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Abstract

Background: Lipoproteins are major players in the development and progression of atherosclerotic plaques

leading to coronary stenosis and myocardial infarction. Epidemiological, genetic and experimental observations

have implicated the association of sphingolipids and intermediates of sphingolipid synthesis in atherosclerosis. We

aimed to investigate relationships between quantitative changes in serum sphingolipids, the regulation of the

metabolism of lipoproteins (LDL, HDL), and endophenotypes of coronary artery disease (CAD).

Methods: We carried out untargeted liquid chromatography – mass spectrometry (UPLC-MS) lipidomics of serum

samples of subjects belonging to a cross-sectional study and recruited on the basis of absence or presence of

angiographically-defined CAD, and extensively characterized for clinical and biochemical phenotypes.

Results: Among the 2998 spectral features detected in the serum samples, 1328 metabolic features were significantly

correlated with at least one of the clinical or biochemical phenotypes measured in the cohort. We found evidence of

significant associations between 34 metabolite signals, corresponding to a set of sphingomyelins, and serum HDL

cholesterol. Many of these metabolite associations were also observed with serum LDL and total cholesterol levels but

not as much with serum triglycerides.

Conclusion: Among patients with CAD, sphingolipids in the form of sphingomyelins are directly correlated with serum

levels of lipoproteins and total cholesterol. Results from this study support the fundamental role of sphingolipids in

modulating lipid serum levels, highlighting the importance to identify novel targets in the sphingolipid metabolic

pathway for anti-atherogenic therapies.
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Introduction
Coronary artery disease (CAD) is the leading cause of

mortality caused by a complex interplay of genetic and en-

vironmental factors [1]. Accumulation of fatty deposits in

the intima layer of arteries leads to arterial stiffness and

formation of plaques that result in narrowing of arteries

and eventually coronary artery stenosis [2]. Among all

genetically determined intermediates mediating CAD risk

phenotypes, elevated plasma LDL-cholesterol level is

highly associated with CAD given its pivotal role in ath-

erosclerosis and myocardial infarcts [3], whereas elevated

plasma HDL plays a protective role against CAD [4].

Better understanding of molecular mechanisms that

contribute to the regulation of cholesterol metabolism is

needed to discover more biomarkers and therapeutic tar-

gets of CAD [5]. Functional genomics is one tool that

can help with the identification of regulatory elements

and their biological pathways related to cholesterol me-

tabolism. Metabolomics and lipidomics are also powerful

strategies to qualitatively and quantitatively analyze a

wide range of small molecules in a biological sample,
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which represent endpoints of genome expression [6].

They provide a source of molecular endophenotypes (i.e.

intermediate phenotypes) that can massively refine

phenotypic information in patients and healthy in-

dividuals [7]. Their regulation integrates the combined

effects of genetics and environmental exposures (e.g.

microbiota, lifestyle) on health [8], and they provide

great potential in biomarker discovery that can ultim-

ately lead to the implementation of precision medicine

strategies [9].

Metabolome-wide association studies (MWAS) have

been proposed to predict disease condition [10, 11] and

have led to the identification of biomarkers associated

with risk factors of chronic diseases such as hyperten-

sion [12] and obesity [13]. In this study, we applied an

untargeted lipidomic profiling strategy based on ultra-

performance liquid chromatography coupled to mass

spectrometry (UPLC-MS) to identify metabolic features

associated with CAD risk factors and changes in clinical

and intermediate biochemical phenotypes in patients

screened for evidence of CAD. The 2998 spectral fea-

tures detected in the serum samples were used to iden-

tify significant correlations between metabolic features

and clinical or biochemical phenotypes measured in our

study subjects, including specific correlations between

sphingomyelins and serum HDL cholesterol, which were

largely independent of serum triglycerides and CAD.

Materials and methods

Study subjects

A total of 109 subjects aged 17–81 (73 males and 36 fe-

males) recruited between 2006 and 2009 for inclusion in

the FGENTCARD patient collection [14] were selected

for this study on the basis of the presence (for cases) or

absence (for controls) of coronary artery stenosis. These

subjects were originally referred to a catheterization care

unit for clinical evaluation. The 4 main coronary arteries

(left main artery, left anterior descending artery, left cir-

cumflex artery, right coronary artery) were analyzed by

angiography. All individuals were assessed for presence

of coronary stenosis following angiography analysis. For

CAD phenotypes, cases were patients with ≥50% ste-

nosis in any of the coronaries, and controls were sub-

jects with < 50% stenosis in any of the coronaries.

Cardiologists performing the coronary angiography col-

lected a 20mL blood sample from the peripheral femoral

artery of 12 h-fasting patients for serum preparation.

Data on the socio-demographic background of the patients

were recorded by trained healthcare professionals. Annota-

tions were coded from medical charts according to our study

protocol, which included results from laboratory tests, pre-

scribed medications, and presence of co-morbid disease con-

ditions (diabetes, hypertension, hyperlipidemia, and obesity).

Patients were classified hypertensives based on physician

diagnosis with documented treatment in their medical charts

by one of the following antihypertensive agents: beta

blockers, diuretics, calcium antagonists, angiotensin-convert-

ing enzyme inhibitors, angiotensin receptors inhibitors, and

central antihypertensive agents. Diagnosis if T2DM and

hyperlipidemia were based on physicians’ information in the

patients charts and were confirmed by regular intake of anti-

diabetic and cholesterol-lowering drugs, respectively. Blood

HDL, LDL, triglyceride, and glucose levels were recorded.

Patients’ Height and weight were also recorded, and their

BMI derived.

The study protocol conforms to the ethical guidelines

of the 1975 Declaration of Helsinki. Patients provided a

written consent for the study, and the study protocol

was approved by the Institutional Review Board (IRB) at

the Lebanese American University.

Ultra-performance liquid chromatography coupled to

high-resolution mass spectrometry

Sample analysis was carried out with a Waters Acquity

UPLC® (Waters Corp, Saint-Quentin en Yvelines, France)

fitted with an Acquity CSH C18 column (2.1 × 100mm,

1.7 μm) and a corresponding guard column (Acquity CSH

1.7 μM) to analyse lipids. Oven temperature and flow rate

were consistently at 55 °C and 0.4ml/min, respectively, for

a volume of injection of 5 μl. The total run time was 24

min. The mobile phase consisted of solvent A (0.1% formic

acid and ammonium formate in a mix of water (40%) and

acetonitrile (60%) and solvent B (0.1% formic acid and am-

monium formate in a mix of water (10%) and acetonitrile

(90%). A binary gradient consisted of above described mo-

bile phases A and B as recommended by Waters. At the

end of the gradient mobile phase B was maintained at 99%

for 4min in order to wash the column and avoid sample

carry-over.

The UPLC system was coupled with a Q-Exactive™ hydrid

quadrupole-Orbitrap mass spectrometer (Thermo Fisher

Scientific, Illkirch, France). Instrument calibration was per-

formed by infusing a calibration mixture (caffeine, MRFA

and Ultramark® 1621). A heated-electrospray ionization

(HESI-II, Thermo Fisher Scientific, Illkirch, France) interface

was used with the following parameters: S-Lens 50V, Sheat

gas: 65, Auxiliary gas: 25 arbitrary units, capillary voltage 3

kV, capillary temperature 350 °C and vaporization

temperature 60 °C.The autogain control (AGC) parameter

was defined as 3e6 ions and the maximum injection time

was set to 200ms. Full scan was acquired in positive and

negative ion modes simultaneously with a resolution of

70,000 full width at half maximum (FWHM), in the scan

range of m/z 85–1275.

Untargeted Metabolomic data analysis

MS data acquired from UPLC-MS were analyzed with

standard protocols and food and drug administration
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(FDA) guidelines [15, 16]. The preprocessing steps of

MS data, including peak picking, peak grouping, reten-

tion time correction and annotation of isotopes and ad-

ducts, were performed using XCMS and CAMERA tools

implemented in R statistical language (v 3.1.0) (http://

www.bioconductor.org). Raw LC-MS files were initially

processed to extract profiles of positive and negative

ionization modes separately and then converted into mz

XML format to be preprocessed directly by the XCMS

and CAMERA tools. The wavelet-based peak picking ap-

proach (centwave) was used for the identification of Re-

gions Of Interest (ROI). Preprocessing of MS data

resulted in a peak table in which each metabolomics

spectral feature was characterized by a retention time

(RT), mass to charge ratio (m/z), an intensity estimate

determined by the area under the peak and the annota-

tion attributed by CAMERA.

Several filters were then applied on the resulting

matrix in order to reduce the size of the data matrix by

retaining only consistent spectral features in the individ-

uals of the cohort. First, peaks with more than 40% of

missing values were discarded. Next, a quality control

(QC) strategy was applied to assess the performance of

the analytical process and ensure that data quality meets

FDA acceptance criteria [17]. The QC strategy was

based on the use of a pooled QC sample, which was

injected every 10 samples throughout the analytical run

to detect deviations in signal related to instrumental

drift, and therefore to assess the suitable quality of data.

The retained features were first normalized based on a

median fold change normalization approach [18]. A

threshold of 30% was set for relative standard deviation

(RSD) calculated for each metabolic feature in the QC

samples, which is an accepted standard to assess

consistency in metabolomic studies [15, 16]. Finally, the

resulting matrix was used for multivariate and univariate

statistical analysis (principal component analysis and lin-

ear regression). m/z information of significantly associ-

ated features was used to search the online human

metabolome database (HMDB, http://www.hmdb.ca) for

metabolite annotation. A candidate metabolite and a

metabolic feature were matched when a mass difference

was less than 1 ppm.

Metabolite attributions of UPLC-MS features

To precisely confirm compound annotations, MS/MS

experiments were performed on a Q-Exactive and a

Q-TOF instrument. The Q-TOF instrument was also

used to determine acyl anions corresponding to fatty

acid moieties. To identify lipid compounds, MS/MS ex-

periments were performed at 3 collision energies of 10,

20 and 30 eV, combined at the end the complete

spectrum. This method allowed us to obtain both

unfragmented and fragmented signals. This “shotgun”

LC-MS approach relied on specific detection of [M +

H]+ and [M-H]−, as well as adducts [M +NH4]
+ and [M

+HCOO]−. Distinct classes of lipids, including fatty

acids, glycerophospholipids and sphingolipids could be

detected. For each class of lipids, a specific fragmenta-

tion pattern was observed as previously reported [19].

Statistical analyses

Statistical analysis of untargeted metabolomic data was

performed to test the association of each metabolic fea-

ture with continuous phenotypes (triglycerides, HDL,

LDL, total cholesterol and fasting plasma glucose (FBS)

using linear regression models, and with CAD using lo-

gistic regression models. Normality assumption of the

residuals of each metabolic feature was investigated by

Shapiro-Wilk test. The SPSS statistical software was

used then to perform the statistical analyses and deter-

mine statistical significance for p-values < 0.05. False

discovery rates (FDR) were corrected using the

Benjamini-Hochberg method to adjust p-values for false

discovery involving multiple comparisons.

Results

Clinical and biochemical data analysis

The study population consisted of 109 individuals with a

mean age of 53.38 ± 1.07 years (range 17–81 years), a

mean body weight of 77.59 ± 1.56 kg, a mean body mass

index (BMI) of 27.77 ± 0.47 kg/m2, a mean total choles-

terol of 189.91 ± 3.74 mg/dL, a mean LDL of 116.52 ±

3.13 mg/dL, a mean HDL-C level of 39.94 ± 0.98 mg/dL

and a mean fasting plasma glucose of 107.81 ± 3.96 mg/

dL (Table 1). Patients with coronary stenosis were sig-

nificantly older than controls. Family history of cardiac

diseases was more present in cases than in controls,

most prominently in males. Plasma concentrations of

total and LDL cholesterol were significantly more ele-

vated in male cases than in male controls.

The main demographic and biochemical features of

the individuals, whose sera were used for metabolomics

analyses, are also shown in Table 1. Plasma glucose and

cholesterol levels and body mass index were not signifi-

cantly different in males and females. The majority of

participants were males (67%), non-diabetic (81%), and

with strong family history of cardiac disease (74%); 22%

of the subjects were hypertensive and 43% showed evi-

dence of coronary artery stenosis. There were no signifi-

cant gender differences in disease or family history of

disease.

Analysis of UPLC-MS data

To identify metabolites associated with clinical phenotypes

and plasma lipoprotein levels, we carried out untargeted

lipidomic analyses. We were able to capture spectral signals

corresponding to a wide range of lipids as illustrated by the
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total ion current chromatogram profiles obtained with a

CSH C18 column, which shows the retention time win-

dows of lipid classes in the UPLC chromatograms in posi-

tive and negative ion modes (Additional file 1: Figure S1).

There were higher numbers of compounds detected in

positive mode than in negative mode.

Following preprocessing and filtering steps, lipidome

profiling with the CSH C18 column identified 2998 fea-

tures that met the acceptance criterion (i.e. RSD < 30%),

including 1601 (89%) on the negative ionization mode and

1397 (92%) on the positive ionization mode. Multivariate

PCA analysis demonstrated the absence of technical drift

during data acquisition process as illustrated by the PCA

scores plot representation of QC samples in both

ionization modes with the CSH C18 column (Additional

file 1: Figure S2). Metabolomics data from QC samples

were tightly clustered, which demonstrates an acceptable

reproducibility of the retained set of metabolic features as

well as a good stability of UPLC-MS profiling measures.

Association of UPLC-MS features with clinical and

biochemical phenotypes

After adjusting for age, sex and the intake of medica-

tions by patients prior to serum samples analysis, we

found a significant association (FDR-adjusted p < 0.05)

between 1329 spectral features, including 678 in negative

ionization mode and 651 in positive mode, and at least

one phenotype (Additional file 2: Table S1).

HDL cholesterol was significantly associated with 34 lipid

features in positive (n = 19) and negative (n = 15) ionization

modes (Fig. 1a and b). A large proportion of these features

(n = 27) were also significantly associated with elevated

serum total and LDL cholesterol (Table 2). Total and LDL

cholesterol showed much denser and more complex pat-

terns of association to lipidomic data than that of HDL

cholesterol (Additional file 1: Figure S3), consisting of 476

(Total cholesterol) and 291 (LDL cholesterol) features, in-

cluding 262 common for both total and LDL cholesterol

(Additional file 2: Table S1). The patterns of association of

lipidomic data to serum triglycerides was also complex and

involved a total of 1020 associations, including 179 which

were common with total cholesterol.

In contrast, only eight spectral features that associated

with HDL were also associated with serum triglycerides,

and only two features were associated with FBS (Table 2;

Additional file 2: Table S1). Analyses of correlations

between CAD and lipidomic data did not identify lipid

features associated with CAD (Data not shown). Peak

Table 1 Demographic, clinical and biochemical features of cases with coronary artery stenosis and controls, whose sera were used

for lipidomic analyses. Data are means ± SEM. Number of individuals is reported in parentheses

Total Controls Cases Male controls Male Cases Female
controls

Female Cases

Demographics

Age (y) 53.38 ± 1.07 53.66 ± 1.6 (62) 53 ± 1.3 (47) 52.1 ± 2.3 (36) 52.5 ± 1.3 (37) 55.8 ± 2.1 (26) 54.9 ± 3.9 (10)

Type 2 diabetes (Number,
%)

21 (19.27) 10 (16.12) 9 (19.14) 4 (11.11) 6 (16.21) 4 (15.38) 3 (30)

Hyperlipidemia (Number,
%)

20 (18.35) 10 (16.12) 8 (17.02) 4 (11.11) 6 (16.21) 4 (15.38) 2 (20)

Hypertension (Number, %) 22 (20.18) 10 (16.12) 12 (25.35) 6 (16.66) 9 (24.32) 4 (15.38) 3 (30)

Anthropometric variables

Body weight (kg) 77.6 ± 1.6 74.5 ± 2.1 (62) 81.6 ± 2.1 (47) 79.5 ± 2.7 (36) 84.4 ± 2.2 (37) 67.5 ± 2.8 (26) 71.6 ± 4.5 (10)

Body mass index (kg/m2) 27.8 ± 0.5 27.1 ± 0.6 (62) 28.6 ± 0.7 (46) 27 ± 0.8 (36) 28.7 ± 0.7 (37) 27.3 ± 0.9 (26) 28.2 ± 2.2 (9)

Metabolic and inflammatory variables

Plasma glucose (mg/dL) 107.81 ± 3.96 99.04 ± 2.3 (49) 117.5 ± 7.7 (44) 100.9 ± 3.7 (27) 115.1 ± 8.2 (35) 96.7 ± 2.5 (22) 127.3 ± 21.5 (9)

Total cholesterol (mg/dL) 189.91 ± 3.74 185.9 ± 4.9 (59) 195.1 ± 5.6 (45) 185 ± 3.7 (33) 200.1 ± 5.6 (35) 187.1 ± 8.3 (26) 177.7 ± 15.2
(10)

HDL cholesterol (mg/dL) 39.94 ± 0.98 41.2 ± 1.4 (59) 38.3 ± 1.2 (46) 38.6 ± 1.6 (33) 38.1 ± 1.4 (36) 44.5 ± 2.5 (26) 39 ± 2.9 (10)

LDL cholesterol (mg/dL) 116.52 ± 3.13 111.9 ± 3.9 (59) 122.4 ± 4.9 (46) 112.3 ± 4.9 (33) 126.1 ± 5.4 (36) 111.4 ± 6.4 (26) 108.9 ± 12.0
(10)

Triglycerides (mg/dL) 196.91 ±
11.44

187.5 ± 15.5
(59)

208.9 ± 17.1
(46)

206.2 ± 22.3
(33)

218.9 ± 20.7
(36)

163.7 ± 20.4
(26)

173.3 ± 23.6
(10)

Family history

Cardiac disease 81 (74.31) 39 (62.90) 42 (89.36) 18 (50) 33 (89.18) 21 (80.76) 9 (90)

Hypertension 73 (66.97) 42 (67.74) 31 (65.95) 25 (69.44) 23 (62.16) 17 (65.38) 8 (80)

Type 2 diabetes 63 (57.80) 35 (56.45) 27 (57.44) 24 (66.66 20 (54.05) 11 (42.30) 7 (70)
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annotation of the features significantly associated with

HDL cholesterol using the CAMERA tool identified ions

originating from the same compound and their adduct/

isotope/in-source fragment formations. In particular, sig-

nificantly associated compounds were characterized by

one or several isotopic peaks in both negative and positive

ionization mode (Table 2). A total of 34 features were de-

tected in both ionization modes (Table 2; Fig. 2a and b).

These features were mostly concentrated in the m/z re-

gion between 750 and 810, which is the domain of phos-

pholipids and sphingomyelins. Fourteen features (in that

domain) were significantly associated with plasma HDL

cholesterol levels, total and LDL cholesterol.

Structural assignment and metabolite identification

There was no apparent matching between the set of fea-

tures in positive and negative ion modes suggesting that

the metabolites had undergone loss of specific frag-

ments. Each compound was characterized by its m/z

and retention time (Table 2). A same compound can be

ionized in positive and negative ion mode, respectively

forming a [M +H] + ion and [M +HCOO]- adduct. For

instance, m/z 759.64 in positive ionization mode and

803.63 in negative ionization mode stand for the same

compound. In the positive ion mode, the fragmentation

experiment highlighted a common fragmentation

patterns for all these compounds (Fig. 2c-f). They both

generate the m/z 184.0739 fragment-ion corresponding

to the phosphocholine head group. At this stage, com-

pounds could be glycerophospholipids or sphingolipids.

The parity of the ions is one of the features of the type

of lipids. Phosphatidylcholines (PC), Phosphatidyletha-

nolamines (PE) and phosphatidylserines (PS) have odd

m/z, whereas sphingomyelins (SM) and phosphatidyl

inositols (PI) have even m/z for their [M +H]+ ion.

Negative ion mode fragmentation gave complementary

information to positive ion mode (Fig. 2c-f ). In this

mode, the [M + acetate-CH4]- ion gives the most inform-

ative fragmentation pathway with specific ion fragments,

thus allowing the identification of the lipid class. How-

ever, even though the lipid class can be identified, data-

bases still provide various candidate compounds

corresponding to the same m/z.

Discussion
We report results from a metabolome-wide association

study (MWAS) based on untargeted lipidomic profiling

that identified correlations between lipid features and

lipoprotein metabolism, which contribute to CAD risk.

We demonstrate association of lipoproteins (Total, HDL

and LDL cholesterol) with largely independent series of

metabolic features. Additional analyses of metabolic

features underlined the associations between HDL cho-

lesterol and sphingomyelins.

Our untargeted lipidomic profiling strategy relies on

simultaneous quantitative analysis of a large number of

metabolite features that can be tested for association

with any phenotype recorded in the cohort, including

disease conditions and CAD endophenotypes. This ap-

proach, which was coined metabolome-wide association

study (MWAS) [12], has been successfully used to

demonstrate correlative relationships between disease

and metabolites, including for example between hyper-

tension and urinary formate [12] and the dicarboxylic

acid hexadecanedioate [20]. When extended to multiple

phenotypes in the context of untargeted analysis of spec-

tral data, MWAS provides detailed information on coor-

dinately regulated metabolites (metabotypes) by bringing

together compounds that are not necessarily involved in

the same metabolic process but respond to the same

biological stimulus or pathophysiological condition. Our

Fig. 1 Untargeted metabolomic-wide association between

metabolic features and HDL cholesterol. Metabolomic data were

obtained by liquid chromatography mass spectrometry (UPLC-MS)

with a CSH C18 column. Quantitative serum metabolomic data were

tested for correlation with plasma HDL cholesterol (A,B). Spectral

features referenced by their mass to charge ratio (X-axis) are plotted

against the statistical significance of the association to body mass

index (Y-axis). Association results are shown for data in negative (a)

and positive (b) ionization modes. Details of the spectral signals

(mass to charge ratio and retention time), correlations statistics,

along with co-associations with other phenotypes are given in Table

2 and Additional file 2: Table S1
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findings indicate that lipid features associated with

serum HDL cholesterol were largely independent from

those associated with serum triglycerides. Conversely,

each of these phenotypes exhibited specific patterns of

correlations with lipid features. Mostly, the features ex-

hibited a positive correlation with the HDL, LDL, total

cholesterol and FBS levels, but a negative correlation for

TGs. Interestingly, only three metabolites didn’t follow

this pattern of correlation and correlated negatively with

HDL and positively with TGs levels, two of these fea-

tures correlated positively with FBS levels. The three

metabolites (shown in Table 2) are acquired in positive

Table 2 Details of metabolic features significantly associated (FDR adjusted P < 0.05) with quantitative variations of HDL cholesterol,

and relationships with other phenotypes analyzed in the study cohort. Correlations statistics of metabolic features are given. m/z,

mass to charge ratio. rt., retention time. Tchol, Total cholesterol. TGs, Triacylglycerols. Corr, Correlation. Ns, not statistically significant

Metabolic Features HDL LDL TGs Tchol FBS

Ionisation
Mode

mz rt Isotopes Adjusted P Corr Adjusted P Corr Adjusted P Corr Adjusted P Corr Adjusted P Corr

Negative 803.628 636.426 [176] [M]- 0.001 0.337 1.65 × 10− 4 0.394 Ns – 1.85 × 10− 4 0.392 Ns –

Negative 804.632 636.426 [176] [M + 1]- 0.001 0.292 1.06 × 10−4 0.411 Ns – 1.85 × 10− 4 0.390 Ns –

Negative 805.635 636.317 [176] [M + 2]- 0.001 0.304 1.65 × 10−4 0.404 Ns – 1.85 × 10− 4 0.402 Ns –

Negative 829.644 662.705 [209] [M]- 1.99 × 10− 4 0.368 0.002 0.311 Ns – 0.002 0.308 Ns –

Negative 830.647 662.659 [209] [M + 1]- 1.90 × 10− 4 0.400 0.002 0.320 0.030 −0.221 0.002 0.310 Ns –

Negative 831.66 783.461 [211] [M]- 2.61 × 10−4 0.282 3.07 × 10− 4 0.380 Ns – 1.85 × 10− 4 0.390 Ns –

Negative 832.663 783.459 [211] [M + 1]- 2.61 × 10− 4 0.281 2.67 × 10− 4 0.383 Ns – 1.85 × 10− 4 0.393 Ns –

Negative 844.663 761.148 [231] [M + 1]- 1.99 × 10− 4 0.409 0.001 0.275 Ns – 0.001 0.289 Ns –

Negative 845.675 801.897 [236] [M]- 3.22 × 10− 4 0.303 5.00 × 10−5 0.428 Ns – 4.82 × 10− 5 0.289 Ns –

Negative 846.678 801.89 [236] [M + 1]- 1.99 × 10− 4 0.289 5.00 × 10− 5 0.440 Ns – 4.44 × 10− 5 0.437 Ns –

Negative 859.691 817.445 [258] [M]- 2.61 × 10− 4 0.255 1.06 × 10− 4 0.425 Ns – 1.85 × 10− 4 0.394 Ns –

Negative 860.694 817.445 [258] [M + 1]- 0.001 0.253 1.06 × 10−4 0.422 Ns – 1.85 × 10− 4 0.397 Ns –

Negative 861.587 636.5 [260] [M]- 0.001 0.313 Ns – Ns – Ns – Ns –

Negative 897.631 662.634 [299] [M]- 0.001 0.332 Ns – 0.028 −0.228 Ns – Ns –

Negative 899.647 783.472 [301] [M]- 2.62 × 10−4 0.279 Ns – Ns – 0.004 0.297 Ns –

Positive 339.289 796.101 0.002 −0.382 Ns – 1.85 × 10−15 0.721 Ns – 0.031 0.341

Positive 612.556 793.586 0.004 −0.382 Ns – 2.41 × 10−12 0.663 Ns – 0.022 0.347

Positive 616.499 695.687 [70] [M + 1]+ 0.004 −0.384 Ns – 1.37 × 10−17 0.757 Ns – Ns –

Positive 759.637 657.349 [160] [M]+ 0.006 0.290 1.06 × 10−4 0.427 Ns – 2.93 × 10−4 0.396 Ns –

Positive 760.64 657.377 [160] [M + 1]+ 0.002 0.342 6.45 × 10−4 0.362 Ns – 6.49 × 10− 4 0.362 Ns –

Positive 761.644 657.307 [160] [M + 2]+ 2.79 × 10−4 0.378 1.65 × 10− 4 0.392 0.028 −0.247 4.06 × 10− 4 0.369 Ns –

Positive 774.656 745.664 [184] [M + 1]+ 0.003 0.360 0.001 0.309 Ns – 5.13 × 10−4 0.350 Ns –

Positive 781.619 657.212 [192] [M]+ 0.001 0.330 2.43 × 10−4 0.386 Ns – 3.04 × 10− 4 0.375 Ns –

Positive 782.622 657.224 [192] [M + 1]+ 3.53 × 10−4 0.380 1.06 × 10− 4 0.417 Ns – 2.99 × 10− 4 0.384 Ns –

Positive 783.625 657.209 [192] [M + 2]+ 0.001 0.353 0.008 0.284 Ns – 0.018 0.258 Ns –

Positive 785.653 680.778 [202] [M]+ 2.61 × 10−4 0.357 0.002 0.313 0.028 −0.246 0.004 0.286 Ns –

Positive 786.656 680.694 [202] [M + 1]+ 2.37 × 10−4 0.369 0.002 0.317 0.028 −0.231 0.003 0.293 Ns –

Positive 788.671 792.889 [204] [M + 1]+ 0.001 0.235 2.59 × 10−4 0.389 Ns – 7.01 × 10− 4 0.345 Ns –

Positive 800.672 771.37 [226][M + 1]+ 0.001 0.335 0.001 0.306 Ns – 0.003 0.291 Ns –

Positive 801.684 809.306 [229] [M]+ 1.99 × 10−4 0.349 1.06 × 10− 4 0.387 Ns – 2.99 × 10− 4 0.358 Ns –

Positive 802.687 809.268 [229][M + 1]+ 1.99 × 10−4 0.348 7.58 × 10−5 0.417 Ns – 1.71 × 10− 4 0.400 Ns –

Positive 807.634 680.491 [239] [M]+ 9.83 × 10−4 0.362 Ns – Ns – Ns – Ns –

Positive 815.699 824.707 [257] [M]+ 2.61 × 10−4 0.251 0.001 0.345 Ns – 0.004 0.297 Ns –

Positive 816.703 824.708 [257] [M + 1]+ 2.61 × 10−4 0.252 0.001 0.353 Ns – 0.003 0.304 Ns –
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ionization mode, and present respectively an mz of

339.289, 612.556 and 616.499. The metabolites present-

ing an mz of 339.289 and 612.556 correlated positively

with FBS levels. The metabolite corresponding to an mz

of 612.556 is diacylglycerol (DAG), the two remaining

metabolites are of unknown nature.

MWAS deepens the characterization of metabolite

biomarkers associated with phenotypes and enables inte-

gration of information from individual compounds into

biological pathways. This is illustrated by the conserved

correlative relationships of plasma HDL, LDL and total

cholesterol with the same set of lipid features, which we

were able to annotate as sphingomyelins. Sphingomye-

lins map to the pathway of sphingolipid metabolism.

They consist of over 18 molecular species, which are

products of phosphocholine derived from phosphatidyl-

choline and ceramide [21]. Sphingomyelinase and

sphingomyelin synthase are responsible for the intercon-

version of sphingomyelins and ceramide. Sphingolipids

play a significant physiological role in maintaining cell

Fig. 2 Identification of metabolites associated with plasma HDL cholesterol. Extracted ion chromatograms of the unknown compounds

significantly associated with HDL cholesterol were obtained by liquid chromatography mass spectrometry (UPLC-MS) using a CSH C18 column.

Data are shown for profiles acquired in positive (a) and negative (b) ionization mode. Illustrations of extracted ion chromatograms of an

unknown compound in positive (c) and negative ion mode (d) and their corresponding MS/MS (e, f) at a respective collision energy of 20 and 30

(arbitrary unit)
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wall integrity, cell growth, cell differentiation and critical

signal transduction pathways, which have recently

attracted considerable interest as potential therapeutic

targets in cardiovascular diseases.

Association of sphingolipids with lipoproteins, which

are major risk factors of CAD, is anticipated in our study,

where elevated plasma sphingomyelins as well as the

ratios of aortic and plasma ceramide are associated with

increased risk of cardiovascular diseases [22–24]. Sphingo-

lipids promote lipoprotein aggregation, plaque instability,

inflammation and apoptosis [25]. Moreover, the concen-

tration of sphingomyelins in the artery wall increases with

aging and comprises 70–80% of the phospholipids in

atherosclerotic lesions [25]. Of note, atherosclerotic pla-

ques exhibit increased levels of ceramide and sphingomye-

lins, which contribute to inflammation of coronary artery

smooth muscle cells. This role might be particularly sig-

nificant in the context of the metabolic syndrome, where

overabundance of long-chain saturated fatty acids stimu-

lates sphingolipid synthesis and turnover in the liver,

which leads to the generation of sphingolipid-enriched li-

poproteins, facilitating plaque development.

Low level of high-density lipoprotein cholesterol (HDL-C)

and elevated triglyceride/HDL-C ratio are important risk

factors for cardiovascular disease in the Lebanese popula-

tion. Similar to our study, sphingomyelins, the most abun-

dant sphingolipid in lipoproteins, are directly correlated to

lipoproteins, where approximately 63–75% and 25–35% of

sphingomyelin is associated with LDL and HDL, respect-

ively in healthy subjects. We provide evidence of association

of sphingomyelin and lipoproteins among subjects with

established CAD. These associations stem from an intricate

relationship between sphingolipids and lipoproteins on the

cellular, molecular and biochemical levels.

First, sphingomyelinis the major sphingolipid in HDL

particles, and the content of sphingomyelin affects the

metabolic function of HDL. Specifically, the proportion of

sphingomyelin in HDL predicts the capacity of serum

HDL particles to accept cellular cholesterol, known as re-

verse cholesterol transport, since sphingomyelin is posi-

tively correlated with its fractional efflux. In fact, plasma

enzymes involved in HDL metabolism such as lecithin–

cholesterol acyltransferase (LCAT) or phospholipid trans-

fer protein are inhibited by HDL sphingomyelin content,

which negatively impacts reverse cholesterol transport.

Additionally, over-expression of sphingomyelin synthase

increases the atherogenic potential of lipoproteins. Among

all HDL-related parameters, sphingomyelin showed the

strongest evidence of association with the presence of

CAD and number of coronary stenosis, as shown in a

multivariate analysis of data from women with angiogra-

phically assessed disease, highlighting the role of reduced

cholesterol efflux capacity as an important factor account-

ing for the inverse association between HDL-cholesterol

and CAD. It has been shown that sphingolipids alter LDL

functions in tissues, where LDL-associated sphingomye-

lins affect their aggregation and accumulation in macro-

phages as well as LDL kinetics. This is achieved through

the action of sphingomyelinase in coronary plaques, trans-

forming sphingomyelin into ceramide, which aids in LDL

aggregation and uptake.

Second, experimental, observational and genetic studies

have shown that sphingolipids are involved in the cellular

regulation of lipoprotein synthesis by regulating the

post-transcriptional activation of sterol regulatory

element-binding proteins (SREBPs), which are key tran-

scription factors of lipid synthetic genes. For instance,

SREBP-2 activates the LDL receptor and all genes re-

quired for cholesterol synthesis. Hence, increased

sphingolipid synthesis in the liver is associated with in-

creased cholesterol synthesis, whereas inhibition of

sphingomyelin synthesis by myriocin is associated with

downregulation of SREBP-regulated genes, inhibition of

cholesterol and triglyceride synthesis and decrease in ath-

erosclerotic plaque [26, 27]. Inhibition of sphingolipid syn-

thesis, however, also induces the expression of

apolipoprotein A1 and LCAT, leading to increased plasma

HDL as a counter-regulatory, anti-atherogenic particle,

which is in line with our finding that sphingomyelin dir-

ectly correlates with HDL concentration. Besides sphingo-

myelins, ceramides also affect HDL function by increasing

plasma membrane expression of ATP-binding cassette re-

ceptor A1 (ABCA-1), which is crucial for formation of

nascent HDL and correlates positively with plasma HDL.

Hence, by regulating lipoprotein synthesis and function,

sphingolipids are major risk factors of CAD.

In conclusion, our data underline the power of untar-

geted lipidomic profiling for systematic quantitative profil-

ing of series of metabolites simultaneously, to uncover

correlative relationships between disease status and endo-

phenotypes and metabolic/metabotype biomarkers, which

represent observable end-points of altered regulation of

biochemical pathways. The complexity of sphingolipid

species, described using new lipidomic methodologies,

and their distribution in different lipoprotein particles

under different experimental conditions are promising av-

enues for further research. Multiple targets in the

sphingolipid metabolism pathway provide ample oppor-

tunities for drug discovery. Overall, this has the potential

to contribute to improving our knowledge of disease risk

and to characterizing therapeutic targets and advanced

disease preventive approaches.

Additional files

Additional file 1: Figure S1. Representative total ion current (TIC)

chromatogram profiles in positive (A) & negative (B) ion modes. Data

were obtained following untargeted liquid chromatography mass
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spectrometry (LC-MS) analysis with a CSH C18 columnof a quality

control samples representing a pool of plasma samples. Retention

times (X-axis) are plotted against relative intensity of the spectral

peaks (Y-axis). Approximate positions of the families of lipid

compounds in the chromatogram are shown: CE Ceramides, DG

Diacyglycerol, FA Fatty Acids, PC Phosphatidylcholines, PE

Phosphatidylethanolamines, PG Phosphatidylglycerolipids, PI

phosphatidylinositols, PS phosphatidylserines, SM sphingomyelins, TG

Triacylglycerol. Figure S2. 3-D Principal component analysis of mass

spectrometry data in the cohort. Metabolome data from plasma

samples of the cohort processed with a CSH C18 column were

analyzed after filtering and normalization for the positive mode (A)

and the negative mode (B). Figure S3. Metabolome-wide association

between metabolic features and plasma LDL (A, B) and total (C, D)

cholesterol. Metabolomic data were obtained by liquid chromatography mass

spectrometry (LC-MS) with a CSH C18 column.Spectral features referenced by

their mass to charge ratio (X-axis) are plotted against the statistical

significance of the association to plasma LDL and total cholesterol

(Y-axis). Association results are shown for data in negative (A, C) and

positive (B, D) ionization modes. (PPTX 579 kb)

Additional file 2: Table S1. Details of metabolic features significantly

associated (FDR adjusted P < 0.05) with quantitative variations ofHDL

cholesterol, and relationships with other phenotypes analysed in the

study cohort. Correlations statistics of metabolic features are given. m/z,

mass to charge ratio. rt., retention time. (XLSX 195 kb)
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