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Untargeted Metabolomics for Autism 
Spectrum Disorders: Current Status 
and Future Directions
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Autism spectrum disorders (ASDs) are a group of neurodevelopment disorders 

characterized by childhood onset deficits in social communication and interaction. 

Although the exact etiology of most cases of ASDs is unknown, a portion has been 

proposed to be associated with various metabolic abnormalities including mitochondrial 

dysfunction, disorders of cholesterol metabolism, and folate abnormalities. Targeted 

biochemical testing like plasma amino acid and acylcarnitine profiles have demonstrated 

limited utility in helping to diagnose and manage such patients. Untargeted metabolomics 

has emerged, however, as a promising tool in screening for underlying biochemical 

abnormalities and managing treatment and as a means of investigating possible novel 

biomarkers for the disorder. Here, we review the principles and methodology behind 

untargeted metabolomics, recent pilot studies utilizing this technology, and areas in which 

it may be integrated into the care of children with this disorder in the future.

Keywords: autism, untargeted metabolomics, inborn errors of metabolism, metabolome, mass spectrometry, 

nuclear magnetic resonance spectroscopy

INTRODUCTION

The term “autism spectrum disorder” (ASD) describes a clinical spectrum of neurodevelopment 
conditions characterized by deficits in social communication and social interaction with restricted, 
repetitive patterns of behavior, interests, or activities (1). Although these core features have been 
recognized for over seven decades (2), only recently have we begun to recognize the largely 
heterogeneous nature of this disorder, with patients exhibiting varying degrees of impairments, 
medical complications, and intellectual disability (ID). In the United States, ASDs are estimated to 
have a prevalence of around 16.8 per 1,000 children older than 8 years (1 in 59), although in some 
subpopulations, this figure can be as high as 29.3 per 1,000 children (3). Having a child with ASD 
was found to be associated with an extra $17,081 per year of additional costs to a family, including 
healthcare-associated costs, adaptive education, therapies, and family-coordinated services (4, 5). 
Not as easily measured, however, are the associated emotional and social stresses caregivers and 
family members encounter, often leading to depression, physical complaints, and declines in overall 
quality of life (6–8).

Because of the heterogeneity associated with ASD, tremendous efforts have been made to 
identify underlying mechanisms or markers for this complex set of disorders with limited success 
(Figure 1). Genetic variation, for instance, is thought to account for about 50% of the risk for ASD 
(9). While a portion of cases is thought to be due to common polymorphisms (10, 11), specific 
molecular diagnoses, like copy number variants or monogenic disorders, are, however, found 
in an estimated 30% to 40% of children with ASD, prompting the American College of Medical 
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Genetics  and  Genomics to recommend at least chromosomal 
microarray and fragile X testing as a first diagnostic step (12). A 
small portion of ASD cases also occurs in patients with known 
inborn errors of metabolism (IEMs) (13, 14). The discovery of 
this association and the potential opportunity for therapeutic 
intervention have prompted the renewed search for characteristic 
neurometabolic biomarkers to aid in early screening and 
diagnosis of patients.

At present, routine metabolic testing has been recommended 
for patients with autism only on the basis of concerning 
physical examination features or historical details like seizures, 
developmental regression, or acidosis, provided the child has 
passed the relevant state-mandated newborn screening (12, 
15). This is in contrast to recommendations from the American 
Academy of Pediatrics (16) in favor of an initial metabolic workup 
in patients with ID or global developmental delay (GDD), as 
these conditions are thought to be more likely of a metabolic 
nature. This dichotomous approach has raised some concerns 
including difficulties differentiating (17) the early signs of an 
isolated ASD from ID/GDD and the paucity of medical providers 
comfortable with recognizing the signs of an underlying IEM. 
The identification and use of a specific biomarker would 
therefore help differentiate these patients and also assist in 
streamlining the diagnostic process. One of the newest and most 
promising techniques available for identifying such biomarkers 
is untargeted metabolomics. Clinical uses of this technology have 
grown steadily over the past decade; however, its application 
to the study of autism remains limited for a variety of reasons. 
Given our current understanding of the various underlying 
causes, ASD appears to be an ideal disease state in which to apply 
this technology. Here, we describe the current neurometabolic 
framework of ASDs, outline the process and scope of untargeted 
metabolomics, survey the recent applications of untargeted 

metabolomics in individuals with ASD, and suggest ways in 
which this technology may expand in the future.

METABOLOMIC PROFILING—A PRIMER

The study of metabolomics refers to the systematic identification 
and quantitation of all metabolites in a given organism or 
biological sample (18). This collection of molecules, known as the 
metabolome, is thought to directly reflect the biochemical activity 
of the study system at a specific point in time. Metabolomic 
profiling is not a new concept, however. Archibald Garrod, for 
instance, first sought to describe the biochemical features of 
alkaptonuria in urine over a century ago (19). Decades later, 
Dalgliesh et al. (20), Gates and Sweeley (21), Horning and 
Horning (22) and Devaux et al. (23) were able to describe the 
characteristic profiles of various urinary and blood metabolites 
in the early 1960s–1970s using gas chromatography (GC) 
methods. In the last decade, however, technologic advancements 
in chromatographic and analytic techniques have allowed for 
a tremendous growth in the field of metabolomics, making it 
possible to identify hundreds, and sometimes thousands, of 
unique human analytes, leading to unprecedented insight into 
countless biochemical pathways (Figure 2).

Technically, metabolomic data are usually generated by 
use of nuclear magnetic resonance (NMR) spectroscopy and/
or mass spectrometry (MS) (24). Nuclear magnetic resonance 
spectroscopy uses radiofrequency (RF) waves to generate an 
electromagnetic field around a biological sample. Variations 
in this electromagnetic field lead to differential energy 
absorption and re-emission resulting in a spectrum of emitted 
RF waves corresponding to each metabolite (25). Although less 
commonly used for human samples, NMR has the advantage 
of minimal sample preparation and being able to not only 

FIGURE 1 | Proposed etiologies for autism spectrum disorders. Multiple factors have been proposed to contribute to the development of autism spectrum disorder, 

including fetal exposures, childhood exposures, and underlying genetic causes that range from “risk” alleles to known Mendelian disorders and inborn errors of 

metabolism. In the majority of cases, however, an underlying etiology is not identified.
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measure metabolite concentration but also identify the chemical 
structure. Mass spectrometry, on the other hand, makes use of 
the isolation of gas-phase ions based on their mass-to-charge 
ratio (m/z) (26). A  sample is first separated by use of either a 
liquid chromatography (LC) or GC column and then ionized (27, 
28). Individual peaks are generated for each metabolite with peak 
intensities corresponding to its relative concentration within the 
sample. Mass spectrometry–based methods have the advantage of 
greater sensitivity when compared to NMR, allowing for a larger 
number of measurable metabolites (29). Mass spectrometry 
protocols and analytical techniques, however, may vary greatly 
from one laboratory to another, making standardization and 
reproducibility of results more difficult when compared to NMR.

Metabolomic studies may be conducted as either targeted 
assays, where only a specific subset of metabolites is measured, or 
untargeted, where as many metabolites as possible are measured 
without filtering or bias. Both methods have their advantages 
and disadvantages, with the choice of test usually based upon 
experimental design and the specific hypothesis being tested 
(30). Targeted metabolomics, for instance, may be more desirable 
for the study of a single biochemical pathway where analysis 
can be focused on only a small group of molecules of interest. 
This approach has the advantage of limiting the analytical 
and statistical burden of an experiment, although one risks 
missing perturbations of secondarily interconnected pathways. 
Untargeted metabolomics, on the other hand, has the advantage 
of revealing unique and previously unrecognized changes in 
metabolites and enzymatic pathways, although the quantity and 
complexity of experimental data can be challenging (31, 32).

Regardless of the technique, however, it is now theoretically 
possible to perform metabolomic profiling on almost any tissue, 
opening up a wealth of potential biochemical information (33). 
Naturally, metabolomic profiling has found extensive use in the 
diagnosis and treatment of IEMs, although the test has also helped 
establish new or previously unrecognized aspects of several other 
genetic conditions, as well (34–36). In addition, metabolomic 
profiling has also been used to study to a broader variety of 
human diseases including obesity and insulin resistance (37, 38), 
myocardial ischemia and other models of cardiovascular disease 
(39, 40), hepatocellular disease (41, 42), and malignancies (43, 44).

AUTISM AND INBORN ERRORS OF 
METABOLISM

Inborn errors of metabolism are themselves rare diagnoses with 
combined incidences between 1 in 800 and 1 in 2,500 individuals 
(45–48). It is estimated that only up to 5% (49, 50) of children 
with ASD will be found to have an IEM, although these disorders 
are important to consider when confronting a first-time patient. 
Over the years, many different case reports have attempted to 
link various IEMs with the development of autism; however, it is 
important to keep in mind the refinements that have been made 
over time to the definition of ASD in contrast to other behavioral 
disorders, developmental delay, and ID. As such, many of these 
earlier associations have since been shown to be tenuous (51) or 
at least only single cases, and we therefore restrict our discussion 
here to disorders in which multiple pieces of evidence support 

FIGURE 2 | Simplified process of metabolomic profiling. Samples are collected and undergo an initial processing step that may include homogenization and/

or centrifugation. This is followed by analysis via nuclear magnetic resonance or mass spectrometry techniques from which raw spectral data are collected. Raw 

data are then filtered, normalized, and scaled to ensure that analyte peaks may be accurately interpreted. Chemical compound libraries are utilized for accurate 

compound identification. The resultant data may then be plotted or reported in a variety of ways including heat maps, pathway enrichment maps, and scatter plots.
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the link between the biochemical findings and the observed 
clinical phenotype of ASD.

Prior to the advent of universal newborn screening in the 
United States, many children with these disorders may have 
initially come to medical attention for “autistic” features and 
developmental delay. With screening protocols, this is no longer 
the case, although several IEMs still predispose patients to ASD, 
despite early identification and adequate treatment (52, 53). We 
previously demonstrated that untargeted metabolomics may 
be used to identify many of the diagnostic and even secondary 
changes in downstream analytes (34). This approach also allows 
for the complete elucidation of abnormal biochemical pathways 
and in some cases can offer clues to fundamental abnormalities 
that may lead to an autistic phenotype in all children.

One example of a known IEM associated with ASD is 
phenylketonuria (PKU; OMIM 261600), a disorder due to 
defects in the phenylalanine hydroxylase enzyme system. 
Children with “classical” PKU have little to no enzyme activity 
and as a result may have serum phenylalanine concentrations 
many orders of magnitude greater than unaffected individuals. 
Metabolomic studies on patients with PKU have demonstrated 
elevated serum levels of phenylalanine derivatives, including 
phenylpyruvate, phenylacetate, phenyllactate, mandelic acid, 
4-hydroxyphenylacetic acid, and several others (54, 55). It 
remains unclear which of the abnormal analytes, however, truly 
lead to the toxic effects observed in patients. Based on urine 
studies, compounds like phenylpyruvate and phenylacetate have 
been proposed as more efficient markers for disease than direct 
measurement of phenylalanine, given ease of obtaining urine 
samples and a low false-negative diagnostic rate (54). Along 
with possible direct toxicity, elevated phenylalanine levels are 
thought to decrease the cerebrospinal fluid (CSF) concentrations 
of tyrosine and its downstream products like serotonin and 
dopamine. This hyperphenylalaninemia is also thought to inhibit 
the transport of large neutral amino acids across the brain, 
decrease protein synthesis within the brain, and increase myelin 
turnover with eventual hypomyelination, all processes that may 
or may not contribute to the development of autism (56, 57).

Without early treatment, PKU leads to severe intellectual 
impairment along with physical features like fair skin, spastic 
gait, and microcephaly (58). While the incidence of PKU has 
remained steady at around 1 in 11,400 live births in the United 
States (59), newborn screening and the early institution of 
various treatment modalities have greatly reduced the number 
of severely affected individuals. Prior to newborn screening, 
up to 21% (60) of cases of “autism” were later found to have 
biochemical evidence of untreated PKU, and in a recent study, 
about 5.7% of untreated patients were diagnosed with ASD 
(61). Overall, however, in countries where universal newborn 
screening has rendered “symptomatic” PKU almost nonexistent, 
it is estimated that only 0.7% (62) of patients with a diagnosis 
of PKU will meet the criteria for ASD. While this figure is 
significantly lower than previous estimates, it is still higher than 
age-matched controls, highlighting a possible link between the 
biochemical abnormalities in PKU and a susceptibility to ASD.

Autistic features also appear to be a commonly observed 
in Smith–Lemli–Opitz syndrome (SLOS; OMIM 270400), an 

autosomal recessive disorder of cholesterol biosynthesis occurring 
in approximately 1:20,000 to 1:40,000 live births (63–66). Affected 
individuals are deficient in the enzyme 7-dehydrocholesterol 
reductase (DHCR7; OMIM 602858), the final enzyme in the 
synthesis of cholesterol, and as a result exhibit abnormally high 
serum concentrations of 7-dehydrocholesterol and its isomer 
8-dehydrocholesterol (67). Total cholesterol levels appear to 
correlate inversely to the severity of symptoms, although in most 
patients there is still usually some detectable cholesterol in serum. 
Cholesterol levels are, however, severely decreased within the 
brain parenchyma where cholesterol is known to play important 
roles in embryonic and fetal brain development, myelination, 
and ongoing synthesis of neurosteroids (68–71). Studies suggest 
decreased central nervous system (CNS) cholesterol as the cause 
of the neurodevelopment manifestations of SLOS, as well as the 
high incidence of ASDs in this population (72). Approximately 
50% of children with SLOS also fulfill clinical criteria for a 
diagnosis of an ASD, suggesting a common pathomechanism 
between the two disorders (52). Interestingly, this hypothesis is 
also supported by the finding of significant hypocholesterolemia 
in up to 20% of children with isolated ASD (73).

The biochemical defect known as adenylosuccinate lyase 
(ADSL) deficiency (OMIM 103050) has also been described 
as a disease particularly associated with the development of 
ASD. Although rare, with an estimated prevalence of only 1 in 
1,240,710 individuals (74), approximately 30% (75) of patients 
with ADSL deficiency exhibit autistic features along with other 
findings like developmental delay, encephalopathy, seizures, 
and growth retardation. The disorder is caused by an autosomal 
recessive defect in ADSL (OMIM 608222), which encodes the 
enzyme ADSL involved in the de novo synthesis of purines. 
The  disease is characterized biochemically by the presence of 
the compounds succinylamino-imidazole carboxamide riboside 
(SAICA riboside) and succinyladenosine (S-Ado) in the CSF, 
plasma, and urine of affected patients (76, 77). Although both 
compounds are easily assayed through targeted testing, ADSL 
deficiency is easily identified on untargeted metabolomics by 
strikingly high levels of S-Ado in both plasma and CSF (78). 
Accumulated SAICA riboside is thought to be the primary 
neurotoxicant involved in this disorder, based on animal models 
(79). Deficiencies in ADSL are also believed to lead to decreased 
purine levels within the CNS, although the exact physiologic 
consequences of this are somewhat unclear. There is also some 
evidence that ADSL deficiency may lead to altered cerebral 
energy metabolism through the interactions between fumarate 
and AMP with purines (80).

Finally, much insight into the underlying mechanism of 
ASD may also be gained from the group of disorders known 
as cerebral creatine deficiency syndromes (CCDSs). This group 
of abnormalities comprised the three enzymatic defects in the 
synthesis of creatine:arginine:glycine amidinotransferase (AGAT) 
deficiency (OMIM 612718), guanidinoacetate methyltransferase 
(GAMT) deficiency (OMIM 612736), and SLC6A8 deficiency 
(OMIM 300352). The creatine:phosphocreatine system plays 
an essential role in ongoing energy metabolism by serving as a 
reservoir for phosphate moieties in their transfer back and forth 
from ATP to ADP (81). In humans, creatine may be either taken 

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org


Untargeted Metabolomics in AutismGlinton and Elsea

5 September 2019 | Volume 10 | Article 647Frontiers in Psychiatry | www.frontiersin.org

in through the diet or synthesized de novo from precursors via 
the activity of the enzymes AGAT and GAMT in tissues like the 
kidney pancreas and liver. The molecule may then be transported 
into its target tissues via the action of its sodium chloride–
dependent channel (SLC6A8). Genetic abnormalities in any of 
these three components lead to a severe deficiency of creatine 
within the brain parenchyma, with the diagnostic hallmark of 
the disease being an almost absent creatine peak on 1H NMR 
spectroscopy. While it remains unsettled as to what proportion 
of creatine within the fetal brain is imported versus synthesis 
natively, it is clear that this small molecule plays an integral part 
in ongoing neurodevelopment (82).

Clinically, patients with CCDS exhibit a combination of 
developmental delay particularly in expressive language, ID, and 
autistic behaviors (83). The incidence of autistic features appears 
to vary for each of the three disorders. Approximately 78% to 
95% of patients with GAMT deficiency have been reported to 
have autistic features, while only 41% of patients with SLC6A8 
deficiency were felt to exhibit the same behaviors (84–86). As the 
rarest of the CCDS, accurate estimations of the occurrence of ASD 
in AGAT deficiency are difficult, although 4 of 16 total patients 
(25%) were reported to have features of autism in one recent 
study (87). The phenotype is thought to arise due to deficits in 
cerebral energy production during and after fetal development, 
the accumulation of the potentially neurotoxic guanidinoacetate 
and other guanidino compounds, and possible abnormalities 
in ongoing neural signaling associated with abnormalities 
in the creatine–phosphocreatine system (88). Interestingly, 
treatment of patients with creatine supplementation and arginine 
restriction in the case of GAMT patients does seem to improve 
certain aspects of their phenotype, although not all concerns are 
eliminated. GAMT patients, for instance, do experience improved 
seizure control and a decrease in movement disorder symptoms, 
although severe ID remains. Patients with AGAT deficiencies 
do appear to fare better with some catch-up development and 
even prevention of symptoms entirely in a prenatally known case. 
Creatine supplementation does not, however, appear effective for 
patients with SLC6A8 deficiency, as increased plasma levels are 
not able to compensate entirely for abnormal transport across the 
blood-brain barrier.

Other IEMs have been associated with an increased incidence 
of ASD. These include so-called classical disorders like propionic 
academia (OMIM 606054) (53), various urea cycle disorders 
(89), and Sanfilippo syndrome (OMIM 252900, 252920) (90), as 
well as rarer disorders like succinic semialdehyde dehydrogenase 
deficiency (OMIM 271980) (91) and branched-chain ketoacid 
dehydrogenase kinase deficiency (OMIM 614901) (92).

AUTISM AND NONSPECIFIC METABOLIC 
DISTURBANCES

While known IEMs are informative as to the development of ASD 
in a subset of patients, there are also other nonspecific metabolic 
abnormalities that have been explored within this population. 
Given that the metabolome of different body compartments 
may consist of hundreds to thousands of compounds, subtle 

changes identified in a clinical condition can also lead to clues 
to its mechanism or even treatment. It is important to mention 
briefly the emerging work (93, 94) on interactions between 
gut microbiota and the development or even exacerbation of 
autistic symptoms. It is now well recognized that humans exist in 
constant symbiosis with thousands of species of microorganisms. 
Microorganisms have been postulated to help defend against 
the colonization of pathogenic species and aid in the synthesis 
of some vitamins and nutrients, as well as help educate the 
nascent immune system (95–97). Evidence has begun to emerge, 
however, on the role these microorganisms, particularly in the 
large intestine, may play in neurodevelopment and behavioral 
phenotypes with dysbiosis in particular, proposed as a possible 
mechanism for the development ASD (98–101). Both targeted 
and untargeted analyses have been used to identify microbiome-
associated metabolites in fecal samples (102, 103), as well as 
effects on plasma/serum (104, 105) lending further evidence 
to the importance of these organisms. Fecal concentrations of 
compounds like isopropanol, p-cresol (103), and various short-
chain fatty acids (106) have been demonstrated to be altered in 
patients with ASD. Similarly, human plasma studies in patients 
with ASD have demonstrated abnormal branched-chain amino 
acid levels (105), while transfection of mice with microorganisms 
from these individuals has also led to behavioral changes in 
mice in multiple studies (104, 107). This particular area of 
research has grown exponentially in the last decade and will only 
continue to grow further in the future as assay techniques and 
methodologies improve.

Mitochondrial dysfunction has been explored as a possible 
cause or contributor to an autistic phenotype for several decades. 
Coleman and Blass (108) first identified the presence of lactic 
acidosis in a small set of patients in 1985, with Lombard (109) 
later proposing that ASD may be at least partially due to abnormal 
neuronal oxidative phosphorylation. Since that time, numerous 
studies have emerged attempting to further delineate the exact 
role of mitochondria in ASD, with several excellent reviews and 
meta-analyses on this single topic alone (110, 111). Mitochondrial 
dysfunction would appear to be the ideal candidate for a possible 
cause for ASD given the critical role mitochondria play in ATP 
production, calcium homeostasis, and synaptic plasticity within 
neurons (112, 113). Mitochondrial ATP production primarily 
involves the five respiratory complexes and two electron carriers 
that collectively make up the electron transport chain: NADH 
dehydrogenase, succinate dehydrogenase, coenzyme Q10 
(CoQ10)–cytochrome C reductase, cytochrome C oxidase, ATP 
synthase, and the electron carriers CoQ10 and cytochrome C. In 
such a highly regulated and intricate process, it is easy to imagine 
that any number of molecular changes would have significant 
effects on overall energy production and neural function.

Mitochondrial dysfunction has been identified in a subset 
of individuals with ASD utilizing biochemical markers, clinical 
criteria, direct enzyme assay, and molecular methods. Oliveira 
and colleagues (114), for example, found that 20.3% of patients 
in their cohort had elevated plasma lactate levels. Eleven of 
these patients eventually underwent muscle biopsy, and five of 
the patients (7.2%) exhibited clearly deficient respiratory chain 
enzyme activity, most commonly in complexes I, IV, and V. 
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Aside from two patients with suggestive family histories, these 
patients were otherwise indistinguishable from the remainder 
of the cohort with no seizures, loss of motor skills, or abnormal 
physical examinations. This lack of physical findings or suggestive 
medical histories, however, has been challenged by a similar later 
study by Weissman et al. (115). That group identified 25 patients 
with autism and either molecular or enzymatic evidence of a 
primary mitochondrial disorder, and all of the patients had met 
clinical criteria for “probably or definite” mitochondrial disease 
by the Modified Walker Criteria or the Mitochondrial Disease 
Criteria. In this cohort, patients exhibited a number of systemic 
complications including seizures (20%), exercise intolerance 
(68%), gastrointestinal dysfunction (64%), and gross motor delays 
(32%). Twenty of the patients (80%) had confirmed respiratory 
chain complex deficiencies on direct enzyme analysis, with 16 
patients having complex I defects, in particular. Two patients had 
likely pathogenic mtDNA point mutations (A3397G, A4295G), 
while a further four patients had variants of uncertain clinical 
significance. Other cases of pathogenic mitochondrial variants 
have appeared sporadically throughout the literature. Graf et al. 
(116), for instance, described a family affected by the variant 
G8363A, which encodes the mitochondrial transfer RNALys. The 
variant was found in a female child with a clinical diagnosis of 
Leigh syndrome and in her brother, who was otherwise healthy 
aside from a diagnosis of autism. In this case, the male patient 
was found to have a lower level of heteroplasmy than his more 
severely affected sister hinting at a likely causative role for this 
variant in the development of his autism. Pons et al. (117) also 
identified the MELAS-associated mtDNA variant, A3243G, in 
two out of five individuals with ASD. Of the other three patients 
in the study, one patient had evidence of mitochondrial depletion 
on muscle biopsy, while the other two had mothers known to 
carry the A3243G variant. The authors speculated that, given 
variations in heteroplasmy, these subjects may have had clinically 
undetectable levels in plasma, but higher levels in the brain. There 
are also reports of differing levels in mtDNA expression, possible 
mitochondrial depletion, and deletions/copy number variations 
in small cohorts (118, 119). Investigations into mitochondrial 
single-nucleotide polymorphisms as susceptibility loci have also 
taken place, although these have yielded conflicting results over 
time (120–123).

Mitochondrial dysfunction, when present, appears to be 
localized to specific regions in the brains of affected patients. 
A 2011 study on postmortem brain samples, for instance, 
demonstrated low electron transport chain (ETC) activity levels 
in the cerebellum, frontal and temporal cortices of younger 
subjects (aged 4–10 years) when compared to age-matched 
controls (124). In this case, complexes III and V activity levels 
were statistically decreased in the cerebellum, while complex I 
was decreased in the frontal cortex, and complexes II, III, and 
V were decreased in the temporal cortex. A 2013 study by the 
same group confirmed deficient complex I activity in the frontal 
cortex, although complex V was also significantly affected in 
these cases (106). Deficient ETC activity was also confirmed in 
temporal lobe samples by Tang and colleagues (125), although in 
this case the group found significantly decreased complexes I and 
IV activities when patients were compared to controls.

Oxidative phosphorylation is just one of many functions of 
mitochondria thought to be critical to neural development. There 
has also emerged significant work on the role of oxidative stress 
on the development of autism. Reactive oxygen species (ROS), 
generated either endogenously or through exposure to toxic 
environmental substances, may cause significant cellular damage 
if not disposed of efficiently through the body’s antioxidant 
systems. These include enzymes like superoxide dismutase and 
catalase and nonenzymatic compounds like glutathione (GSH). 
Some posit that ASD may emerge when the balance between these 
two systems is somehow upset either through the cumulative 
buildup of ROS or through genetic predispositions in the form of 
molecular defects in the antioxidant system. Several studies have, 
for instance, confirmed the presence of increased oxidative stress 
in plasma in patients with ASD (126). A 2012 meta-analysis, in 
fact, demonstrated that on average patients with ASD had a 27% 
lower plasma concentration of GSH with corresponding 45% 
higher plasma levels of reduced GSH (GSSG) when compared 
to health controls (127). There are also studies on the sometimes 
characteristic patterns of oxidative damage within the brain 
tissue of autistic patients. These experiments have relied on direct 
GSH and GSSG measurements, as well as the detection of various 
“marker” compounds for oxidative stress like 3-nitrotyrosine 
(3-NT), carboxyethyl pyrrole, and 8-hydroxydeoxyguanosine 
(8-OH-dG) (128–130). Glutathione levels were found to be 
34.2%, and 44.6% decreased in the cerebellum and temporal 
cortices, respectively, when compared to controls (131, 132). 
Interestingly, relatively little change was seen in the prefrontal 
cortex of patients, an observation that was also confirmed in a 
later direct MRS study (133). Levels of 3-NT and 8-OH-dG were 
similarly elevated within the cerebellum (129, 130, 133).

Defects in carnitine biosynthesis have been postulated to 
predispose individuals to nonsyndromic autism (134). Carnitine 
plays a variety of physiologic roles, but most important is its 
ability to help shuttle long-chain fatty acids into mitochondria 
for β-oxidation. In humans, approximately 75% of carnitine 
is obtained from the diet, with the remainder synthesized 
endogenously from the amino acids lysine and methionine (135). 
Carnitine deficiency has been associated with complications 
like cardiomyopathy and myopathy, and decreased carnitine 
levels have been previously described in a subset of children 
with ASD (136). In a 2012 study by Celestino-Soper et al. (137), 
carnitine biosynthesis defects were linked to an increased risk 
for ASD among males. Patients were found to carry a deletion 
in TMLHE (OMIM 300777), which encodes 6-N-trimethyllysine 
dioxygenase, the first enzyme in carnitine biosynthesis. The 
deletion is estimated to occur in approximately 1 in 350 males 
of European descent; however, it is also almost three times more 
common in families with more than one male diagnosed with 
ASD. Interestingly, the affected patients did not have evidence 
of ongoing systemic carnitine deficiencies, although plasma 
and urine studies were able to clearly demonstrate abnormal 
carnitine metabolites. It remains unclear whether or not TMLHE 
deficiency acts as a risk factor alone, or if there are other as yet 
unidentified toxic metabolites that build up as a result of this 
particular enzyme deficiency. There continues to be ongoing 
interest in this possible contributor for ASD, however, because of 
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the potential for an easy and inexpensive treatment in the form 
of l-carnitine supplementation.

Finally, there has long been an association observed between 
ASD and immune dysfunction; however, the exact nature of this 
relationship remains complex (138–141). Although many of the 
earlier studies in this area were limited to “patient-reported” 
symptoms only, more recent studies have relied instead on more 
careful and systematic review of medical records instead. As a 
result, a greater evidence base suggests a relationship between 
the pathogenesis of ASD and prenatal and postnatal immune 
dysregulation. Atladottir et al. (142), for instance, described 
increased rates of rheumatoid arthritis and celiac disease in 
mothers of children with ASD and a higher rate of type 1 
diabetes mellitus in both mothers and fathers of children with 
ASD. Immune dysfunction has also been directly demonstrated 
in individuals with ASD themselves. Careaga et al. (143) showed, 
for example, that the peripheral blood mononuclear cells of boys 
with ASD exhibited characteristic immune responses based 
on lipopolysaccharide or phytohemagglutinin stimulation. 
Abnormal neuroinflammatory changes have also been 
demonstrated, including prominent microglia activation and 
increased inflammatory cytokine and chemokine production 
(144–146). While most metabolomic studies are unable to assay 
compounds as large as cytokines, chemokine, or antibodies, 
immune responses may lead to measurable alterations in amino 
acids metabolites, glycolytic, gluconeogenic, oxidative stress, 
and purine intermediates (147). This complex interplay between 
immune dysregulation and the development of ASD continues 
to be an active area of ongoing research, and clearly, we are only 
now beginning to recognize the extent to which other physiologic 
processes are affected as well.

TOWARDS BIOMARKERS FOR AUTISM—
THE CLINICAL APPLICATION OF 
METABOLOMICS

The variety of metabolic disturbances identified in patients 
appears to suggest that ASDs may represent a common endpoint 
for multiple different abnormal neuronal pathways. The question 
remains: To what extent can any one test or biomarker adequately 
assay all of the individual pathways involved in such pathways 
and how can that information be best used to guide individual 
risk or even treatment? The answer to this question may, in fact, 
lie in the use of untargeted metabolomics in patients with ASDs. 
The idea of broadly surveying the metabolic environment of 
patients is certainly not new, despite the changes in terminology 
over the years. Jaeken and Van den Berghe (76), for instance, first 
performed broad metabolic testing on three children with severe 
developmental delay and autistic features in 1984. The children 
all had extensive biochemical testing performed including serum 
ammonia, pyruvate, lactate, uric acid, arylsulfatase A, phytanic 
acid and amino acids, urine amino acids, organic acids, and 
mucopolysaccharides, along with CSF amino acids, sugars, and 
inorganic phosphate. The subjects were all eventually diagnosed 
with ADSL deficiency, thus demonstrating early on the kind of 

utility such expansive analyses can have in this population. While 
large-scale, untargeted metabolomic studies remain relatively 
uncommon, there have been small-scale attempts to prove 
the applicability of this strategy. We highlight in Table 1 the 
studies published thus far that overall paint a promising picture 
for the application of this technology. One caveat that must be 
considered, however, is that many of these studies did not take 
into account differences in patients’ diets, medications, and 
supplement use, which may or may not have been contributors 
to the findings in several cases.

Urine Untargeted Metabolomics
Many of the original metabolomic studies were conducted on 
urine samples, understandably due to its readily availability, 
particularly in children with an underlying neuropsychiatric 
disorder. While some of these studies have yielded particularly 
compelling results, as a whole, clearly consistent and conclusive 
findings have not been shown. Yap et al. (148) described 
characteristic perturbations in the urine of 39 children with 
autism when compared to 28 of their phenotypically normal 
siblings. Proton NMR analysis was able to identify several dozen 
compounds and revealed that the urine of subjects contained lower 
levels of hippurate and phenylacetylglutamine (PAG) with higher 
levels of dimethylamine (DMA). Nicotinic acid metabolites like 
N-methyl nicotinic acid, N-methyl nicotinamide, and N-methyl-
2-pyridone-5-carboxamide were also increased, as were the 
small molecules taurine and succinate. The group speculated 
that the observed metabolic abnormalities may have been due to 
gut microbiota in the case of hippurate and PAG and abnormal 
energy metabolism in the case of succinate. Given its role in the 
tryptophan-tryptophan-serotonin-melatonin pathway, the group 
also speculated that the abnormalities in nicotinic acid and its 
metabolites may be a contributor to the disordered sleep pattern 
observed in autistic patients.

These findings were somewhat limited by the overlap of 
many of the spectral peaks, which presumably led to a relatively 
small number of unique compounds that could be identified. To 
mitigate this, Mavel et al. (150) expanded on the use of NMR 
by performing two-dimensional studies on urine instead. The 
technique called heteronuclear single quantum coherence (2D-
NMR HSQC) uses both 1H NMR and 13C NMR to generate a two-
dimensional metabolite map with each nucleus corresponding 
to an axis. This decreases the likelihood of spectral overlap and 
results in the identification of a larger number of metabolites 
than standard one-dimensional NMR. Using this, the researchers 
were able to identify more than 150 metabolites in the urine of 
30 children with autism and 28 healthy controls. There were once 
again increased levels of taurine and succinate observed; however, 
other molecules like glycine and β-alanine were also elevated 
when subjects were compared to controls. In contrast to the work 
by Yap et al (148), there were no statistical differences between 
the two groups in terms of glutamate, DMA, trimethylamine 
N-oxide, or hippurate.

Gas chromatography–MS studies on urine samples have 
also been carried out by groups both in the US and Europe in 
rapid succession between 2012 and 2014. The first of these was 
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TABLE 1 | Previous studies utilizing untargeted metabolomics in subjects with autism spectrum disorders.

Study Reference Study Population Age 

Range 

(y)

Tissue Study Method Notable Metabolites

Increased Decreased

Yap et al., (148) 39 children with ASD 3–9 Urine 1H NMR Dimethylamine, taurine, succinic acid, 

N-methylnicotinic acid, N-methylnicotinamide, 

N-methyl-2-pyridone-5-carboxamide

Hippurate, phenylacetylglutamine

28 “nonautistic” siblings

34 age-matched controls

Ming et al., (149) 48 children with ASD 6–14 Urine UPLC–MS/MS and 

GC–MS

trans-Urocanate, glutaroylcarnitine, 

3-methylglutaroylcarnitine

Glycine, serine, threonine, alanine, β-alanine, histidine, 

taurine, carnosine, uric acid53 age-matched controls

Mavel et al., (150) 30 children with ASD 6–14 Urine 1H-13C NMR Glycine, β-alanine, taurine, succinic acid Creatine, 3-methylhistidine

28 age-matched controls 6–9

Emond et al., (151) 26 children with ASD 6–14 Urine GC–MS Succinic acid, glycolic acid Hippurate, phosphate, palmitate, stearate, 

3-methyladipate24 age-matched controls 6–9

Noto et al., (160) 21 children with ASD 4–16 Urine GC–MS Glycolic acid, homovanillic acid, 

3,4-dihydroxybutyric acid, tryptophan

Fructose, 1,2,3-butanetriol, propylene glycol

21 “nonautistic” siblings 4–17

Dieme et al., (152) 30 children with ASD 5–12 Urine 1H NMR, 1H-13C HSQC 

NMR, and LC-HRMS

N-acetylarginine, indoxyl, indoxylsulfate, dihydroxy-

1H-indole glucuronide I

Methylguanidine, desaminotyrosine, dihydrouracil

32 age-matched controls 4–13

Bitar et al., (153) 40 children with ASD 3–15 Urine 1H NMR, 1H-13C NMR, 

and LC-HRMS

Phosphoserine, glutamic acid, nicotinamide 

ribotide, trigonelline, 5-amino-imidazole-4-

carboxamide, riboflavin, glycerol-3-phosphate, 

chalice acid, 

Threonine, creatine, serine, N-acetylphenylalanine, 

tyrosine, hydroxybenzoic acid, hydroxyproline, 

urocanic acid, cysteic acid, 2-hydroxybutyric 

acid, citric acid, guanine, N-amidino aspartic acid, 

acetylcarnitine, methyl acetoacetic acid, 

40 age-matched controls 3–15

Kuwabara et al., 

(154)

25 individuals with ASD 23–39 Plasma CE-TOFMS Arginine, taurine 5-Oxoproline, lactic acid

28 age-matched controls 24–36

West et al., (155) 52 children with ASD 6–9 Plasma LC–MS and GC–MS Aspartate, serine, DHEA-S, glutaric acid, succinic 

acid

Citrate, creatinine, isoleucine, hydroxyphenyllactate, 

glutamate30 age-matched controls

Wang et., al., (156) 173 children with ASD 3–6 Plasma UPLC/Q-TOF–MS/MS Decanoylcarnitine, pregnanetriol Sphingosine-1-phosphate, docosahexaenoic acid, 

adrenic acid, uric acid163 age-matched controls

Rangel-Huerta 

et al., (157)

20 children with ASD 2–6 Plasma UPLC–MS/MS 3-Indoxyl sulfate, 6-hydroxyindole 

sulfate, tryptophan, 5-bromotryptophan, 

gamma-glutamylmethionine, methionine, 

ursodeoxycholate, cortisone, sphingomyelins 

d182, kynurenine, 1-methylnicotinamide, 

choline phosphate, 4-methyl-2-oxopetane, 

decanoylcarnitine

Behenate, sebacate decanedione, arachidate, 

glutamate, aspartate, orotate, 2-keto-3-

deoxyglutamate, galactitol, N-acetyl-aspartyl 

glutamate, fructose

30 age-matched controls 2–6

Graham et al., 

(158)

11 individuals with ASD 4–46 Brain LC-LTQ Orbitrap MS N-carboxyethyl-γ-aminobutyric acid, 

5,6-dihydrouridine, 3-methoxytyramine

N/A

11 age-matched controls 4–33

Kurochkin et al., 

(159)

32 individuals with ASD 2–60 Brain UPLC–MS/MS Glutathione disulfide, 5-oxoproline Glutathione, L-γ-glutamyl-cysteine, L-cysteinyl-glycine, 

40 age-matched controls 0–62
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a larger study performed on 48 children subjects and 53 age-
matched controls by Ming et al. (149). Using a combination 
of tandem ultrahigh-performance LC/tandem MS (UPLC/
MS/MS) and GC/MS, the group identified 82 metabolites 
that were significantly altered in patients with autism. These 
included decreased glycine, serine, threonine, alanine, 
β-alanine, histidine, and taurine, along with elevated trans-
urocanate, glutaroylcarnitine, and 3-methylglutaroylcarnitine. 
Interestingly, both of the antioxidants, carnosine and 
uric acid, were also relatively decreased, while there were 
once again various metabolites associated with altered gut 
microbiota identified.

This was followed closely by a 2013 study led by Francois 
Emond et al. (151) describing increased concentrations of 
succinate and glycolate with decreased hippurate, phosphate, 
and several other small molecules. A third successive study 
from a group out of Italy (160) later also found statistically 
significant elevations glycolic acid, homovanillic acid, 
3,4-dihydroxybutyric acid, and tryptophan. Elevations 
in glycolate have been associated with primary oxaluria 
type I; however, the phenomenon was also believed to be 
associated with yeast overgrowth. Both homovanillic acid and 
tryptophan, meanwhile, are metabolites of neurotransmitters 
suggesting once again the integral role of these molecules in 
psychiatric disorders. Finally, 3,4-dihydroxybutyric acid may 
be a normal component of human urine, although increased 
levels have been observed in cases of succinic semialdehyde 
dehydrogenase deficiency, a disorder in which patients may 
also present with autistic features (91).

Recently, in an attempt to fully explore the urine 
metabolome, Dieme et al. (152) detailed an even more 
expanded approach of combining urine 1H NMR, 1H 13C 
HSQC NMR, and LC-HRMS analyses. This kind of study 
presents a particularly significant statistical challenge given the 
differences in standardization and statistical analysis between 
each methodology. To address these challenges, the group 
performed multivariate analysis using two matched cohorts: 
a primary “training” subset for the initial identification of 
significant metabolites and a second “independent validation” 
subset. The two statistical models were then combined to 
yield a “data fusion block-scaling model” from which several 
dozen molecules of interest were determined. These included 
elevated levels of N-acetylarginine, indoxyl and indoxyl 
sulfate with decreased levels of methylguanidine, and several 
other compounds that remained unidentified over the course 
of the study. A similar study was carried out by Bitar et al. 
(153) in a population of children with ASD from the Middle 
East. The group examined the urine of 40 children with ASD 
and 40 age-matched controls and utilized a similar “training-
validation” model. The group identified perturbations in 
several compounds previously outlined including tyrosine, 
2-hydroxybutyrate, creatine, and glutamate. Interestingly, this 
study also identified several newly recognized metabolites 
including trigonelline, cysteic acid, and guanine. Overall, 
these results once again pointed to abnormalities in amino 
acid and carbohydrate metabolism, as well as differences in 
oxidative stress pathways.

Plasma Untargeted Metabolomic Studies
Metabolomic studies on plasma have thus far tended to roughly 
corroborate the findings observed in urine, although specific 
differences have been proposed to be due to differences in renal 
clearance for some compounds. Kuwabara et al. (154), for instance, 
found that patients with autism had significantly elevated plasma 
levels of arginine and taurine with correspondingly low levels of 
5-oxoproline and lactic acid. The group utilized a technique known 
as capillary electrophoresis time-of-flight mass spectroscopy 
(CE-TOFMS), which relies on the use of an electric field to help 
separate components before they are subjected to MS. A total of 
143 metabolites were identified, and the results of the study were 
confirmed by absolute metabolite quantification. The abnormalities 
found once again alluded to the role of oxidative stress and possible 
mitochondrial dysfunction in patients with ASD.

Significant changes in alternative metabolites were proposed 
by West et al. (155) a year later following two-tiered analysis of 
LC–MS/GC–MS data. The group used univariate, multivariate, 
and machine learning methods to identify significant elevations 
in aspartate, serine, DHEA-S, glutaric acid, and succinic 
acid. Decreases in the levels of citrate, creatinine, isoleucine, 
hydroxyphenyllactate, and glutamate were also found suggesting 
roles for altered branched-chain amino acid metabolism 
(isoleucine, hydroxyphenyllactate) and abnormal mitochondrial 
energy production (succinic acid, DHEA-S, citrate, aspartate, 
glutamate). Abnormal fatty acid metabolites were the main 
findings of another study utilizing ultraperformance LC 
quadrupole time-of-flight MS/MS (UPLC/Q-TOF MS/MS) (156). 
In this study of 173 total patients with autism, multiple logistic 
regression models identified 11 total metabolites that could be 
used to discriminate patients from matched controls. Samples 
were collected in the fasted state, and patients were instructed 
to follow a “standardized” diet and exercise regimen. Identified 
discriminative compounds included sphingosine 1-phosphate 
(S1P), decanoylcarnitine, pregnanetriol, docosahexaenoic acid 
(DHA), adrenic acid, and uric acid. The compounds S1P and 
DHA were felt to be most predictive of autism.

More recently, Rangel‐Huerta et al. (157) published their 
findings on untargeted metabolomics of plasma samples from 
30 children with ASD and 30 age-matched controls. The team 
subdivided ASD patients into groups consisting of those with 
some form of neurologic regression (AR) and those without 
(ANR). Utilizing HPLC–MS/MS, metabolic intermediates in the 
malate–aspartate shuttle, urea cycle, glucose–alanine cycle and 
beta-alanine, aspirate, and tryptophan breakdown pathways were 
found to differ significantly between controls and patients with 
ASD. Within the two subgroups, however, significant differences 
were found in the levels of the fatty acids decanoylcarnitine, 
arachidate, laurate, octanoylcarnitine, and myristate, as well as 
7-methylurate and quinate.

Brain Untargeted Metabolomics
Metabolomic studies on brain tissue and CSF are somewhat 
lacking with, for instance, no studies thus far on CSF in patients 
with autism. The examination of postmortem brain samples, 
unlike studies on other tissues, however, brings with it unique 
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challenges. The brains of patients with ASD have, for instance, 
been demonstrated to be slightly larger than age-matched controls 
(161). A few patient samples have also demonstrated thickening 
of the subependymal cell layer, heterotopias reflecting abnormal 
neuronal migration and multifocal cerebral and cerebellar 
dyplasias (162). Further, when conducting metabolomic studies, 
one has to also bear in mind the biochemical changes that occur 
in all human brains at the time of death. The human brain is 
made up of a relatively high proportion of lipids and proteins. 
The integrity of many of these compounds can be significantly 
compromised by normal biochemical processes at the time of 
death, including hypoxic–ischemic changes, inflammation, and 
apoptosis–necrosis (163, 164). Because of this, it can thus be 
difficult to determine which metabolomic perturbations are part 
of the “normal” process of death and which are inherent to ASD. 
That said, comparison to adequate age- and sex-matched control 
samples is critical for these analyses.

A study using LC–MS analyses for untargeted metabolomic 
analysis of brain tissue published by Graham et al. (158) on 
samples obtained from 11 deceased subjects with autism 
and 11 controls led to the identification of more than 20,000 
“features” (i.e., raw metabolite ion fraction peaks), although 
further analytic refinements reduced this to 14,328. The group 
prioritized the isolation of only the most statistically significant 
features, which resulted in a group of 37 compounds of interest, 
of which 18 molecules were increased in subjects and 19 
decreased. These features were then matched to known spectral 
signatures so that the true chemical structure of analytes could 
be definitively identified. The group of statistically significant 
compounds included N-carboxyethyl-γ-aminobutyric acid, 
5,6-dihydrouridine, and 3-methoxytyramine. However, when 
these features were used to build a predictive discriminatory 
model, none of the resultant statistically significant ion peaks 
could be definitively identified. While this is unfortunate, the 
authors did maintain that the study still highlighted the potential 
of this approach in ongoing biomarker research.

A second pioneering study conducted by Kurochkin 
et  al. (159) examined postmortem prefrontal cortex samples 
of 32 individuals with ASD and 40 controls using LC–MS. 
Multidimensional scaling and normalization led to the 
identification of 1,366 unique analyte peaks with some statistical 
discrimination incidentally found based on the age of patients. 
Approximately 15% of the peaks demonstrated significant 
differences between ASD and control samples. The peaks 
corresponded with metabolites in several pathways including 
GSH metabolism, purine metabolism, pyruvate metabolism, 
propanoate metabolism, TCA cycle, galactose metabolism, 
starch and sucrose metabolism, nicotinate and nicotinamide 
metabolism, cysteine and methionine metabolism, and arginine 
and proline metabolism. The group further investigated how 
well these metabolite changes correlated with gene expression 
in different brain regions. Samples from both the frontal cortex 
and temporal cortex confirmed that genes linked to the altered 
metabolites were expressed at a higher rate than genes linked 
to metabolites showing no intensity difference in ASD. Human 
metabolomic data were also compared with data obtained by 
analysis of prefrontal cortex samples from two populations of 

nonhuman primates (chimpanzees and macaques). Once again, 
the metabolomic changes observed in humans with ASD proved 
to be unique to affected humans.

THE FUTURE OF METABOLOMICS IN 
AUTISM

Multiple lines of evidence have suggested over the years that 
children with ASDs are biochemically different than their peers. 
Yet it is only now, with the necessary advances in technology, 
that we have been able to narrow these down to the point 
where specific markers may one day be found. Indeed, the 
establishment of analyte databases like ChemSpider (165) and 
the Human Metabolome DataBase (166), along with integration 
tools like the Kyoto Encyclopedia of Genes and Genomes (167) 
and MetaboAnalyst (168), has enabled easier feature annotation 
and allowed for an expansion of the number of analytes that can 
be definitively identified.

As with any test or methodology, however, several key issues 
have been raised as potential impediments to its broader use. 
First, one has to bear in mind that untargeted metabolomic 
analyses, in their present form, are still relatively new and in 
some ways still require a particularly specialized set of skills 
to adequately interpret. If then used primarily as a screening 
tool, it would be difficult to educate and train community 
pediatricians, psychiatrists, and other care providers on the 
proper interpretation and use of such testing given the breadth 
of diagnostic abnormalities that can be ascertained. As well, one 
has to consider the implications of broader “screening” efforts. 
Certainly, untargeted metabolomics would be useful in ruling 
out IEMs, but whether or not this kind of testing would be most 
appropriate incorporated into newborn screening programs 
versus primarily used for confirmation of a clinical diagnosis 
remains to be seen (169, 170).

There are also many challenges encountered in the course of 
investigative experiments using this technology, at seemingly all 
stages. When planning these types of studies, for instance, one has 
to consider not only the choice of platform but also the number 
of both experimental and control samples to be assayed as these 
can significantly impact both feature identification and statistical 
analysis. The choice of sampling method also has significant 
implications as the number of metabolites will differ significantly. 
Investigators must ensure that all samples (subjects and controls) 
are collected and processed as uniformly as possible given that 
most platforms can quite easily reveal signs of improper handling 
(e.g., hemolysis, anticoagulation additives, improper solvent use, 
etc.), nutritional supplementation, environmental exposures, 
and fasting status. While we have detailed the various strengths 
and weaknesses of each analytical method, each requires careful 
calibration with appropriate standardization to ensure that results 
are of high quality. Despite these considerations, experimental 
errors may still be encountered. Batch effects, for example, may 
arise when a subset of samples exhibits abnormalities due to 
differences in retention times, reagents handling, and so on (171). 
Matrix effects and carryover are also phenomena commonly 
encountered in MS-based techniques and need to be addressed 
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as well (172). Challenges remain even after analysis is carried 
out. While feature identification, for instance, has improved 
significantly, this area can be the most time-consuming aspect of 
studies (173), given the myriad of compounds found in the human 
body and the many ways in which these compounds may ionize. 
Multivariate analyses can be used to ascertain the statistically 
significant metabolite features, although even the use of these 
methods is still fraught with sources of error and bias (174).

Most studies have operated under the assumption that children 
with ASDs are largely biochemically homogenous; however, it is 
more likely that these individuals exhibit a myriad of biochemical 
phenotypes similar to the large heterogeneity observed clinically. 
While it would be ideal, for instance, to have a single or even a small 
number of “marker” molecules to help definitively distinguish 
these patients from controls, more than likely the answer may lie 
in identifying larger pathway perturbations or patterns. While 
some of the studies we have described here have pointed to 
broader metabolic disturbances like mitochondrial dysfunction 
or decreased energy metabolism, these results have not been 
replicable and have focused on only a small subset of compounds.

We have previously described our approach to untargeted 
metabolomics, which, in contrast to previous research models of 
pooled “cases” and “controls,” instead takes an “n of 1” approach 
that we believe efficiently bridges both clinical and research spheres 
(34, 36, 175, 176). Here, a single patient’s sample is analyzed by 
UPLC–MS/MS after which the raw spectral data from 700 to 
1,000 unique compounds is compared to a “healthy reference 
population” to generate a comparative z score. The use of this kind 
of control sample allows for the establishment of reference ranges 
for each compound and therefore facilitates the identification of 
any compounds or pathways outside the reference range in a single 
patient. From a clinical perspective, this allows for a comprehensive 
metabolic screen and identification of patient-specific global 
abnormalities. Meanwhile, from a research perspective, the 
approach allows for the gradual attainment and analysis of 
experimental samples, standardization in terms of compound 
identification, and quantification along with a reduced reliance on 
upfront statistical calculations.

Untargeted metabolomics appears to be a promising research 
tool and has the potential to make significant discoveries about 
the underlying features of autism. While we believe our approach 
to be particularly well suited to this kind of work, there are of 
course many different ways in which this technology could be 
better adapted to ASD and improved. We have highlighted here 
the only metabolomic study of brain tissue in this population, 
and to the best of our knowledge, there have been no such 
studies conducted on CSF. Given the primarily neurologic 
manifestations of autism, this represents an important area 
of future research, particularly given the ease with which CSF 
may be obtained compared to postmortem brain tissue and the 
proven feasibility and reliability of its analysis (175). In addition, 
urine and plasma studies may be further optimized by more 
stringent characterization of patients’ diets, supplement intake, 
and even microbiome. The minimization or even elimination 
of these kinds of variables can have a significant effect on the 
interpretation of metabolomic analyses. There is as well a great 
opportunity for combining both metabolomic and genomic data 
for an integrated and comprehensive approach to both diagnosis 
and ongoing management.

In the seven or so decades since Kanner’s first descriptions of 
autism, we have made many strides in terms of diagnoses and 
treatment. Frustratingly, however, the answer to the question 
of “why” it occurs in the first place remains elusive. With the 
dawning of the so-called “omics” era, however, we have moved 
closer to just such an answer, and untargeted metabolomic 
studies may be one of the keys to finally making sense of this 
challenging disorder.
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