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Abstract: Major depressive disorder (MDD) is a neuropsychiatric illness with an increasing incidence
and a shortfall of efficient diagnostic tools. Interview-based diagnostic tools and clinical examination
often lead to misdiagnosis and inefficient systematic treatment selection. Diagnostic and treatment
monitoring biomarkers are warranted for MDD. Thus, the emerging field of metabolomics is a promis-
ing tool capable of portraying the metabolic repertoire of biomolecules from biological samples in a
minimally invasive fashion. Herein, we report an untargeted metabolomic profiling performed in
plasma samples of 11 MDD patients, at baseline (MDD1) and at 12 weeks following antidepressant
therapy with escitalopram (MDD2), and in 11 healthy controls (C), using ultra-high performance
liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spec-
trometry (UHPLC-QTOF-(ESI+)-MS). We found two putative metabolites ((phosphatidylserine PS
(16:0/16:1) and phosphatidic acid PA (18:1/18:0)) as having statistically significant increased levels in
plasma samples of MDD1 patients compared to healthy subjects. ROC analysis revealed an AUC
value of 0.876 for PS (16:0/16:1), suggesting a potential diagnostic biomarker role. In addition,
PS (18:3/20:4) was significantly decreased in MDD2 group compared to MDD1, with AUC value
of 0.785.

Keywords: metabolomics; biomarkers; depression; lipids; LC-MS

1. Introduction

Major depressive disorder [MDD] is a recurrent neuropsychiatric disorder with a
complex and highly heterogenous etiopathogenesis [1,2]. It is considered a significant
health burden since it is associated with high levels of morbidity and mortality pervading
all aspects of life [3]. The cognition, mood and behaviour of an individual suffering from
MDD can be altered for a total period of 12% years lived with disability, where a major risk
factor is represented by suicidal ideation [SI] [4,5].

No solitary mechanism can entirely encompass the highly variable nature of this
illness, as the emergence of MDD is based upon a set of multifactorial features, acting at
genetic, biochemical, neurophysiological, and social levels [6].

While twin studies have shown that the heritability of MDD is about 37%, the emerging
field of epigenetics revealed that a highly stressful life could lead to depression in some
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individuals due to a functional polymorphism in the promoter region of the serotonin
transporter [5-HTT] [7,8]. In addition, although the pathophysiology and neurobiology
of MDD remain to be fully elucidated, it is becoming clear that an altered neural circuitry
and the impairment of cellular networks involved in mood and cognition lead to the
development of this debilitating condition [9]. MRI techniques have shown that the
brains of MDD patients are different in function, structure, and connectivity relative
to healthy subjects. Namely, smaller hippocampal volume, diminished communication
between subcortical areas mediating negative emotions, and altered neurotransmitter levels
illustrate a small part of the current knowledge regarding MDD neurobiology [10–13].

Interestingly, the neuroendocrine dysregulation that appears in patients suffering
from MDD has an important role in understanding its pathophysiology, as external stress
alone is involved in regulating an important number of biological pathways [14]. Humoral
mediators of immunity, such as cytokines, can have an altered status in MDD patients,
explaining mood dysregulation.

Nevertheless, MDD still remains a disorder that lacks an objective and established
diagnostic method. Interview-based tools, clinical and behavioral examinations performed
by mental health specialists often conduct misdiagnosis, and performing the Structured
Clinical Interview for DSM-IV Axis I Disorders [SCID-I] remains disputable due to its
moderate reliability [15–17]. Furthermore, the lack of accurate and practical biomarkers for
early diagnosis in patients developing MDD will affect treatment response and effective-
ness. Therefore, the development of reliable diagnostic biomarkers for MDD is warranted
and critical for correct and early-onset diagnosis and downstream therapeutic strategies.

In this context, metabolomics is an emerging field that can provide a global snap-
shot of the metabolic phenotype associated with a particular disorder. In contrast with
other “omics” approaches, metabolomics can sample small-molecule metabolites directly,
representing the downstream products from the changes that occurred at the genetic,
transcriptional, and translational levels [18,19].

Neuropsychiatric disorders, such as MDD, are associated with alterations in metabolic
pathways and neurotransmitter concentrations. A broad review report has shown the
dysregulated status of amino acids [glutamate, threonine, proline, phenylalanine, arginine,
tryptophan, histidine, methionine, glutamine, etc.], neurotransmitters such as GABA,
dopamine, serotonin, and metabolites of lipid origin since the brain is an organ with very
high lipid content. Metabolomics tools can uncover enormous information regarding the
biochemical repertoire of the metabolome and its changes in the biological samples of MDD
patients. Therefore, metabolic profiling is considered a crucial tool for novel diagnostic
biomarker development and the discovery of the detailed perturbations from the affected
biochemical pathways in matters of MDD biology [20].

We performed untargeted metabolomic profiling from plasma samples of MDD pa-
tients, before and after treatment with escitalopram, and from plasma samples of healthy
volunteers, by ultra-high performance liquid chromatography coupled with electrospray
ionization-quadrupole-time of flight-mass spectrometry [UHPLC-QTOF-[ESI+]-MS]. Our
aim was (1) to investigate possible differences in metabolites levels between patients before
treatment and healthy volunteers to assess their potential diagnostic biomarker role for
MDD detection, and (2) to analyse the antidepressant effect of escitalopram by comparing
the metabolome of the same patients at baseline, and after a 12-week follow-up period,
with escitalopram antidepressant treatment.

2. Results

2.1. Metabolites identiFication

The Human Metabolomic Database (HMDB) was used for metabolites identification
with putative names. After sequential filtration of small signals/noises (<5) and peak
intensities (<1000), a number of common 61 metabolites were found, as presented in
Table 1, with their corresponding m/z values.
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Table 1. The m/z values and putative identification of metabolites separated by UHPLC-ESI+MS.

No. m/z [M+H]+ Metabolites Identification

1 256.275 Palmitamide

2 301.154 Andrenosterone

3 304.274 Arachidonyl alanine, Palmitoyl ethanolamine

4 313.288 Eicosanoic (arachidic) acid

5 318.255 Leucyl-Tryptophan

6 331.296 Deoxycorticosterone

7 339.316 11,12-DiHETrE

8 341.321 9-Hexadecenoylcholine

9 347.141 Corticosterone

10 348.326 Adenosine monophosphate

11 353.282 Prostaglandin E2/D2

12 357.327 Prostaglandin F1a

13 359.33 Tetracosapentaenoic acid

14 369.368 Thromboxane B3

15 381.315 Sphinganine -1 Phosphate

16 467.405 Cholesterol sulfate

17 483.402 11-beta-Hydroxyandrosterone-3-glucuronide

18 496.365 LPC (16:0)

19 518.347 LPC (18:3)

20 520.366 LPC (18:2)

21 522.381 LPC (18:1)

22 524.397 LPC (18:0)

23 542.349 LPC (20:5)

24 544.366 LPC (20:4)

25 563.578 DG( 18:2/14:1/0:0)

26 609.549 DG (17:1/18:0/0:0) [iso2]

27 623.529 Ceramide (d18:1/22:0)

28 625.545 Ceramide (d18:0/22:0)

29 626.48 Leukotriene C4

30 639.526 PA(32:5)

31 641.541 DG (18:1/20:5/0:0)

32 663.488 PG (14:1/14:1)

33 677.021 SM (d18:0/14:0)

34 679.019 Cer (d18:1/26:0)

35 679.547 20:1 Cholesterol ester

36 701.529 PA (18:1/18:1)

37 703.611 PA (18:1/18:0)

38 712.521 PE (16:0/18:4)

39 732.591 SM (d18:1/18:0)

40 734.504 SM (d18:0/18:0)
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Table 1. Cont.

No. m/z [M+H]+ Metabolites Identification

41 734.607 PS (16:0/16:1)

42 739.57 PA (21:0/18:4)

43 756.593 PS (16:1/18:3)

44 758.61 PS (16:1/18:2)

45 760.624 PS (16:1/18:1)

46 761.553 TG (13:0/16:1/16:1) [iso3]

47 768.629 PC (18:2/17:2)

48 772.624 PG (18:1/18:3)

49 780.593 PC (18:3/18:2)

50 782.611 PC (18:2/18:2)

51 784.625 PC (18:1/18:2)

52 786.642 PC (18:1/18:1)

53 792.636 PS (18:0/18:0)

54 806.612 PS (18:3/20:4)

55 808.626 PS (18:2/20:4)

56 810.643 PS (18:1/20:4)

57 814.62 PS (18:1/20:4)

58 825.61 TG (16:0/16:0/18:2 (9Z,12Z)) [iso3]

59 834.644 PC (18:0/22:6)

60 905.726 TG (16:0/18:0/21:0) [iso6]

61 927.71 TG (18:1/19:0/20:2) [iso6]

Abbreviations: LPC = lysophosphatidylcholine; DG = diacylglycerol; PA = phosphatidic acid; PG = phosphoglycerol; SM = sphingomyelin;
PE = phosphatidylethanolamine; PS = phosphoserine; TG = triacylglycerol; PC = phosphatidylcholine.

Mean, SD, SD/mean values, and the ratios between tested groups (C—healthy con-
trols, MDD1—patients before treatment, MDD2—patients after treatment) were calculated
to analyse the differences in metabolite levels between groups. In general, metabolites
levels of lipid origin were increased after treatment when compared to patients before
treatment and to controls.

In addition, when comparing patient groups before and after treatment, we observed
a general increase in signal intensity and therefore in metabolites percentages. We observed
an increase in signal intensity of over 25% (for leukotriene C4, 20:1 cholesterol ester,
adenosine monophosphate, PG, and PC, data not shown).

2.2. Metabolomic Profiles of Controls and Patients before Treatment (C vs. MDD1)

First, we performed a multivariate statistical analysis, namely Principal Component
Analysis (PCA, Supplementary Figure S1) and Partial Least Square Discriminant Analysis
(PLS-DA, Figure 1) for groups C vs. 0 (MDD1).
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Figure 1. 2D score plots of PLS-DA analysis for control groups (C) vs. MDD1 (code 0).

While the PCA plot does not show a significant separation of groups (see Supple-
mentary Figure S2), the PLSDA graph reflects a better discrimination. In this case, the
covariance was 33.8% for the first two components. The cross-validation algorithm showed
an accuracy of 0.5, R2 = 0.8 and non-significant Q2 values (data not shown), the model
having low predictability.

The m/z values with the VIP (Variable Importance in Projection) value > 0.8 were
selected (as mentioned in Table 2), which should be taken into consideration. In addition,
the names of these compounds were identified through Human Metabolome Database
(HMDB), as well as the p- and fold change (FC) values.

Table 2. Metabolites with VIP > 0.8 on all components in group C vs. 0 (MDD1), p- and FC values.

No. Metabolite Identification [M+H]+ RT (min) m/z VIP p-value FC FDR

1 PS (16:0/16:1) 10.5 734.607 2.813 <0.001 1.699 0.009

2 PS (18:1/20:4) 10.39 810.643 1.887 0.133 1.283 0.888

3 PC (18:2/18:2) 10.24 782.611 1.884 0.065 1.272 0.717

4 PA (18:1/18:0) 8.93 703.611 1.859 0.005 2.508 0.086

5 Deoxycorticosterone 8.11 331.296 1.406 0.401 0.826 0.888

6 LPC (18:2) 9.33 520.366 1.358 0.217 0.842 0.888

7 PG (18:1/18:3) 10.37 772.624 1.308 0.332 1.218 0.888

8 LPC (20:4) 9.37 544.366 1.158 0.401 1.231 0.888

PS = phosphatidylserine; PC = phosphatidylcholine; PA = phosphatidic acid; LPC = lysophosphatidylcholine; PG = phosphatidylglycerol;
FDR = false discovery rate.

Considering a threshold of p < 0.005, two metabolites (PS (16:0/16:1) and PA (18:1/18:0))
were shown to be statistically significant. Both increased in then MDD1 samples when
compared to healthy subjects. In this case, FC and p for PS (16:0/16:1) were 1.699 and
p < 0.001, respectively. For PA (18:1/18:0), these values were 2.508 and 0.005, respectively
(Table 2).
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The results of the ROC analysis are summarized in Table 3 and shown in Figure 2 (left
and right).

Table 3. The AUC values above 0.650 and the identification of molecules to be considered putative
biomarkers differentiation between controls and MDD1 group (before treatment).

Molecule AUC

PS (16:0/16:1) 0.876
PA (18:1/18:0) 0.777
PS (18:1/20:4) 0.678

˂

˂

 

Figure 2. ROC analysis based on area under ROC curve (AUROC) >0.8 for PS (16:0/16:1)
(m/z = 734.607). The mean values are higher in the MDD1group (before treatment).

2.3. Metabolomic Profiles of Patients, before and after Treatment (MDD1 vs. MDD2)

Multivariate statistical analyses (PCA, PLS-DA, m/z values with VIP > 0.2 on all five
components) were performed and are presented in Figure 3 and Table 4, respectively.

Also, in this case, while the PCA plot does not show a significant separation of groups
(see Supplementary Material), the PLSDA graph reflects a better discrimination. In this
case, the covariance was 31.5% for the first two components. The cross-validation algorithm
showed an accuracy of 0.4, R2 = 0.8 and non-significant Q2 values (data not shown), the
model having low predictability.

Table 4 mentions the identification of molecules and the VIP, p- and fold change
(FC) values.

The t-test for univariate statistical analysis showed only PS (18:3/20:4) as statistically
significant (p = 0.028) with FC of 0.720. The ROC analysis displayed a moderately high
diagnostic value for PS (18:3/20:4), with an AUC value of 0.785 (Figure 4, left and right).
Table 5 presents the identification of molecules with AUC values above 0.650, which may
be considered putative biomarkers of differentiation between MDD1 and MDD2 groups
(before and after treatment).
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Figure 3. 2D score plots for PLS-DA analysis for groups MDD2 (code II) vs. MDD1 (Code 0).

Table 4. Metabolites levels with VIP > 0.2 on all components in comparison group MDD2 vs. MDD1 p- and FC values.

No. Metabolite Identification [M+H]+ RT (min) m/z VIP p-Value FC FDR

1 PS(18:3/20:4) 10.12 806.612 2.376 0.028 0.720 0.926

2 Deoxycorticosterone 8.11 331.296 1.782 0.365 1.272 0.964

3 PC (18:1/18:1) 10.45 786.642 1.761 0.171 1.174 0.964

4 PC (18:2/17:2) 10.85 768.629 1.656 1.000 1.011 0.964

5 PG (18:1/18:3)/
PG (18:2/18:2) 10.37 772.624 1.573 0.438 0.804 0.964

6 Sphinganine 1-phosphate 8.27 381.315 1.546 0.171 1.169 0.964

7 PC (18:1/18:3)/
PC (18:2/18:2) 10.24 782.611 1.431 0.193 0.853 0.964

8 LPC (20:4) 9.37 544.366 1.232 0.748 0.824 0.964

9 Adenosine monophosphate 8.10 348.326 1.063 0.964

10 LPC (20:5) 9.33 542.349 0.988 0.438 0.847 0.964

11 LPC (18:2) 9.33 520.366 0.919 0.964

PS = phosphatidylserine; PC = phosphatidylcholine; PA = phosphatidic acid; LPC = lysophosphatidylcholine; PG = phosphatidylglycerol.
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Figure 4. ROC analysis based on area under ROC curve (AUROC)> for PS (m/z = 806.612).

Table 5. The AUC values above 0.650 and the identification of molecules to be considered putative
biomarkers of differentiation between MDD1 and MDD2 group.

Name AUC Changes MDD2 vs. MDD1

PS (18:3/20:4) 0.785 Decrease
Sphinganine 1-phosphate 0.678 Decrease

PC (18:1/18:1) 0.678 Increase
PC (18:1/18:3) or PC (18:2/18:2) 0.669 Decrease

PC (18:1/18:2) 0.669 Increase
PS (16:1/18:1) 0.669 Decrease

3. Discussion

The present study found significant differences in two metabolites levels [[PS [16:0/16:1]
and PA [18:1/18:0]] in MDD patients before antidepressant treatment relative to healthy
controls. Plasma levels of PS [16:0/16:1] and PA [18:1/18:0] were significantly higher
[p < 0.05] in the patients group at baseline. Moreover, ROC analysis based on AUC values
revealed a high diagnostic value for PS [16:0/16:1] [AUC value of 0.876]. On the other
hand, the PS [18:3/20:4] levels were significantly decreased in patients after treatment with
escitalopram compared to the same patients at baseline, and ROC analysis for PS [18:3/20:4]
displayed a moderately high diagnostic value for this metabolite [AUC of 0.785].

To our knowledge, our study confirmed and corroborated previous literature find-
ings regarding plasma levels of PS in MDD patients. Meta-analysis studies have under-
taken mounting efforts to integrate particular metabolic alterations found in the biolog-
ical samples of MDD patients for more facile biomarker development and elucidation
of the complex molecular mechanisms that make up the heterogenous neurobiology of
MDD. In this context, one study found that the fatty acid biosynthesis was found among
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the top-ranked altered metabolic pathways in matters of MDD development and that
MDD patients had significantly higher levels of asymmetric dimethylarginine, tyramine,
2-hydroxybutyric acid, phosphatidylcholine [32:1], and taurochenodesoxycholic acid [21].
Moreover, Knowles et al. (2017) found while analysing the lipidome in MDD, that the ether-
phosphatidylcholines were the lipids that presented the highest pleiotropy, PC having the
largest endophenotype ranking value [ERV] of 0.13 [22].

Yet another phospholipidomic profiling study performed on a mouse model of depres-
sion induced by chronic unpredictable stress [CUS] revealed a significantly higher level of
phospholipids in the brain and myocardium of mice after unpredictable chronic stress con-
ditions. Thus, it is becoming increasingly clear that depression has an important impact on
the brain lipidome, and analysing these small molecule metabolites could provide insight
into the lipid metabolism disorder in MDD and grant promising biomarker potential for
the diagnostic of this debilitating illness [23].

Furthermore, Liu et al. (2016) attempted to analyse the relationships of specific
metabolites with depression severity in a plasma lipidomic report. Among numerous
metabolites studied, the levels of phospholipids were significantly increased in MDD
patients and had highly positive relationships with depression severity measured by
the Hamilton Depression Scale [HAMD]. Furthermore, the same report found excellent
diagnostic value in moderate [M] and severe [S] MDD for a combinational lipid panel
including LPE 20:4, PC 34:1, PI 40:4, SM 39:1, 2, and TG 44:2. Sensitivity, specificity
and AUC values for the discrimination between MDD and healthy controls were 75.6%,
92.3% and 0.855, respectively for M-MDD and 80.0%, 92.3% and 0.931, respectively for
S-MDD [24].

Interestingly, another lipid metabolite we identified as being significantly altered in
plasma samples of MDD patients relative to healthy volunteers was phosphatidic acid [PA
[18:1/18:0]]. To our knowledge, there was no previously published report that assessed the
diagnostic value of PA [18:1/18:0] or PS in relationship with MDD diagnosis. Nevertheless,
despite having an inferior diagnostic performance compared to PS, PA [18:1/18:0] is part
of the altered lipidomic pattern, which is specific to psychiatric illnesses [25]. Moreover,
our study revealed that the levels of PA [18:1/18:0] remain elevated after antidepressant
treatment with escitalopram, suggesting that these metabolites are involved in MDD
pathophysiology in a rather direct fashion, independent from medication, leastways with
escitalopram. Other reports have identified and elucidated the structure of escitalopram-
specific metabolites. At the same time, 1H NMR studies revealed that lipid metabolism-
related metabolites are generally altered in patients treated with lithium and may be linked
to this particular medication [26–28].

Our results revealed changes in metabolites level of lipid and phospholipid origin,
containing linoleic/linolenic and arachidonic acid, PS and PC, and an increase, although not
significant, of PC [18:2 and 18:1] and lysoderivatives [LPC 18:2] after treatment. Metabolic
pathways of membrane phospholipids also seem to be involved in the metabolic alterations
that occur in MDD, which might be related to antidepressant treatment. In addition,
superior unsaturated acids such as dihomo-γ-linolenic acid and arachidonic acid have
been found to be involved in MDD development, also in patients receiving antidepressant
treatment [escitalopram] compared to the same patients at baseline.

Taken together, our data followed previously published reports and revealed once
again that altered metabolites in MDD are, to a certain extent, of lipid origin. Glycerophos-
pholipids are mainly involved in membrane formation and trafficking, and alterations
at these levels could dramatically influence the global lipidome of MDD, since lipids are
organized hierarchically and are strongly interconnected. One hypothesis is that when
phospholipase A2 [PLA2] converts PC into arachidonic acid [AA], inflammatory molecules
such as prostaglandins are rapidly produced, leading to a neuro-inflammation process,
well-documented in MDD development [29–32]. It is known that AA alone can modulate
membrane polarization and fluidity, thus being directly involved in neural cell function
and MDD symptomatology [22,33]. Furthermore, PA and its metabolite [diacylglycerol],
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together with other lysophosphatidylcholines, can also cause membrane bending and
destabilization, potentially contributing to the development of MDD [25].

Furthermore, we found in our study that PS [18:3/20:4] levels significantly dropped
after administration of SSRI antidepressant treatment [escitalopram]. While it is difficult to
draw confident conclusions regarding the antidepressant effect upon the phospholipidomic
profile of MDD patients, it is clear that different SSRI medication expresses different effects
on the lipid profile. A handful of studies have demonstrated that the administration of
escitalopram significantly alters cholesterol levels, acylcarnitines, phosphatidylcholine,
s and etherphospholipids, with the exact pharmacological mechanism remaining eluci-
dated [34,35].

Nevertheless, our study had some limitations that need to be acknowledged, which
arise primarily from the limited sample size. Validation of PS and PA in independent
cohorts is another crucial step to specifically analyse its potential biomarker role, diagnostic
value and correlation with escitalopram. Thus, future large-scale powered studies need
to be conducted to definitively attribute the biomarker potential of PS and PA in MDD
diagnosis and their role in the development of this debilitating illness.

4. Materials and Methods

4.1. Study Population and Specimen Collection

A total number of 22 participants were enrolled in this study, out of which 11 were
patients suffering from MDD, and 11 were healthy subjects. The controls (C) were matched
by age and gender (between 18–65 years) with the patients. Diagnostic and sampling
methods were performed as previously described [36]. Briefly, all patients included in
the study fulfilled the DSM-IV-TR diagnostic criteria for MDD. This was a follow-up
research study with two time points (baseline and 12 weeks after administration of a 10 mg
daily dose of escitalopram). Inclusion and exclusion criteria were the same as previously
reported [36].

Clinical and demographic characteristics of the study population are presented
in Table 6.

Table 6. Characteristics of MDD patients and controls enrolled in the study.

Variables MDD Patients (n = 11) Healthy Controls (n = 11)

Age in years (median) 43.81 45
Gender

Male 3 3
Female 8 8

HDRS-17 (median score)
Before treatment 23.27
After treatment 5.81

Before specimen collection, all subjects provided informed consent for the use of
their biological samples, and the study was approved by the Ethical Committee of the
participating institutions, which is in accordance with the 1964 Declaration of Helsinki and
its later amendments.

Blood samples (5 mL) were collected in the morning from MDD patients at baseline
(which we further denominated group MDD1, code 0) and 12 weeks after administration of
antidepressant medication (escitalopram, group MDD2, code II) in K3EDTA-coated tubes.
Healthy controls (group C) had their blood samples collected only once at baseline. Plasma
was separated via centrifugation within 1 h after collection, aliquoted and stored at −80 ◦C
for one week. Before use, samples were centrifuged for 5 min at 15,000× g (4 ◦C). The
thawing was performed under sonication and vortex (5 min) before the LC-MS analysis, at
30 min before refreezing.
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4.2. Metabolites Extraction from Plasma

A volume of 0.6 mL methanol (99%) was added for each volume of 0.2 mL of plasma,
and the mixture was vortexed to precipitate proteins for 30 seconds. The mixture was
then kept for 5 min in an ultrasonication instrument, followed by 5 min at −20 ◦C. The
supernatant was collected after centrifugation at 10,000 rpm for 10 min (4 ◦C). For each vol-
ume of 0.5 mL supernatant, we added 0.5 ml double-distilled water and 0.5 mL analytical
grade chloroform. The mixture was once again vortexed, and centrifuged at 10,000 rpm
for 10 min. 0.5 mL of the superior phase (the methanol-water extract) was filtered through
0.2 µm nylon filters and subsequently injected in the HPLC column. The standard pro-
cedure (SOP) we used considers the elimination of plasma triglycerides by chloroform
extraction.

4.3. UHPLC-QTOF-(ESI+)-MS Analysis

Plasma metabolomic profiling was performed using ultra-high-performance liquid
chromatography coupled with electrospray ionization-quadrupole-time of flight-mass
spectrometry (UHPLC-QTOF-(ESI+)-MS) in a ThermoFisher Scientific UHPLC Ultimate
3000 instrument equipped with a quaternary pump, Dionex delivery system, and MS
detection equipment with MaXis Impact (2012 version, Bruker Daltonics).

A 3-µm Intrada (50 × 3 mm) column was used (Imtakt, Kyoto, Japan). The stationary
phase has a 3-µm particle size, and pore size of 30 nm (300 Å). The mobile phase consisted
of solution A (water + 0.1% formic acid) and solution B (acetonitrile + 0.1% formic acid).
The gradient was: 5 to 15% A (0–3 min), 15–50% A (3–6 min), 50–95% (6–9 min), isocratic
until 15 min, and afterward decreased from 95 to 5% (15–20 min). The elution time was set
for 20 min. The volume of injected extract was 5 µl, the column temperature at 40 ◦C, and
the flow was set at 0.5 mL/min.

Metabolites identification was performed using a mass spectrometer, using the fol-
lowing parameters: the pressure for the nebulizing gas was set at 2.8 bar, the flux and
temperature of the dry gas were set at 12 L/min, and 300 ◦C, respectively. Before each
injection step, we added a calibration solution (sodium formate) in the UHPLC-QTOF-
(ESI+)-MS. TofControl 3.2, HyStar 3.2, Data Analysis 4.1 and Profile Analysis 2.1 (Bruker
Daltonics) software were used for instrument control and data processing. The standard de-
viation of compounds from the calibration solution was less than 1 ppm, and the capillary
voltage was 4500 V.

4.4. Data Processing and Statistical Analysis

The Base Peak chromatograms and all MS spectra were firstly processed by Compass
DataAnalysis 4.2 (Bruker Daltonics, GmbH, Bremen, Germany) using Find Molecular
Feature (FMF) algorithm.

Profile Analysis 2.1 (Bruker Daltonics, GmbH, Bremen, Germany) was further used
for matrix generation from the obtained FMF. Parameters such as time alignment, spectral
background extraction, MS recalibration, normalization by the sum of the bucket values in
analysis and an 80% bucket filter was used. The blank m/z values were subtracted from the
samples variable.

Next, the MetaboAnalyst v5.0 online software was used for univariate and multivariate
analysis. For multivariate analysis, KNN missing value estimation, none data filtering,
normalization by sum, log data transformation and Pareto data scaling was used. For
univariate analysis, no missing value estimation, data filtering, normalization by sum and
non-parametric analysis were used to further model the data.

The multivariate analysis consisted of the representation of Fold Change, Volcano
Plot, Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis
(PLSDA), Random Forest, finding correlations between the samples and variables (m/z
values) as a Heatmap. Finally, using the Biomarker Analysis, the Receiver Operating
Curves (ROC) were obtained, and the values of areas under ROC curves (AUC) were
calculated, the molecules being ranked according to their sensitivity/specificity.
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The identification of molecules that can be considered potential biomarkers was
made using the two most relevant databases, LIPID MAPS® Lipidomics Gateway (https:
//www.lipidmaps.org/data/structure/LMSDSearch.php, accessed on 15 May 2021) and
Human Metabolome Database (https://hmdb.ca/, accessed on 15 May 2021).

5. Conclusions

MDD is a severe neuropsychiatric illness that presently lacks accurate, reliable and
early diagnostic tools. The powerful field of metabolomics holds great promise for the dis-
covery and development of novel circulating biomarkers for this disease since it is capable
of portraying the complex metabolomic changes that occur at the levels of small molecule
metabolites in MDD patients relative to healthy controls. We reported an untargeted
metabolomics profiling in plasma samples of MDD patients before and after treatment
with escitalopram and healthy controls and found significantly increased levels of phos-
phatidylserine (PS (16:0/16:1)) and phosphatidic acid (PA (18:1/18:0)), and decreased levels
of PS (18:3/20:4) after antidepressant treatment.

Future validation studies are warranted to confirm our findings. Integrating all the
altered metabolome data could potentially aid in the development of minimally invasive
panel biomarkers that could represent optimized diagnostic tools and enrich current
knowledge regarding MDD pathophysiology and antidepressant effects on the lipid profile.
In addition, by uncovering the metabolic alterations in MDD patient samples, one can gain
more insight into the pathophysiology and neurobiology of this complex and debilitating
disorder for more facile disease management and therapeutic strategy selection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11070466/s1, Figure S1: PCA (2D) in control groups vs patients before treatment (C vs.
MDD1); Figure S2: PCA (2D) in patients before and after treatment (MDD1 vs MDD2)
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