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ABSTRACT
1. INTRODUCTION
By providing different input channels, multimodal interfaces al-
low a more natural and efficient interaction between user and ma-
chine. Recent years have seen the emergence of many systems us-
ing speech and gestures, where users interact with an application
by talking to it, pointing (or looking) at icons and/or performing
gestures. Research in multimodal interfaces and ubiquitous com-
puting aim at building the tools to implement these abilities, in as
natural and unobtrusive a manner as possible.

Several successful multimodal gesture systems have been devel-
oped which integrate speech input with pen and other haptic ges-
tures [8, 18]; these generally use a physical stylus, or just a user’s
fingertip. For interaction with a kiosk [22], video wall [9], or con-
versational robots [3] it is desirable to have untethered tracking of
full-body gesture. Full-body gesture processing consists of two
components: acquisition to estimate the pose of the user (e.g. arm,
body position and orientation) and recognition to recognize the ges-
tures corresponding to sequences of poses.

To date, full-body gesture acquisition has been mainly developed
around tethered interfaces because of their robustness and accu-
racy. Devices such as data gloves and magnetic position systems
e.g. Flock of Birds have been successfully used for tasks such as
map exploration [21]. Schemes with explicit markers attached to
hands or fingers have also been proposed, as in systems for optical
motion capture in computer animation. Unfortunately, the diffi-
culty of use of these systems (e.g. attached wires, magnetic iso-
lation of the room) prevents them from being generally usable by
casual users. There has been many attempts to build untethered
interfaces based on vision systems. However, to our knowledge,
none of them has proven to be robust and fast enough to extract full
articulated models for HCI purpose. In this paper we present an
untethered interface based on the tracking of the user body using
stereo cameras.

Many body pose gesture recognition systems use techniques adapted
from speech recognition research such as Hidden Markov Models

(HHMs) or Finite-State Transducers (FSTs). Such techniques con-
sider consecutive poses of the user given by the acquisition system
and estimates the most probable gesture. There are many difficul-
ties with gestures. First, the inputs are highly dimensional (the di-
mension of body poses are usually greater than 20). Then the begin-
ning and end of gestures are difficult to detect (contrary to speech
where sentences are isolated by detecting surrounding silences).

In our multimodal system, speech is processed using the GALAXY
system [26]. A vision system consisting of a stereo camera con-
nected to a standard PC Pentium 4 (2Gz) captures images of the
user and transfers them to the articulated body tracker that esti-
mates the corresponding body pose (described in Section3.1). Se-
quences of body poses are used in the gesture recognition system to
identify gestures (Section3.2. A rank order fusion algorithm is used
to merge command recognition; parameters are estimated for each
visual gestures (e.g., size or location.) Our overall architecture is
shown in figure 1.

In the following sections we present the architecture of our mul-
timodal system. Then we introduce our vision-based body pose
acquisition technique. A framework for gesture recognition is then
described. Finally we demonstrate its use for recognizing typical
gestures and show some results.

2. PREVIOUS WORK
Many techniques for tracking people in image sequences have been
developed in the computer vision community.

Techniques using cues such as contour and skin color detection
have been popular for finger and hand tracking [15, 23, 16, 9] but
are limited to planar interactions .

Articulated model-based techniques have been proposed to track
people in monocular image sequences [31, 14, 20, 4, 32]. Due to
the numerous ambiguities (usually caused by cluttered background
or occlusions) that may arise while tracking people in monocular
image sequences, multiple-hypothesis frameworks may be more
suitable. Many researchers investigated stochastic optimization tech-
niques such as particle filtering [27, 28]. Though promising, these
approaches are not computationally efficient and real-time imple-
mentations are not yet available.

Stereo image-based techniques [19, 1] proved to give better pose
estimates. [19] uses a generative mixture model to track body ges-
tures with real-time stereo. However, the model used in this system
was approximate and the system could only accurately detect arm
configurations where the arm was fully extended.
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The system described in [1] was successfully applied to detect-
ing and classifying hand gestures in a conversational system [30,
6]. While the system was in real-time, it could sense only coarse
“blob” features. Hence it was of limited use in tracking natural
pointing gestures, although it was able to recognize parametric ges-
tures defined by the relative position of both hands [30], using a
variation of Hidden Markov Models. Other HMM approaches to
gesture recognition include [17, 29].

Bobick and Davis [10] created a view-dependent approach to ges-
ture recognition using temporal templates. It captures motion and
time in one 2D image by varying the intensity of pixels where mo-
tion had occurred. Motion is captured by the change in the fore-
ground image (the person) versus the background image. As time
passes, the intensity of the pixels will decrease. This is then com-
pared to the temporal templates to find the gesture that is most sim-
ilar.

Previous systems using speech and gesture inputs [18, 8] have taken
advantage of the progress of the research in the corresponding fields
and the advent of new devices and sensors. Although some ap-
proaches such as [18] integrate speech and gesture at an early stage,
most systems perform the recognition of speech and gesture sepa-
rately and use a unification mechanism [8] for fusing the different
modalities.

Speech processing usually consists of two components: word recog-
nition to recognize individual words and language understanding
to recognize full sentences (given a predefined grammar). Research
in speech processing has known excellent progress in the last 10
years. Although there are still problems with crowds (”cocktail-
party” problem) and noisy sound input (especially when the micro-
phone is far from the speaker), natural speech recognition systems
offer very high recognition rates.

3. ARTICULATED TRACKING AND GES-
TURE RECOGNITION

We propose a cascaded approach which efficiently and reliably rec-
ognizes a gesture. The system can be separated into two compo-
nents, an articulated tracker and a gesture recognizer. We track

articulated body motion and recognize full-body gestures of a user
using a stereo-based technique. The body model used in this pa-
per consists of a set of N rigid limbs linked with each other in a
hierarchical system.

3.1 Tracking
Pose Π of a body is defined as the position and orientation of each
of its N constituent limbs in a world coordinate system (Π ∈
R6N ). We parameterize rigid motions using twists [4]. A twist
ξ is defined as a 6-vector such that:

ξ =

(
t
ω

)

where t is a 3-vector representing the location of the rotation axis
and translation along this axis. ω is a 3-vector pointing in the di-
rection of the rotation axis.

Let ∆ define a set of rigid transformations applied to a set of rigid
objects. ∆ is represented as a 6N -vector such that:

∆ = (ξ1, ..., ξN )� (1)

where N is the number of limbs in the body model.

Many algorithms have been proposed for articulated tracking using
stereo data [11, 19, 12]. Such algorithms give an estimate of the
body motion by minimizing an error function based on the distance
between the 3D articulated model and the reconstructed 3D points.

In the case of articulated models, motions ξi are constrained by
spherical joints. As a result, ∆ only spans a manifold A ⊂ R6N

that we will call articulated motion space. Efficient tracking is pos-
sible by enforcing the spherical joint constraints using a projection-
based approach such as [12]. This technique consists in finding the
motion Delta� which minimize the Mahalanobis distance:

E2(∆�) = ||∆� − ∆||2Σ
= (∆� − ∆)�Σ−1(∆� − ∆)

(2)

with

∆ = (ξ1, ..., ξN )� Σ = diag(Σ1, Σ2, . . . )

where ξi is the rigid motion estimated by a 3D rigid object tracker
(in our implementation, we used an ICP-based tracking algorithm)
and Σi the corresponding uncertainty.

The approach presented in this paper can be considered as an exten-
sion of [12] accounting for non-linear constraints related to human
body pose. Indeed, the human body is highly constrained due to
various factors which are not possible to capture in a linear mani-
fold (e.g., joint angles between limbs are bounded, some poses are
unreachable due to body mechanics or behavior). To enforce these
constraints we use a learning-based approach, and build a human
body pose classifier using examples extracted from motion capture
(mocap) data. We represent the space of valid poses defined by
mocap data using a support vector machine (SVM) classifier.

SVMs classifiers have been very popular in the computer vision
community for their ability to learn complex boundary between
classes and also for their speed and efficiency. See [25, 5] for a
detailed description of SVMs.

Given a data set {xi, yi} of examples xi with labels yi ∈ {+1,−1},



C 1 10 200 1000
ε 0.00072 0.00061 0.00065 0.00137

Nsv 1878 367 323 294

Table 1: Classification error rates ε and number Nsv of sup-
port vectors for SVMs trained with Gaussian kernels (σ=10)
vs. error cost C.

σ 5 10 15 20 100
ε 0.00065 0.00061 0.00094 0.00047 0.0059

Nsv 479 367 570 842 4905

Table 2: Classification error rates ε and number Nsv of support
vectors for SVMs trained with Gaussian kernels (C=100) vs.
kernel size σ.

an SVM estimates a decision function f(x) such that:

f(x) =
∑

i

yiαik(x, xi) + b (3)

where b is a scalar and αi some (non negative) weights estimated
by the SVM. A subset only of the weights αi are non null. Ex-
amples xi corresponding to non zero αi are the support vectors.
The support vectors are the training examples that lie closest to the
decision boundary. Their corresponding αi defines its contribution
to the shape of the boundary. k(x, xi) is the kernel function cor-
responding to the dot product of the non linear mapping of x and
xi in a (high dimensional) feature space. Linear, polynomial and
Gaussian kernels are usually used. In this paper, we used a Gaus-
sian kernel k(x, xi) = e−||x−xi||2/(2σ2).

In practice, an error cost C is introduced to account for outliers
during the SVM training [25]. This allows for the noise in data that
would cause classes to overlap. Once the SVM has been trained,
new test vectors x are classified based on the sign of the function
f(x). In this work, we used the SVM implementation from the
machine learning software library Torch [7].

3.1.1 Training
We trained a SVM classifier to model valid poses of human bodies.
The features x used in the SVM are the relative orientation of the
body with respect to the world coordinate system and the relative
orientations of connected limbs.

Training data consisted of a collection of more than 200 mocap
sequences of people walking, running, doing sports, etc, which
amounts to about 150,000 body pose (positive) examples. The
models used in these sequences describe the full body, including
hands, fingers, and eyes. However, only the parameters used in our
model (torso, arms, forearms and head) have been retained for the
SVM training. Negative examples have been randomly generated.
Because the space of valid poses is small compared to the space
of all possible poses, a pose with randomly generated angles for
each joint will most likely be invalid. From this and the fact that
SVM can account for outliers, negative examples could safely be
generated with this approach.

We experimented with different types of kernels (linear, polyno-
mial, Gaussian) and varying error costs. The corresponding SVMs
have been evaluated using standard cross-validation techniques: the
classifiers have been trained using all-but-one sequences and the

average mis-classification error ε of the sequence left has been es-
timated.

Results clearly show that linear and polynomial kernels very poorly
model the human body poses (ε > 0.5). Gaussian kernels, which
are more local, give very good classification error rates. Tables 1 and 2
report the classification error rates ε as well as the number of sup-
port vectors Nsv for Gaussian kernels with varying kernel size σ
and error cost C. The SVM used in the rest of the paper uses a
Gaussian kernel with σ = 10 and C = 100, which provides a
good trade-off between error rate and number of support vectors.

3.1.2 Tracking with SVMs
The tracking problem then consists of finding the motion transfor-
mation ∆� that maps the previous body Πt−1 pose to a body pose
Π� that is valid while minimizing:

E2(∆�) = ||∆� − ∆||2Σ
= (∆� − ∆)�Σ−1(∆� − ∆)

(4)

Articulated constraints are guaranteed by using the minimal param-
eterization ∆� = Vδ� introduced in [12]. Let ∆̄ = Vδ̄ be the
(unconstrained) articulated transformation. The constrained mini-
mization of criteria E2(∆�) is replaced with the one of Ē2(δ�):

Ē2(δ�) = ||∆� − ∆̄||2Σ
= (∆� − ∆̄)�Σ−1(∆� − ∆̄)
= (δ� − δ̄)�V�Σ−1V(δ� − δ̄)

(5)

with the constraint g(δ�) = f(Π�) = f(T∆�(Πt−1)) > 0 where
f(.) is the decision function estimated by the SVM, as in eq.(3).

This is a standard constrained optimization problem that can be
solved using Lagrangian methods or gradient projection methods
[2]. Because of its simplicity, we implemented a variant of Rosen’s
gradient projection method described in [13].

3.2 Gesture Recognition
3.2.1 Detection

In trying to recognize a gesture, we start with the simpler problem
of detecting its occurrence. We partition the space of possible poses
into poses corresponding to gestures we wish to classify and those
that do not. On examination of these spaces, it is clear that some
individual gestures have overlapping poses, while others are clearly
separated. Gestures that overlap are grouped in the same group.

We used SVM classifiers to learn the space of static poses corre-
sponding to gestures. For each gesture group, a SVM is trained,
using the static poses corresponding to all gestures in that gesture
group as positive examples, and all static poses corresponding to
non-gestures and other gesture groups. The feature x used in the
SVM classifier are the 3D pose generated by the articulated tracker.
As the articulated tracker tracks the body, the pose is tested against
all SVM. When one is triggered, meaning a SVM has detected that
the current pose is one of the static poses in the gesture group it
is responsible for, we note the detection. With a perfect detector,
we would immediately begin passing 3d hand positions to our rec-
ognizer, and stop when the SVM no longer triggers. Because we
do not have a perfect detector, we ignore rapid oscillations in the
signal, effectively running a low-pass temporal filter on the SVM
decision function. For example, if a SVM has been triggering for
a while and it stops for a frame, and starts detecting again, we as-
sume the SVM has made an error, and continue sending 3D hand



Figure 2: Body poses corresponding to 9 support vectors (out of 382) estimated by the SVM.

positions to our recognizer. The reverse is also true. If a SVM has
not been triggering for a while, and it triggers for a frame, and stops
triggering again, we assume the SVM has made an error, and do not
send any information to our recognizer.

3.2.2 Recognition
Our recognizer is made up of continuous Hidden Markov Models
which model specific gestures. As described in Rabiner and Juang
[24], Hidden Markov Models deals well with the time element of
gestures. One of the main advantages of using HMMs is the ability
to know the probability of an incomplete observation sequence has
of being produced by a particular model. This allows us to predict
at any point in time what gesture might be occurring, and respond
with the appropriate actions. Also we can identify various parts of
a gesture, and easily extract various parameters.

Our recognizer runs only when a detection has occurred. When
a SVM which models a specific gesture group triggers and starts
passing 3d hand positions to the recognizer, each HMM corre-
sponding to gestures within the gesture group starts computing the
probability of that sequence being generated by that model. When
the SVM stops triggering, our recognizer uses the probability of
the sequence to classify the gesture. It orders the gestures within
the gesture group according to the most probable, and calculates
their corresponding parameters. This along with their associated
probabilities are the input of the command recognizer.

4. APPLICATION
Not only can a vision interface supplement a speech interface, it
can also provide an alternative way to convey the same information.
Using gestures to do various actions like selecting an application,
or playing a video stream, flipping through a photo album, the voice
can be free, for various tasks like carry a conversation or give a talk.

A user can then select any application by pointing to the window
or icon, and specify an action through speech, like saying ”Open”
while pointing at an icon. If a user wants to resize or shrink a
window, they can simply frame the window with their hands and
resize to its desired size, with or without the aid of speech. This
same gesture can be used in various context to accomplish related
tasks. For example, this gesture can be used to zoom in or out of
a image, or map. Rather than having to learn a new interface with
different icons or ways of using the mouse, a user can do the most
appropriate gesture or speech to get their point across.

For drawing applications, using vision and speech to interface with
a computer can often be much easier than using a keyboard and
mouse. A vision and speech interface allows us to get rid of all
those icons that take up the screen, and limit your workspace, be-
cause we can just say ”edit”, ”drawing mode”, or ”add square”, or
draw a square with our finger, resize or rotate an object. In general,

Action Gesture Speech

Select Point Select [object]
Select Region Draw a path Select [object]
Resize Move hands along diagonal Change size of [object]

Enlarge [object]
Shrink [object]

Next Flip forward Next
Go forward

Back Flip backward Previous
Go back
Return

Table 3: Multimodal Actions

we can express our 3d canvas using intuitive 3d motions, rather
than learning to express 3d space with icons.

4.1 Implementation
In our multimodal system, speech is processed using GALAXY
[26]. GALAXY is an architecture for integrating speech technolo-
gies to create conversational spoken language systems. The current
version handles specialized servers for word recognition, language
understanding, database access and speech synthesis.

The vision system consists of a stereo camera connected to a stan-
dard PC Pentium 4 (2Gz). The stereo camera captures images of
the user and transfers them to the articulated body tracker that esti-
mates the corresponding body pose (Section3.1. Sequences of body
poses are used in the gesture recognition system to identify gestures
(Section3.2.

Our implementation focused on the gesture recognition aspect of
our multimodal interface. We narrowed down the actions a user
can perform when interfacing with the computer to an experimen-
tal set of actions, that is smaller is size while maintains a most of
the complexity of the problem. In Table 3, the set of actions we
experimented on are listed.

4.1.1 Training Our Detector
We partitioned the gestures into two groups: one-handed gestures
and two-handed gestures. The first two gestures, ”point” and ”draw
a path”, are grouped into the one-handed gestures group. The rest
are in the two-handed gestures group.

We collected on average 25 sequences of each gesture across a sam-
ple space of 8 people. Each sequence is a collection of images of
size 320 x 240, provided by a stereo camera. The 3D model used in
the experiments consists only of the upper body parts (torso, arms,
forearms and head). The torso has been purposely made long to



σ 5 10 15 30
1 0.0270 0.0837 0.1311 0.1951

100 0.0103 0.0181 0.0286 0.0477
200 0.0094 0.0160 0.0237 0.0317
300 0.0104 0.0144 0.0237 0.0317

Table 4: Classification error rates ε for one-handed SVM
trained with Gaussian kernels with varying error cost C and
kernal size σ

σ 5 10 15 30
1 0.0216 0.0405 0.0478 0.0567

100 0.0116 0.0168 0.0225 0.0293
200 0.0108 0.0141 0.0198 0.0257
300 0.0112 0.0137 0.0190 0.0233

Table 5: Classification error rates ε for two-handed SVM
trained with Gaussian kernels with varying error cost C and
kernal size σ

compensate for the lack of hips and legs in the model. The com-
plete tracking algorithm can run on a Pentium 4 (2GHz) processor
at a speed ranging from 6Hz to 10Hz.

We trained two SVM classifier to model our two groups of gestures.
The features x used in the SVM are the relative orientation of the
body with respect to the world coordinate system and the relative
orientations of connected limbs. Each image in our data collection
is labelled as either a pose corresponding to a one-handed gesture,
a two-handed gesture or a neutral position.

The SVMs have been evaluated using standard cross-validation tech-
niques: the classifiers have been trained using 90% of the training
data, and the average mis-classification error ε on the remaining
training data is calculated. Tables 4 and 5 report the classification
error rates εfor Gaussian kernels with varying kernel size σ and er-
ror cost C. The SVM used in the rest of the paper uses a Gaussian
kernel with σ = 5 and C = 200.

4.1.2 Training Our Recognizer
Each gesture in the two-handed gesture group has its own model.
The model for ”resize” allows for different ways of performing this
gesture, different starting positions, and has large spatial variations.
This action is modelled with a 4 state HMM, shown in 4. The first
state consists of both hands moving to frame the window. This can
either be done by selecting the upper left corner and the lower right
corner, or selecting the upper right corner and the lower left corner.
The next state can be resizing along either diagonal, allowing the
choose of two states. Both states return to the same final state to
return to the neutral position.

The action ”next” and the action ”previous” have a more compli-
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cated structure, shown in figure 5. The first state consists of both
hands moving out in front of the user, with the freedom of placing
the hands together or apart. The next states follow this path, start-
ing with two hands together: 1) the hands move apart. 2) the hands
move together. This can be repeated as many times as a user wants,
resulting in high temporal variation, specifying the number of times
the computer should respond, for example by flipping through a se-
quence of images or webpages.

While the two-handed gesture group demonstrates how success-
fully we can classify different gestures, we defined only one HMM
for both gestures to demonstrate the flexibility of our system. Rather
than focusing on the probability of a sequence of frames being gen-
erated by a particular HMM, we focus on its ability to parse a se-
quence into discrete states. The action select and emphselect re-
gion are modelled with the same 3 state left-to-right HMM. The
three states are moving from a neutral position to the object to be
selected (state 0), pointing at the selected object (state 1), and mov-
ing back to a neutral position (state 2). The corresponding state
diagram is shown in figure 3.

The feature vector for two-handed gestures and one-handed ges-
tures are different. Because we know that one of the hands in a
one-handed gesture contains no useful information towards classi-
fication, we use a feature vector that uses only information from
one hand. Because we do not know which hand the gesture is per-
formed on, we test two sequence of feature vectors corresponding
to either hand with our HMM, and use the results pertaining to the
model that generates the highest probability.

The feature vectors for both two-handed gestures and one-handed
gestures are directly computed from the 3d hand positions given
by the articulated tracker. Given a 3d hand position, we estimate
velocity, −→v , by finding the difference between two frames. The



F1 F2 F3 F4
previous .1666 .2500 .3500 .2000

next .0625 .0625 .0625 0
enlarge 0 .0535 .0870 .0435
average .0764 .1220 .1665 0.0812

Table 6: Cross validation error
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Figure 6: SVM decision function for one-handed gestures.
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Figure 7: SVM decision function for two-handed gestures.

velocity is decomposed into its unit vector, v̂ and its magnitude, |v|.
The relative position, −→pr , is computed by subtracting the right hand
position from the left hand position. The relative velocity, −→vr , uses
this newly calculated position, to estimate the local relative velocity
between the left and right hand. Their unit vector, p̂r and v̂r , and
magnitude, |pr| and |vr|, respectively, are computed as well.

To test which feature vectors were actually effective in distinguish-
ing two-handed gestures, we ran 4 cross-validation tests and com-
puted the classification rate:

1. F1 uses all the features described above,

2. F2 used −→v , −→pr , and −→vr ,

3. F3 used v̂, p̂r , and v̂r ,

4. and F4 uses both unit vectors, v̂, p̂r , and v̂r , and magnitudes,
|v|, |pr| and |vr|.

Table 6 shows the cross validation error when trained with the four
different feature vectors described above. Each model was trained 8
times, leaving out a few sequences of each type for each time. The
error is to the ratio of how many times a sequence was classified
as a different gesture versus how many sequences of each gesture
was tested. This happens when the probability for that sequence is
higher in a model that does not correspond its actual gesture. We
can see the best overall classifier is F1, which used the feature vec-
tor with all calculated features. Another good classifier was F4,
actually having a better classification rate for the action previous,
than F1 did. The results shown in Table 6 using a Gaussian as
a model for their observation probability. Mixtures of Gaussians
were tested for each feature case, but resulted in terrible classifica-
tion rates.
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Vision Only Speech Only Vision and Speech
previous .1666 .0500 0

next .0625 0 0
enlarge 0 .1000 0
average .0764 .0500 0

Table 7: Classification error with different modes.

4.1.3 A sample sequence
The results shown here show a sample run through our gesture de-
tection system. The sequence consists of a user performing the next
gesture, then the select gesture, and finishing with the resize. At
each captured frame, the SVM classifiers for one-handed and two-
handed gestures determine whether or not it is a gesture. Shown in
figure 6 and 7, when the decision function f(x) = 1, a gesture has
been detected. As mentioned before, the signal filters out bursts in
the signal. Because of the short duration of the detections around
frame 210 and 280 for the one-handed gesture SVM, and frame
180 in for the two-handed gestures, they would be ignored and not
trigger the recognizer.

When the SVM classifier for the two-handed gestures detects a ges-
ture at frame numbers, 40 and 265, our recognizer will test the col-
lection of subsequent frames that the SVM classifier detects as part
of a two-handed gesture. We test this sequence of frames using the
HMMs that correspond to the two-handed gesture: next, previous,
and resize. When the SVM classifier for the one-handed gesture
detects a gesture at frame number 180, the system will parse the
pointing gesture into its appropriate states.

At frame number 245, the two-handed gesture happens to be resize.
In figure 8, the log probability for each model in the two-handed
gesture group is shown. As time passes, we can see a sharp de-
crease in the log probability corresponding to the next and previous
HMMs in contrast with the the resize HMM. In figure 9, the way
the HMM partitioned the gesture is compared to the ground truth
partitioning. Although the estimated and ground truth don’t match
up exactly for the transition from state 2 to state 3, the different in
position is actually quite small. In this way, we can extract the pa-
rameters that are relevant to this this particular gesture. For resize,
we need the position of hands at the beginning of state 2 to know
which window or object to resize, and the new size of the window
or object with the position of the hand at end of state 2.

4.1.4 Command Recognizer Results
In Table 7, we show preliminary results on a small data set how
using different modes effect the classification error of our system.
A speech utterance was captured corresponding to each gesture in
our data set. The n-best list of both the speech recognizer and the
gesture recognizer are compared against each other, and the best
overall is used to calculated the 3rd column. When using both vi-
sion and speech, the results are promising, although we expect the
error to increase as we more thoroughly test the system.

5. FUTURE WORK
Although much progress has been made in the development of in-
terfaces that use speech and gesture recognition, a great deal still
remains to be done.

Rather than using effectively a low pass temporal filter on the SVM
decision function, we would implement a multiple hypothesis method.

For the original start of the detection, we run a recognizer on the
gesture. We can estimate results for a gesture that ends when the
SVM ends, while continuing to estimate the probabilities and pa-
rameters for a gesture that continues. Also, we can start another
pass through the recognizer using this new start as the start of the
gesture. After the gesture sequence has been completed, we can
compare the results of all the possible segmentation of a sequence,
and summarize this information to pass into our command recog-
nizer.

There are other implementations we would like to evaluate. One of
them is replacing the HMMs and simply using SVM by extracting
key features from the entire gestures to classify. We would also like
to integrate a symbol recognizer which would use the path extracted
from the one-handed gestures into the system.

While we have described a system that combines speech and vision
after the understanding of either modes are determined, we feel we
could improve our accuracy by using information to assist recogni-
tion. Because speech can help limit the range of possible gesture,
we can create new gesture groups that use common language as a
criteria for different groups rather than similar poses.

6. CONCLUSION
Multimodal interfaces allow users to interact with machines in a
natural and intuitive manner. In order to explore this emerging area
of research, we developed an interface that incorporates recogni-
tion of both gestures and speech. We believe this system is flex-
ible enough to cover a range of possible interactions for human-
computer interfaces and allows for easy additions of different mod-
ules.
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