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Abstract

This study combined high resolution mass spectrometry (HRMS), advanced chemometrics

and pathway enrichment analysis to analyse the blood metabolome of patients attending

the memory clinic: cases of mild cognitive impairment (MCI; n = 16), cases of MCI who upon

subsequent follow-up developed Alzheimer’s disease (MCI_AD; n = 19), and healthy age-

matched controls (Ctrl; n = 37). Plasma was extracted in acetonitrile and applied to an

Acquity UPLC HILIC (1.7μm x 2.1 x 100 mm) column coupled to a Xevo G2 QTof mass

spectrometer using a previously optimised method. Data comprising 6751 spectral features

were used to build an OPLS-DA statistical model capable of accurately distinguishing Ctrl,

MCI and MCI_AD. The model accurately distinguished (R2 = 99.1%; Q2 = 97%) those MCI

patients who later went on to develop AD. S-plots were used to shortlist ions of interest

which were responsible for explaining the maximum amount of variation between patient

groups. Metabolite database searching and pathway enrichment analysis indicated distur-

bances in 22 biochemical pathways, and excitingly it discovered two interlinked areas of

metabolism (polyamine metabolism and L-Arginine metabolism) were differentially dis-

rupted in this well-defined clinical cohort. The optimised untargeted HRMSmethods de-

scribed herein not only demonstrate that it is possible to distinguish these pathologies in

human blood but also that MCI patients ‘at risk’ from AD could be predicted up to 2 years

earlier than conventional clinical diagnosis. Blood-based metabolite profiling of plasma from

memory clinic patients is a novel and feasible approach in improving MCI and AD diagnosis

and, refining clinical trials through better patient stratification.

PLOSONE | DOI:10.1371/journal.pone.0119452 March 24, 2015 1 / 16

OPEN ACCESS

Citation: Graham SF, Chevallier OP, Elliott CT,

Hölscher C, Johnston J, McGuinness B, et al. (2015)

Untargeted Metabolomic Analysis of Human Plasma

Indicates Differentially Affected Polyamine and L-

Arginine Metabolism in Mild Cognitive Impairment

Subjects Converting to Alzheimer’s Disease. PLoS

ONE 10(3): e0119452. doi:10.1371/journal.

pone.0119452

Academic Editor: Jon M. Jacobs, Pacific Northwest

National Laboratory, UNITED STATES

Received: September 30, 2014

Accepted: January 13, 2015

Published: March 24, 2015

Copyright: © 2015 Graham et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: The raw data used to

produce graphs, figures, statistical values and images

presented herein have been uploaded along with the

paper. In addition actual metabolite identifications

with the appropriate identification and confidence

metrics and quantitative values have been included

as supplementary data for the benefit of researchers.

Funding: Metabolomics studies into Alzheimer's

disease are supported by grants from Alzheimer's

Research, UK [ARUK-NCH2012B-5; grant ARUK-

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0119452&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder for which there is no

cure and few reliable diagnostic biomarkers [1]. AD is the most common form of dementia

and diagnosis rates are continually rising, driven partly by the increasing age profile of Western

societies. At present AD therapies are initiated only after diagnosis and their modest efficacy is

due to them only treating symptoms due to chemical imbalance that only partially compen-

sates for the considerable irreversible brain damage that has already occurred by the time of di-

agnosis. Therefore, valid and reliable biomarkers capable of detecting early AD pathogenesis

are vital for patients, clinicians, researchers, and care commissioners. Early recognition, assess-

ment and diagnosis of AD are key priorities in all national dementia strategies. Current re-

search strategies around biomarkers for early diagnosis focus on measurement of levels of

amyloid beta(Aβ), the Aβ (1–40)/(1–42) ratio, levels of phosphorylated tau [1], and Aβ/tau

ratio in cerebrospinal fluid (CSF). Increasingly, imaging techniques are also being widely re-

searched and increasingly used in clinical settings whereby levels of brain atrophy by MRI are

being used to aid with diagnosis, while the measurement of plaque load in PET imaging studies

is still very much a research application [2]. The predictive value of these techniques remains

limited so the investigation of novel sensitive and specific methods such as high resolution

mass spectrometry (HRMS) metabolomics is still warranted [3].

Mild cognitive impairment (MCI) is considered to be a transitional phase between normal

aging and AD (Mild cognitive impairment as a diagnostic entity [4]). Patients with MCI have

cognitive impairment, primarily in their memory functions but their daily living activities are

relatively unaffected, and as a condition, MCI does not fulfil the criteria of AD or any other

form of dementia. MCI is heterogeneous in nature with several potential outcomes, ranging

from increased risk of developing AD to restoration of normal cognition [5–7]. There is cur-

rently no clinical method of accurately determining which MCI subjects will later progress to

AD. Therefore, leading-edge research studies focus on identifying features which differentiate

stable MCI subjects, MCI subjects later converting to AD, and healthy age-matched

control subjects.

Metabolomics is a powerful tool for characterising complex disease phenotypes where there

are both genetic and environmental components. It is a discipline dedicated to the global study

of small molecules metabolites in cells, tissues and biofluids [8]. It involves the comprehensive,

simultaneous and systematic profiling of numerous metabolite concentrations and their fluctu-

ations in response to disease, drugs, diet or lifestyle [8]. Metabolomics datasets are frequently

large, complex and difficult to interpret but the combination of several cutting-edge bio-infor-

matic techniques (i.e. multivariate statistics, metabolite database searching, and pathway en-

richment analysis) makes it possible to visualise and biologically interpret metabolite data on a

system level.

‘Targeted’ and ‘untargeted’metabolomics techniques have been used to profile CSF samples

from dementia patients. Recently, a targeted LC-electrochemical array approach measured the

concentrations of 71 known and 24 unknown metabolites in CSF [9]. The model generated

classified control, MCI and AD subjects with 83.1% predictive accuracy, and this approach

meant that it was straightforward to quickly identify 4 metabolic pathways that were impacted:

tryptophan, tyrosine, methionine and purine metabolism [9]. Untargeted methods on-the-

other-hand are less prone to bias because they do not predefine which metabolites should be
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measured [10], however, this has the disadvantage that it can be slow and difficult to identify

metabolites or pathways. For example, CSF profiling (control, MCI and AD subjects) recently

generated models with>95% specificity and sensitivity following cross-validation[11]. Howev-

er, from 11,549 spectral features initially analysed just 17 ‘metabolites’ were shortlisted of

which 6 were positively identified [11]. The information gained can be valuable but such an ap-

proach limits the number of potential findings from what are extremely large datasets. Encour-

agingly new bioinformatics tools can improve ‘untargeted’metabolomics by combining

automated database searching with pathway enrichment analysis. This assigns putative metab-

olite identities on the basis of isotope similarity and mass error, and then identifies coordinated

changes along known biochemical pathways.

The aims of this investigation were to: (1) develop and optimise a HRMS metabolomics

method capable of capturing the maximum number of spectral features in human plasma; (2)

use this method to profile the plasma of patients attending a memory clinic, including: cases of

mild cognitive impairment (MCI), cases of MCI who subsequently went on to develop AD

(MCI_AD), and healthy age-matched controls (Ctrl); (3) develop and validate multivariate

models with high specificity and sensitivity to accurately differentiate patient groups; and (4)

employ pathway enrichment analysis to identify the areas of metabolism which are affected in

each clinical state.

Materials and Methods

Ethics Statement

Appropriate research ethical approval at Queen’s University Belfast was sought and obtained.

Written informed consent was obtained from all participants.

Study design and participants

Patients (n = 139) and Healthy Age-Matched Controls (n = 98) were recruited from the Belfast

City Hospital memory clinic. Of this sample cohort we selected n = 37 control samples, n = 16

MCI subjects and n = 19 MCI_AD subjects, matching age as closely as possible and splitting

each group equally into male and female subgroups. Demographic characteristics are summa-

rised in S1 Table. Patients presented with subjective memory problems usually but were func-

tionally independent and scored�24/30 on the MMSE [12] and 82–88/100 on the

Addenbrookes Cognitive Examination-Revised [13]. Patients were diagnosed with MCI ac-

cording to criteria developed by an international working group on MCI [14]. Controls were

recruited from groups of volunteers that have previously assisted with studies of this type or

were spouses of patients. They had no cognitive complaints subjectively or objectively and

were physically and mentally healthy.

The neuropsychological evaluation comprised speed and attention, learning and episodic

memory, visuospatial function, language and executive function as recommended by the

American Academy of Neurology (AAN). Within each cognitive domain several aspects of

function were assessed in order to obtain as complete a picture as possible. In order to differen-

tiate cognitive domains a cut off for each test was set at 1.5 standard deviations below the con-

trol mean. An impaired result on at least one test in each cognitive domain was required to be

considered impaired in the domain. MCI patients were then assigned to groups: amnestic sin-

gle domain, amnestic multidomain, nonamnestic single domain and nonamnestic multido-

main. The resultant cognitive classification is illustrated in S2 Table. The neurological

assessment was repeated at year 1 and 2 as applicable. Controls were assessed once only.

Metabolomic Profiling of MCI Subjects Who Convert to AD
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The diagnosis of AD was made using NINCDS-ADRDA criteria [15]. Most of the MCI_AD

patients belonged to the amnestic multidomain group initially as per previous neuropsycholog-

ical studies of this type [16–18].

Plasma was collected in EDTA tubes from individuals using standard venepuncture proce-

dures. It was immediately centrifuged and stored in aliquots at -80°C until the date of analysis.

Preparation of plasma extracts

Based on the results of previous studies the pool of polar metabolites were hypothesised to be

the best for identifying potential biomarker candidates of AD [19]. Samples were prepared by

eluting plasma through an Ostro Plate (Waters, Ireland) in accordance with the manufacturer’s

instructions. The Ostro plate provided a high-throughput reproducible method of removing

proteins and phospholipids with minimal sample preparation. Briefly, each test sample

(n = 80) a 100 μl aliquot of plasma was transferred to its respective well on the 96-well Ostro

plate. To each well 400 μl of acetonitrile containing 1% formic acid was added and mixed thor-

oughly by aspirating five times. The samples were subsequently filtered under vacuum for five

minutes into a clean collection plate (Waters, Manchester) and were immediately transferred

to the UPLC-QTof-MS for analysis.

LC-QTof-MS Analysis

An exhaustive process of optimisation was undertaken which assessed various column chemis-

tries, extraction procedures, solvent gradients, modes of acquisition and mass spectrometer set-

tings. The following protocol was found to be optimal for the analysis of polar plasma

metabolites capturing the maximal number of spectral features in the most reproducible man-

ner. All solvents (water, acetonitrile, formic acid, ammonia solution 25%) were purchased from

Sigma-Aldrich (Dorset, UK) and were LC-MS grade or equivalent. Chromatography was per-

formed on a Waters Acquity UPLC I-Class system(Milford, MA, USA), equipped with column

oven, coupled to a Waters Xevo G2 QTof mass spectrometer (Manchester, UK) equipped

with an electrospray ionisation source operating in positive mode with lock-spray interface for

real time accurate mass correction. The source temperature was 120°C with a cone gas flow of

5 L/h, a desolvation temperature of 350°C, and a desolvation gas flow of 600 L/h. The capillary

voltage was set at 0.3 kV with a cone voltage of 20 V.

A lock-mass solution of Leucine Enkephalin (2 ng.μL-1) in acetonitrile/water containing

0.1% formic acid (50:50, v/v) was continuously infused into the MS via the lock-spray at a flow

rate of 5 μl.min-1. Leucine Enkephalin is a commonly used peptide, which has been studied in

detail and is commonly used as a standard or reference compound to calibrate mass spectrom-

eters during analysis. This ensures accurate masses (±2 ppm) are obtained during every analyti-

cal run. Mass spectra data were acquired in centroid mode using MSE function (low energy:

4eV; high energy: ramp from 20 to 35 eV) over the range m/z 50–1200 range with a scan time

of 0.1s.

A 1.0 μL aliquot of extracted plasma sample was injected onto an Acquity UPLC BEH

HILIC column (2.1 x 100 mm, 1.7 μm,Waters, Milford, MA, USA). The main principle of

HILIC (Hydrophilic interaction chromatography) separation is based on a compounds polarity

and degree of solvation. The more polar compounds are separated by their stronger interaction

with the stationary aqueous layer than the less polar compounds, therefore resulting in a stron-

ger retention on the analytical column [19]. The column oven was set at 45°C, and the sample

manager temperature was 6°C. The gradient elution buffers were A (5 mM ammonium for-

mate) and B (acetonitrile containing 0.025% formic acid), and the flow rate was 0.6 mL.min-1.

The elution gradient (A:B, v/v) was as follows: an isocratic period of 2 min at 5:95 followed by a
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linear gradient from 5:95 to 30:70 over 8 min then a linear change from 30:70 to 90:10 over 1

min. After a 1 min period at 90:10, a linear gradient was applied over 0.5 min to return to the

initial composition 5:95 which was held for 3.5 min before the next injection.

Prior to the analysis 10 pooled conditioning samples were injected. To determine the chro-

matographic reproducibility of retention times and peak intensities, pooled samples were in-

jected at intervals every 10 samples throughout the entire experiment [19].

Data analysis

Raw data from the spectral analysis of plasma extracts was initially processed using Transomics

(version 1.0; Waters Corporation, Milford, MA) software and was normalised to the total

spectral intensity. The simple, automatic workflow took less than 48 hours to retention-time

align all runs against a pool sample run, peak pick, deconvolute adduct ions and calculate the

ion abundance of 6751 ions of interest. All detected ions were selected against the Progenesis

Metascope “Biomolecules” database [20]. 1486 compound identifications were returned

and automatically linked to the compounds. Putative ID’s were accepted on the basis that

isotope similarity and mass error (in that order) with only one ID assigned per ion of interest

(See S1 Dataset). Following this two separate data analysis approaches were undertaken: firstly

multivariate data analysis was conducted to assess the suitability of HRMS profiling to accu-

rately distinguish Ctrl, MCI and MCI_AD samples, and secondly pathway enrichment analysis

was conducted to implicate potential areas of metabolism which are affected.

Multivariate Data Analysis

The analysed spectral data was exported to Simca 13 (Umetrics, Umea, Sweden) for multivari-

ate analysis. Prior to any in-depth data analysis, data quality was assessed in terms of reproduc-

ibility by an approach adopted by ourselves and other leading metabolomics researchers

[19,21]. Clustering of the pooled samples was assessed using principal component analysis

(PCA) to reveal if platform stability had been achieved. Tight clustering of pooled sample data

indicated that data acquisition was highly reproducible [19]. Data were then mean centered;

Pareto scaled and grouped into Controls, MCI and MCI_AD prior to analysis using orthogonal

projection to latent structures-discriminant analysis (OPLS-DA) [19]. Pareto scaling was used

since it augments the representation of the low concentration metabolites by dividing each var-

iable by the square root of the standard deviation of the variable, without increasing the noise

contribution to the model [22]. R2 (cumulative), Q2 (cumulative) and Root Mean Squared

Error of cross validation (RMSECV) were used to determine the validity of the model. R2

(cum) indicates the variation described by all components in the model and Q2 is a measure of

how accurately the model can predict class membership. Essentially it validates the statistical

model by leaving 1/7th of the data out of the model and then predicting their class membership

[23].

Groups were compared two at a time i.e Controls vs MCI, Controls vs MCI_AD, MCI vs

MCI_AD. The ions of interest (identified by the s-plot) to be at different levels between the two

sample groups were analysed using a one tailed homoscedastic Students T-test (Excel 2013

(Microsoft, Redmont, MA, USA).

Pathway Enrichment Analysis

Following multivariate analysis, the normalised data was filtered in Excel 2013 (Microsoft, Red-

mont, MA, USA). Firstly, ions of interest containing>20% “zero” values across all samples

were excluded in order to remove spurious and inaccurate measurements Secondly, data

Metabolomic Profiling of MCI Subjects Who Convert to AD
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without assigned putative ID’s were removed, and thirdly those with a p-value>0.05 were re-

moved as calculated from the Student’s T-test (as previously described).

The filtered and putatively identified metabolites were analysed for pathway enrichment

using Metacore (Thompson Reuters, Genego, Saint Joseph, MI) with metabolite names, p-val-

ues and exact molecular masses uploaded for analysis. The—log (p-value) produced by Meta-

core indicates the enhancement of certain metabolites in a biochemical pathway [24].

Displayed pathways were selected on the basis of their—log (p-value) and false discovery rate

as produced by Metacore (both with values<0.05). Ratios indicate the number of significantly

altered metabolites in the pathway against the total number of metabolites in that pathway.

Results

Metabolomic profiling of plasma using HRMS

Fig. 1 displays the multivariate analysis results when all three groups where analysed using

OPLS-DA. This model and the subsequent models (Fig. 2A, 2C and 2E) were produced using

6,751 spectral features obtained by HRMS analysis. This approach clearly distinguished Ctrl,

MCI and MCI_AD groups. For this model (Fig. 1) two latent components and thirteen orthog-

onal components were calculated with resulting R2 = 95.6%, Q2 = 91.6% and a root mean

squared error of cross validation (RMSECV) of 12.2%. Fig. 2A displays the OPLS-DA scores

plot for control vs. MCI accompanied by its respective s-plot in Fig. 2B. This model was created

Fig 1. Multivariate model generated from HRMS analysis of human plasma. The OPLS-DA scores plot shows Controls (red circles), MCI (black squares)
and MCI_AD (blue triangles). R2 = 95.6% and Q2 = 91.6%. R2 (cumm) indicates the variation described by all components in the model and Q2 is a measure
of how accurately the model can predict class membership. Essentially it validates the statistical model by leaving 1/7th of the data out of the model and then
predicting their class membership [24].

doi:10.1371/journal.pone.0119452.g001

Metabolomic Profiling of MCI Subjects Who Convert to AD
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using one latent component and eight orthogonal components producing R2 = 97.6%,

Q2 = 95.3% and RMSECV = 9.97%. The s-plot highlighted 33 metabolites to be at higher rela-

tive abundances in Ctrl (red-circles) and 30 to be at higher levels in MCI plasma (blue trian-

gles) sample. However when the raw data was analysed closely only 30 of the features identified

to be at higher levels in controls were considered true peaks/ions of interest and 18 out of the

30 for the MCI samples.

Fig. 2C displays the scores plot control vs. MCI_AD plasma samples complemented with its

respective s-plot in Fig. 2D. This discriminant model was generated using one latent

Fig 2. Multivariate models comparing groups and s-plots indicating the ‘ions of interest’.Groups were compared in pairs with Controls (red circles),
MCI (black squares) and MCI_AD (blue triangles) indicated on OPLS-DA scores plots (Fig. 2A, 2C and 2E). (a) Ctrl vs. MCI; R2 = 97.6%; Q2 = 95.3%; (c) Ctrl
vs. MCI_AD; R2 = 98.4%; Q2 = 95.7%. (f) MCI vs. MCI_AD; R2 = 98.7%; Q2 = 95.8%. Corresponding s-plots (Fig. 2B, 2D and F) highlight which ions are up
or down regulated in their respective group as represented by the colour and shape of the variables.

doi:10.1371/journal.pone.0119452.g002

Metabolomic Profiling of MCI Subjects Who Convert to AD
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component and nine orthogonal components producing R2 = 98.4%, Q2 = 95.7% and

RMSECV = 9.77%. As previously described the respective s-plot in Fig. 1E highlights features

that are at significantly higher or lower levels in both controls and diseased samples. In this

model the s-plots pinpoint 33 ions of interest to be higher in both Ctrl and MCI_AD samples.

However when the raw data was analysed closely only 25 were found to be at higher abun-

dances in Ctrl and 32 to be at higher levels in MCI_AD.

Fig. 2E presents the scores plots for the OPLS-DA model for MCI vs. MCI_AD accompa-

nied by its respective s-plot in Fig. 2F. The model was created using one latent component and

eight orthogonal components with R2 = 98.7%, Q2 = 95.8% and RMSECV = 10.26%. The s-

plot (Fig. 2E) highlights 29 features to be at higher abundances in plasma samples taken from

MCI patients whilst 15 are at higher levels in plasma samples harvested fromMCI_AD pa-

tients. When the raw data was analysed 13 were found to be at higher abundance in MCI plas-

ma samples and 13 were found to be at higher levels in plasma samples taken fromMCI_AD

patients. Thus, by this approach a list of 131 ions was compiled that after the removal of dupli-

cates identified 90 features important in the 3 models distinguishing patient groups. We further

confirmed the validity of our models by examining these 90 individual spectral features re-

ferred to as ‘ions of interest’. When the intensities of these ions were compared by univariate

analysis 98% (i.e. 88 out of 90) were statistically significant (p-values 0.05 to 5.70e-52; Student’s

t-test.). Therefore multivariate models discriminated between clinical cases on the basis of gen-

uine changes in the levels of plasma ions/metabolites.

Pathway Enrichment Analysis

Fig. 3 summarises the results of pathway enrichment analysis conducted using Metacore

(Thompson Reuters, Genego, St. Joseph, MI). The importance of implicated biochemical path-

ways is indicated by—log (P-value) and ratios depict the number of affected metabolites to the

total number of metabolites in the pathway. For controls versus MCI a total of 263 (159 elevat-

ed in MCI; 104 elevated in control) statistically significant (p<0.05) putatively identified me-

tabolites implicated 7 biochemical pathways (Fig. 3A). For control versus MCI_AD a total of

162 (102 elevated in MCI_AD; 60 elevated in control) statistically significant (p<0.05) puta-

tively identified metabolites implicated 15 biochemical pathways (Fig. 3B). For MCI versus

MCI_AD 183 (96 elevated in MCI_AD; 87 elevated in MCI) statistically significant (P<0.05)

putatively identified metabolites implicated 14 biochemical pathways. When all implicated

pathways were considered together (see Venn diagram in S1 Fig.) relatively few were common-

ly affected across all groups. Of the indicated pathways just 2 (Polyamine metabolism and L-ar-

ginine metabolism) were common between to control, MCI and MCI_AD subjects.

Interestingly these pathways are overlapping areas of metabolism sharing some metabolite in-

termediates. Table 1 lists the individual metabolites affected within the pathways with percent-

age changes and p-values for each comparison. Fig. 4 illustrates the biochemical pathways

these metabolites are involved in and how they are affected in MCI and MCI_AD.

Discussion

This study developed and optimised HRMS metabolomics analysis for human plasma and as-

sessed its ability to differentiate stable MCI subjects fromMCI subjects who later converted to

AD. The robust statistical models generated here indicate the future potential of profiling by

HRMS to identify MCI patients at greatest risk of converting to AD. Our findings from path-

way enrichment analysis complement and add to prior reports of disturbances in cholesterol,

lipid, glucose, amino acid and prostaglandin metabolism in MCI and AD. It also provides new

biochemical insights relating to polyamine and L-argininemetabolism.

Metabolomic Profiling of MCI Subjects Who Convert to AD
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Fig 3. Pathway Enrichment Analysis. Altered metabolic pathways and process networks in plasma of (a)
Ctrl vs. MCI, (b) Ctrl vs. MCI_AD and (c) MCI vs. MCI_AD subjects were uncovered using Metacore. The
significance of the pathways was evaluated using P values and a false discovery rate of<0.05. Bars in white
are pathways implicated across all three comparisons. Ratios are the number of significantly altered
metabolites in the pathway against the total number of metabolites in that pathway.

doi:10.1371/journal.pone.0119452.g003
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The untargeted approach correctly classified subjects with high specificity and sensitivity.

Multivariate models predicted cases of MCI with 97.6% accuracy and cases of AD with accura-

cies of 98.4% (from controls) and 98.7% (fromMCI). Within this field few metabolomics-

based models have achieved this level of predictive accuracy. Comparable accuracies (>90%)

have been achieved with human CSF or brain analysis [9,11,19,25] but studies analysing blood

plasma/serum either do not report multivariate models[23] or have had disappointing predic-

tive accuracies (~50%) [24].

The high predictive power of earlier CSF-based studies [9,11] is encouraging and leads to

optimism that novel metabolite-based CSF diagnostics can be developed (e.g. biomarkers or

disease signatures). The current study indicates that similar diagnostics based on blood plasma

are also a possibility. Any improvements to diagnosis or in identifying MCI patients at risk of

converting to AD would be significant progress, but if a less invasive approach (i.e. phlebotomy

versus lumbar puncture) could be employed then a more universal study of the risk of the pop-

ulation becomes possible in the future. There are still relatively few studies that have applied

metabolomics to biofluids from MCI and AD subjects [10,11,23–25] and there is a need to es-

tablish disease specific signatures that are reproducible across a number of populations. In this

regard we have identified some areas of human metabolism linked to MCI/AD.

Our HRMS metabolomics data performed extremely satisfactorily when interrogated by

metabolite pathway enrichment analysis. Only those included ions with assigned identities and

significantly between 2 or more groups were included. Stringent criteria (both p-value and

FDR lower than 0.05) were applied to identify the most profoundly affected pathways. This im-

plicated just 22 canonical biochemical pathways. Only 7 pathways were affected in stable MCI

patients compared with controls, perhaps reflecting the more subtle cognitive changes ob-

served in this condition. It was not entirely unsurprising that a greater number of biochemical

pathways were impacted in AD converters: 15 compared with controls, and 14 compared with

MCI.

Potentially the most exciting finding was that polyamine metabolism and L-arginine metab-

olism were the only two pathways impacted across all group comparisons. Two things were im-

mediately notable, firstly, that in all cases polyamine metabolism was more significantly

impacted than L-arginine metabolism; and secondly, that the two pathways are actually inter-

Table 1. Polyamine and L-Arginine metabolites identified by pathway analysis using Metacore. The table shows the % change in levels alongside
p values of putative metabolites. N/A-Not affected; NS-Not Significant.

Ctrl vs. MCI Ctrl vs. MCI_AD MCI vs. MCI_AD

% Change in MCI P-value % Change in MCI_AD P-value % Change in MCI_AD P-value

4-aminobutanal +9.97 0.027 -8.98 0.039 -17.23 0.00049

Creatine N/A NS +22.49 0.0015 +29.07 0.00036

GABA -87.00 0.04 -86.99 0.039 N/A NS

L-arginine +6.56 0.01 +1.65 NS +8.72 0.0075

L-ornithine -29.00 0.0016 -18.00 0.036 -15.14 NS

Methylthioadenosine -73.68 2.82e-05 -28.00 NS +63.41 0.001

N1 or N8-acetyl-spermidine -14.00 0.006 -7.80 NS +26.76 0.001

N1,N12-diacetlyspermine +10.25 1.76e-06 +10.74 1.28e-06 N/A NS

N-acetylputrescine +36.96 0.0001 +17.59 0.013 -13.96 NS

Putrescine +13.91 0.001 +2.10 NS +10.36 0.02

Spermidine -6.50 0.011 +3.22 NS +10.43 0.0009

Spermine +0.77 NS +21.72 0.004 +20.79 0.02

doi:10.1371/journal.pone.0119452.t001
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Fig 4. Changes in Polyamine and L-Arginine Metabolism. Pathway enrichment data indicates that Polyamine metabolism and L-arginine metabolism are
differentially affected in stable MCI subjects (a.) and MCI subjects converting to AD subjects (b.). Conversion to AD (b.) preferentially channels putrescine
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linked sharing common metabolite intermediates. The pathways are directly connected via the

urea cycle through the enzyme arginase which converts L-arginine to urea and L-ornithine

[26]. Furthermore, arginase appears to control the proliferation of neural cells by modulating

the number which enter the S-phase of the cell cycle [27]. Also, the survival of neuronal cells is

increased and apoptosis reduced upon administration of arginase [28]. The neural cell benefits

of arginase appear to be dependent on the depletion of L-arginine and the inhibition of ‘death

protein’ synthesis [29]. However, arginase also appears to exert its effects downstream through

the production of various polyamine molecules (i.e. putrescine, spermidine, spermine and their

acetylated derivatives) which influences the growth and death of neural cells [30]. Our results

indicate that in both stable MCI and in AD converters there is a significant increase in L-argi-

nine which is coupled with a decrease in L-ornithine. This disturbance in the arginase pathway

may potentially reflect changes in neurogenesis. Excitingly though, we have observed that Poly-

amine metabolism is differentially affected in stable MCI subjects and AD converting subjects

which provides a new insight. Our results suggest that in subjects converting to AD putrescine

is channelled towards the production of spermidines and spermines, whereas in stable MCI pu-

trescine has other fates (production of N-acetylputrescine or 4-aminobutanal). Downstream

from this there is a major decline in the production of the neurotransmitter γ-aminobutyric

acid (GABA) in stable MCI subjects but this does not deteriorate further in AD converting sub-

jects, indicating that GABA decline could be an early contributor to loss in cognitive function.

In stable MCI GABA decline is associated with the build-up of GABA precursor metabolites

(N-acetylputrescine and 4-aminobutanal) indicating that disruption/blockage of the pathway

might occur here. These precursor metabolites do not accumulate in AD converters most likely

because putrescine is preferentially metabolised to other polyamines.

The above findings are favourably supported by evidence from the literature. Firstly, brain

tissue from the frontal and occipital lobes of AD sufferers has significantly higher levels of

purescine, spermine and spermidine [31]. Secondly, elevated levels of Aβ peptides up-regulate

polyamine metabolism, increasing polyamine up-take and ornithine decarboxylase (ODC) ac-

tivity [32], and this appears to be due to elevated neurotoxicity [33]. Thirdly, the expression

levels of antizyme inhibitor proteins (AZIN’s) (which increase ODC activity and polyamine

concentrations) are elevated in AD [34]. Fourthly, the levels of methythioadenosine (the by-

product of spermidine and spermine production) are significantly raised in the CSF of MCI

and MCI-AD subjects [11]–although in the present we found methythioadenosine to be differ-

entially affected in the plasma of MCI and MCI-AD subjects. Finally, significant reductions in

GABA in AD patients have been reported in the temporal cortex [35] and AD transgenic mice

have lower GABA levels in the hippocampus and cortex [36,37]. It should be noted however

that reduced levels of GABA in AD are not a universal finding and this remains controversial

[10,38].

Apart from polyamine and L-arginine metabolism several other areas of metabolism were af-

fected in AD converters, and within the context of AD these appear to be both plausible and

relevant. Changes in cholesterol metabolism, glucose metabolism and prostaglandin metabo-

lism were indicated. Pathways involved in cholesterol metabolism: cholesterol and sphingolipid

transport, regulation of lipid metabolism and transport of intracellular cholesterol were exclu-

sively impacted in AD converting subjects. There is increasing epidemiological and molecular

towards the production of spermidines and spermines, whereas in stable MCI (a.) the fate of putrescine is the formation of N-acetylputrescine and
4-aminobutanal. Decline in the production of the neurotransmitter GABA occurs in stable MCI (a.) and is not further affected by conversion to AD. GABA
decline is associated with a build-up of its precursor metabolites, N-acetylputrescine and 4-aminobutanal. Arrows indicate increases ("), decreases (#) or
unchanged ($) levels of metabolites.

doi:10.1371/journal.pone.0119452.g004
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evidence indicating that cholesterol plays a role in the initiation and/or progression of AD

[39,40]. Evidence suggests that disturbed cholesterol metabolism and hypercholesterolemia are

important factors in amyloid plaque formation and tau hyperphosphorylation [39]. Also nota-

ble from pathway enrichment analysis were alterations in glycolysis and gluconeogenesis path-

ways. In recent years there have been a growing number of studies associating AD with type 2

diabetes [41,42]. In fact, a recent study of 2067 individuals indicated that glucose levels could

be a risk factor for dementia even in persons without diabetes [43]. Several potential mecha-

nisms have been suggested including acute and chronic hyperglycemia, insulin resistance and

microvascular disease within the central nervous system. Altered prostaglandin biosynthesis

suggests an underlying inflammatory response in subjects who later convert to AD. The cylcox-

ygenase (COX) enzymes involved in prostaglandin synthesis are the primary target of nonste-

roidal anti-inflammatory drugs. It has been surmised that long term use of these drugs may

reduce risk of AD onset [44]. The relationship appears to be complex but randomized con-

trolled prevention trial indicate that rate of cognitive decline is reduced in some cases [45].

This may be result of curbed COX-2 activity, which is normally increased during inflammation

producing more of the proinflammatory prostanoids. Furthermore, APP transgenic mice over-

expressing of COX-2 display increased amyloid beta plaque formation and greater cognitive

deficits [46,47]. Aspects of amino acid metabolism were also affected across subject groups.

These include L-arginine metabolism (already mentioned), but also lysine metabolism, trypto-

phan metabolism, and tyrosine metabolism. Disturbed lysine metabolism has been previously

reported in both MCI and AD subjects [24], but we found it to be only disturbed in stable MCI

subjects. Altered Tryptophan metabolism and tyrosine metabolism could reflect the importance

of these amino acids’ as neurotransmitters i.e. serotonin and noradrenaline/

dopamine, respectively.

Conclusion

This study has developed highly predictive models capable of distinguishing MCI subjects con-

verting to AD up to two years before formal clinical diagnosis. The predictive power of the

models is greater than any blood-based metabolomics approach developed thus far. The use of

bioinformatics tools to high quality HRMS metabolomics data provides unbiased biologically

relevant and meaningful results which are supported by the scientific literature. This investiga-

tion has highlighted specific changes in polyamine and L-arginine metabolism which are asso-

ciated with conversion to AD. There is a need to uncover how these metabolic changes develop

and whether this area of metabolism could be the targeted of new AD therapeutics. HRMS

metabolomics clearly shows potential for the development of new diagnostic tools for improv-

ing patient diagnosis which in the future could allow more stratified/personalised treatment

approaches at the memory clinic.

Supplementary information is available at PLOS ONE’s website
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