n〉 = 100
and two set of bases, M = 100 and M = 200. The value 20 is

arbitrary, as any other value gives similar results.

Going back to the question “Will this gained information in-

creases Eve’s knowledge on the basis or bit sent?”, one con-

cludes that she gains some information around the basis value

k used by the legitimate users but no knowledge for distant val-

ues from k. Therefore, the small amount of information gained

by Eve just by excluding bases numbers distant from the ba-

sis value set, will be irrelevant after PA methods reduce this

leaked information to a negligible level. Therefore, the amount

of Eve’s useful information about the bit pool is negligible.

𝑛𝑛𝑛𝑛 =100

𝑀𝑀𝑀𝑀 = 100

𝑀𝑀𝑀𝑀 = 200

Figure 11. Example of the relative information I(k; kE)/H(k) gained by

Eve on H(k) when she learns kE from her measurement. When I(k =
20;kE)/H(k = 20)→ 1 she gains no information on x, what occurs for most

of the bases values. Only when kE is set close to k she acquires some informa-

tion. However, due to the physical noise that produces the physical uncertainty

on kE (or φE ), even with kE = k her knowledge does not give her the de-

sired I(k = 20;kE)/H(k = 20) → 0 but only a limited gain. Her overall

probability of success is given by (1−Pe).

IX. CONCLUSIONS

The key distribution system introduced in [1] was revisited

and improved with inclusion of a specific protocol for the key

distribution that includes both the noise protected step and a PA

protocol. The PA protocol uses the bit pool shown in Fig. 2.

It was shown that starting with a shared sequence of n0 m
random bits to form physical bases, A and B can distribute in a

secure way an unlimited number of secure bits generated by a

PhRBG generator. The overall security of the key distribution

depends on signal to noise ratio in the transmitted signals, the

number of bases M used and the shuffling produced by the PA

protocol.

The key distribution process is a “one-time-pad booster”

which allow users to use bit-by-bit encryption for top security

level applications and, at the same time, allows fast encryp-

tion of large volumes of information. When working in fiber-

optic channels, the system demands, besides the use of a true

physical random bit generator working at high speeds, analog-

to-digital, digital-to-analog converters, optical modulators and

separate channels to avoid perturbation from ordinary signal

channels. In optical channels with signals of mesoscopic in-

tensities, the system presents two layers of protection, physical

noise and computational difficulties, such as the one exempli-

fied by PA with universal hash functions. The system can also

be used with classical signals in generic channels using only the

computational difficulty guaranteed by the PA protocol when

the protection given by the optical noise is not present (noiseless

channels). When used in optical channels both security levels

are present.
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APPENDICES

A. PRIVACY AMPLIFICATION - TOEPLITZ MATRICES

Privacy Amplification can be used to increase the security

level already given by the physical noise in the channel. The

PA procedure establishes [14] that once A have sent to B a se-

quence a of bits (n = Length[n0]), if Eve obtains an estimated

number of st bits, A and B could reduce the amount of Eve’s

information.

To achieve this end, A and B need to agree on a procedure

that results in a shorter secure string a′ on which Eve has an

exponentially vanishing knowledge. This procedure demands

that the number initial bits n has to be reduced by st and even

further by a security parameter λ (in bits) to guarantee that Eve

can obtain at most 1/ ln(2)2λ bits (see Section IV of [14]) on

a′. These operations can be performed on the bit pool shown in

Fig. 2. The procedure to reduce a to a′ may use a hash function

H: Ha= a′, where H is a matrix with random elements.

Among the several possible PA choices and for H - of ran-

dom elements, one could choose a matrix where all elements are

randomly and independently chosen or even constructed with a

starting set of randomly chosen elements. This matrix can be

renewed at each distribution bit round for maximum security.

Just to explain the PA process with renewed matrix elements

for increased security, an example using a Toeplitz matrix will

be presented. A Toeplitz matrix has a simple structure of form

H=









r1 c2 c3 c4 ...
r2 r1 c2 c3 ...
r3 r2 r1 c2 ...
... ... ... ... ...









, (28)

where ri and cj are binary random digits taken from the

PhRBG. The number of columns should be equal to the num-

ber of fresh bits n to be transmitted plus the number of bits

nm (secretely shared by A and B) to generate the modulation

bases for the transmitted bits. The number of rows is equal the

n+ n×m− ntleak − λ. The number of bits in a column is the

same number of bits in a. This way, an input bit stream, or

a vector with n(m+ 1) components (bits) gives an output of

n(m+1)−ntleak −λ bits, which is the desired reduction in the

number of bits for A and B such that Eve has a negligible knowl-

edge on them.

What is the number of secure bits finally available for OTP?

– What was just described was a PA protocol applied for a first

run starting with n0(m+1) bits. The output number of bits n0

was reduced to n1(m+1)−n1tleak −λ bits.

As shown in the PA protocol (Section VII), after the first

round both Alice and Bob share a distilled sequence of s secure

bits to be used as OTP and still have a shared fresh sequence of

bases bits sm.

The process is unlimited in number of runs and will be as

fast as the current technology allows because there are no fun-

damental physical limitations in the bit generation occurring in

the PhRBG.

B. STOKES PARAMETERS OF A NOISY FIELD

The phase modulation specified by Eq. (1)

|Ψ(φ)〉= e−iJzφ|Ψ0〉= | α√
2
e−iφ/2〉x|

α√
2
eiφ/2〉y , (29)

is imposed as a phase difference between two orthogonal po-

larization components represented by annihilation operators a
and b, representing fields of equal intensity. This form is due to

the optical modulator being considered. As the imposed elec-

tric field (assumed of weak intensity to avoid non-linear effects)

travels along the optical fiber, it undergoes randomized polariza-

tion fluctuations in direction caused by several somewhat local-

ized effects that modifies the dielectric constants of the support-

ing glass medium. These effects include thermal fluctuations,

acoustic modes, Mie scattering, mechanical stresses,.... The de-

modulation system represented at the right in Fig. 2 subtracts

the base modulation effects regardless these random contribu-

tions, by operating on two arbitrary polarization components.

One may question if the adversary, Eve, would be able to per-

form phase measurements close to the emitter, such that these

complicating perturbations have not taken an appreciable effect

yet. Her goal is to extract precise phase information such that

she could resolve the angular separation ∆φ1 between two clos-

est bases k and k+1. In general, writing ∆φ in terms of base

indexes k, k′, one has ∆φ = (π/M)(k− k′). The question is

“what is the effect on the inherent optical shot-noise on her mea-

surements?”. An equivalent but more precise question would

be “what is the maximum resolution on k − k′ possible to be

achievable by Eve given an average number of photons 〈n〉 and

a number of bases M?”

In order to answer this question, one may start recalling

some adequate tools such as Stokes parameters and the Poincaré

sphere. In order to understand transformations of an optical

medium or a device on any incoming light mode, it is useful

to depict the Poincaré sphere of polarizations (See Fig. 12) and

to write the incoming polarized electric field in terms of the

variables for this sphere. A polarization state is represented by

S

S

S

1

2

3

�

����

��

�

��

A B

P

Figure 12. Θ and Φ are the polar and azimuthal angles that indicate a point

P on the sphere. Polarizations on the equator of this sphere represent lin-

early polarized states with different inclination angles. For example, a point

on Φ = 0,Θ= π/2 represent a linearly polarized state along x, for light prop-

agating along z, while its antipodal point Φ= π,Θ= π/2 represents a linearly

polarized state along y. Similarly, a point Θ = 0 represents a (+) circularly

polarized light state and point Θ= π a (-) circularly polarized light state. Arbi-

trary points, like P, represent elliptical polarization states.

a point on the Poincaré sphere given by the two coordinates Θ
(polar angle) and Φ (azimuthal angle). The Poincaré sphere has
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its radius defined by the Stokes’ parameter s0 (equal to the in-

tensity of the polarized light) and the projections of the point

(Θ,Φ) on the orthogonal axes S1, S2 and S3. These projections

have values s1, s2 and s3 and are known as Stokes’ parameters

(Stokes, 1852) [16]. Therefore, the Stokes parameters describe

a general polarized light state.

Physical analyzers such as the crystal axis of a polarization

beam splitter or wave-plates produce field projections onto the

Poincaré’s sphere axes and allow for photon number or intensity

measurements, leading to s0, s1, s2, s3.

Operations and operators describing these measurements are

known either in the classical or quantum domain. In the quan-

tum domain these parameters are given by the expectation val-

ues of the Hermitian operators of the number operator N̂ and of

the total angular momentum of light as described by Schwinger

in terms of two bosonic modes given by annihilation operators

â and b̂

ŝ0 = â†â+ b̂†b̂ = N̂ (30)

ŝ1 = â†â− b̂†b̂ = 2Ĵz = σ̂z (31)

ŝ2 = â†b̂+ b̂†â = 2Ĵx = σ̂x (32)

ŝ3 =
1

i
(â†b̂− b̂†â) = 2Ĵy = σ̂y , (33)

from which 〈ŝ0〉= s0, 〈ŝ1〉= s1, 〈ŝ2〉= s2, 〈ŝ3〉= s3.

At this point it is interesting to note that Eqs. (30) to (33)

define operators Ji, (i = x,y, z) in terms of boson operators a
and b (hats will be ignored from now on) and that they obey

the same commutation properties as the ones connected with

angular momentum: [Ji,Jk] = iǫijkJk. This leads to the con-

servation of the total number of photons n as they go through a

lossless optical device: n= na +nb = a†a+ b†b.
Standard procedures to perform these measurements have

been well established [16] and, from the experimental side, even

automated measuring systems can be found to perform these

tasks. For example, designating an intensity by I and by x the

horizontal axis H and by y the vertical axis V , and by the in-

dexes R and L, circular states of light, one could write

s0 = IH + IV = a2 + b2 (34)

s1 = IH − IV = a2 − b2 = s0 cos(2β)cos(2θ) (35)

s2 = I450 − I−450 = 2abcosφ= s0 cos(2β)sin(2θ) (36)

s3 = IR − IL = 2absinφ= s0 sin(2β) . (37)

See Fig. 13 for definitions. Light noise associated to a source

x

y

ξ

η

β
θ

a b

a1

b1

E

0

Figure 13. A polarization state of light represented by an ellipse, with principal

axes along ξ and η, depicted with the main axes x and y. β can be either positive

or negative, giving the senses in which the ellipse may be described (See Fig. 12,

top or bottom half hemisphere).

of light cannot be eliminated and noise-to-signal ratio cannot

be be rendered arbitrarily negligible. The influence of the noise

on the propagated signals can be explored in several ways, in-

cluding for cryptographic purposes. The associated error in

these measurements are by far less established and belong to

the quantum research realm ([17], [18]). Generalized quantum

measurements have been applied to separate deterministically

two nonorthogonal quantum states and add a necessary set of

inconclusive results [19]. The subject is a permanent area of

research [20].

To see the effect of noise, one may calculate 〈Ĵz〉, 〈Ĵx〉,
〈Ĵy〉 and the associated variances σ2

z = 〈
(
Ĵz −〈Ĵz〉

)2

〉, σ2

x =

〈
(
Ĵx −〈Ĵx〉

)2

〉, σ2

y = 〈
(
Ĵy −〈Ĵy〉

)2

〉 .

Observing that 〈(Ji −〈Ji〉) (Jk −〈Jk〉)〉 = 〈JiJk〉 −
〈Ji〉〈Jk〉, the quantities 〈JiJk〉 and 〈Ji〉 have to be calculated

for the x, y, z components. Expansion of the JiJk products

in normal order and application of the operators on the

wave-function given by Eq. (1) is straightforward. One obtains

〈ψ|JxJx|ψ〉 =
〈n〉
8

[2+ 〈n〉(1+ cos(2φ))] (38)

〈ψ|JxJy|ψ〉 =
〈n〉
8

sin(2φ) (39)

〈ψ|JxJz|ψ〉 = −i
〈n〉
4

sinφ (40)

〈ψ|JyJx|ψ〉 =
〈n〉
8

sin(2φ) (41)

〈ψ|JyJy|ψ〉 =
〈n〉
8

[2+ 〈n〉(1− cos(2φ))] (42)

〈ψ|JyJz|ψ〉 = i
〈n〉
4

cosφ (43)

〈ψ|JzJx|ψ〉 = i
〈n〉
4

sinφ (44)

〈ψ|JzJy|ψ〉 = −i
〈n〉
4

cosφ (45)

〈ψ|JzJz|ψ〉 = 〈n〉 , (46)

〈ψ|Jx|ψ〉=
〈n〉
2

cosφ,〈ψ|Jy|ψ〉=
〈n〉
2

sinφ,〈ψ|Jz|ψ〉=0.(47)

The ratio 〈ψ|Jy|ψ〉/〈ψ|Jx|ψ〉 of expected values of the Hermi-

tian operators would give a measure of tanφ and, therefore, of

φ – if not for the deviations produced by the light noise. Con-

sidering these deviations one has

tan(φ±∆φ) =
〈ψ|Jy|ψ〉±σy

〈ψ|Jx|ψ〉±σx
=

sin
[

π
M k

]
± 1√

〈n〉

cos
[

π
M k

]
± 1√

〈n〉

, (48)

where φ was written in the discrete set of M k phase values. In

order to get the extrema of tan(φ±∆φ) one writes:

tanφMax =
sin

[
π
M k

]
+ 1√

〈n〉

cos
[

π
M k

]
− 1√

〈n〉

, tanφmin =
sin

[
π
M k

]
− 1√

〈n〉

cos
[

π
M k

]
+ 1√

〈n〉

Fig. 14 shows Eqs. 49 and 49 in a range of values. ∆k repre-

sents the irreducible uncertainty due to the phase noise. In this

example ∆k ≫ 1. Fig. 15 and Fig. 16 show the ∆k for a differ-
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Figure 14. A sample of extrema for tan
(

k

M
±∆k

)

versus k.
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Figure 15. Extrema for tan
(

k

M
±∆k

)

versus k.

ent set of values 〈n〉 and M . Fig. 15 shows that for a fixed 〈n〉
the uncertainty ∆k (or ∆φ) increases with the number of bases

M used. Fig. 16 shows that for an intense field 〈n〉 ≫ 1 the

uncertainty ∆k can be reduced giving the resolution ∆k ≪ 1

or ∆φ < π/M . In this condition of intense fields, the adver-

sary could identify any basis used and, therefore, obtain the bit

sent from A to B. This shows that A and B can frustrate the

adversary by choosing 〈n〉 and M such that the adversary can-

not distinguish which basis was used in every emission. The

POVM calculation shown in [1] details this in a complementary

and quite general way.
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