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Abstract

Complex functional materials with three-dimensional micro- or nano-scale dynamic compositional

features are prevalent in nature. However, the generation of three-dimensional functional materials

composed of both soft and rigid microstructures, each programmed by shape and composition, is

still an unsolved challenge. Herein, we describe a method to code complex materials in three-

dimensions with tunable structural, morphological, and chemical features using an untethered

magnetic micro-robot remotely controlled by magnetic fields. This strategy allows the micro-robot

to be introduced to arbitrary microfluidic environments for remote two- and three-dimensional

manipulation. We demonstrate the coding of soft hydrogels, rigid copper bars, polystyrene beads,

and silicon chiplets into three-dimensional heterogeneous structures. We also use coded

microstructures for bottom-up tissue engineering by generating cell-encapsulating constructs.
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Introduction

Three-dimensional (3D) functional micro-materials have gained significant attention due to

their broad applications1, 2, 3, 4, 5. Of particular interest is bioprinting, which has been used

to fabricate complex functional materials such as a3D printed microbattery5, bionic ear6, and

tissue-like structures2. These 3D complex architectures lack reconfigurability and

reversibility features as the link between the material and the device is not dynamic and the

material state is fixed subsequent to material ejection or polymerization due to the nature of

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research,
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
*Corresponding Authors: sitti@cmu.edu, udemirci@rics.bwh.harvard.edu.
¥Authors contributed equally.

Author Contributions:
U.D., M.S., and S.T. developed the idea. S.T., E.D. designed the experiments. E.D., S.T., S.G. performed the experiments. S.T., E.D.

wrote the manuscript. All authors edited the manuscript.

Competing financial interests:
The authors declare competing financial interests in the form of a pending provisional patent (BWH case no 22548, filed on 11/18/13,

Robotic-assembly of hydrogels).

NIH Public Access
Author Manuscript
Nat Commun. Author manuscript; available in PMC 2014 July 28.

Published in final edited form as:

Nat Commun. 2014 January 28; 5: 3124. doi:10.1038/ncomms4124.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



bioprinting2, 5, 6, 7, 8. Errors in coding intricacy of 3D functional materials such as the

misplacement of an ejected droplet or clogging can cause bioprinting to fail owing to the

irreversibility of the process. Moreover, simultaneous coding of rigid and soft micro-

components into 3D functional materials has presented a significant challenge. On the other

hand, more traditional methods, e.g. by photolithographically-defined processes, have

excelled at two-dimensional (2D) coding of a variety of materials. Nevertheless, both the

inclusion of arbitrary materials and the out-of-plane coding of material composition remain

a challenge. To overcome these challenges, the fabrication of soft tissue-like constructs have

been performed using a selection of pre-fabricated 2D or 3D functional micro-parts9 via

microfluidics10, 11, acoustics12, magnetics13, 14, multi-layer cross-linking8, and capillary

attraction15. Microfluidic assembly10, 11 and multi-layer cross-linking8 methods perform

high-precision assembly without reconfigurability of microcomponents, while acoustic12

and magnetic13, 14 methods are capable of disassembling and reassembling microparts with

lower precision. However, few of these methods have shown the manipulation of building

blocks with a high precision at tens of microns10, 11, 16, 17, 18 and none of them has yet

presented the coding of a group of soft and rigid materials together with reconfigurability.

In this paper, we present a versatile method to code 2D and 3D complex functional materials

using untethered magnetic micro-robots. Spatiotemporal control of crawling micro-robots

allows for the creation of 3D complex materials composed of functional micro-components

with dynamic coding and reconfigurability. This approach offers high precision in 2D and

3D, as well as the capability to code a combination of soft and rigid materials together. The

coding resolution is tens of micrometers and can be adjusted with the size of the micro-robot

and the resolution of real-time imaging. Advantages of robotic coding include increased

capability in the creation of heterogeneous structures made from a variety of materials, on-

demand assembly and reconfigurability when flexibility is needed, or dynamic manipulation

capability to create structures in a time-dependent process. Here, we spatiotemporally coded

a heterogeneous group of objects including rigid copper bars, polystyrene beads, silicon

chiplets, polydimethylsiloxane (PDMS) blocks and cell-encapsulating hydrogels in a fluid

environment suitable for cell growth and culture.

Results

To fabricate hydrogels at scales of a few hundred microns to a millimeter, photo-

crosslinkable hydrogel precursor solution was first placed between spacers on a glass slide

(Fig. 1a). Hydrogel geometries were defined by the dimension of the grids in the customized

mask and the spacer thickness (Fig. 1b). Hydrogels of different shapes were fabricated by

exposing the gel precursor solution to UV light and were stored in PBS (see Methods). To

code building units into 2D and 3D complex materials, an untethered magnetic robot with

dimensions of 750 μm × 750 μm × 225 μm was placed on the bottom surface of an assembly

chamber (Fig. 1d). The magnetic robot is composed of neodymium-iron-boron particles

encapsulated in a polyurethane binder and is actuated by a system of eight electromagnets

surrounding the workspace. Hydrogels were pushed by micro-robots controlled by

algorithms which dynamically regulating the magnetic field in response to high-level user

inputs19. Magnetic forces are applied directly to the micro-robot to induce translation, and

small oscillatory magnetic torques are applied to break surface friction, which often

dominates such microscale contacts19. Serial robotic pick-and-place assembly and coding of

hydrogels in 2D or 3D was followed by a secondary crosslinking to stabilize the resulting

material. The transportation of several hydrogel sizes and shapes across the polyester

substrate is quantified in Fig. 1e and Supplementary Fig. 1. Results show that the pushing

speed of a microgel (Gel style F in Supplementary Table 1) by a micro-robot increased

linearly with the magnetic force exerted (Fig. 1e). We also observed that the manipulation
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speed is not greatly affected by hydrogel shape or size, and that there is not a significant

variation in pushing speed for a single type of a gel (Supplementary Fig. 1).

Two-dimensional micro-robotic coding of material composition

We precisely coded Poly(ethylene glycol) dimethacrylate (PEG) hydrogels on-demand into

different geometrical shapes using the magnetic micro-robot (Fig. 2). Images of hydrogels

coded into a variety of final geometries such as plus, square, and rod shapes are shown in

Fig. 2a–f. The robotic manipulation approach is capable of dynamically reconfiguring the

material morphology (Supplementary Movie 1). As such, Fig. 2a–f represents a continuous

sequence, where one shape is built (e.g., square in Fig. 2c) and then reconfigured into the

next shape (e.g., plus shape in Fig. 2d). This capability could be critical for cellomics,

system biology studies, and micro-physiological system engineering applications28 where a

temporal component is beneficial (e.g., introducing building blocks that encapsulates certain

types of cells with biomolecules such as inhibitors, growth factors, and drugs). To illustrate

the capability of the micro-robot in handling hydrogel units of different shapes and weights

in one coding sequence, we patterned triangular, square, plus-shaped, bracket-shaped

(Supplementary Movie 2), and circular PEG hydrogels into composite forms with

interconnected micro-components (Fig. 2g–j). To further demonstrate the scalability of the

technology, we coded gels into configurations of a variety of shapes, made from more than

20 building units (Fig. 2k). Similar manipulation was performed for gels of diverse shapes

made from gelatin methacrylate (GelMA) (Fig. 2l–t). To demonstrate the dynamic

orientation control capability of untethered micro-robots for manipulating and coding a

variety of microscale objects made of different materials and by different fabrication

processes, we fabricated a 20 mm × 20 mm × 4 mm reservoir and “tetris”-shaped PEG

hydrogel units (Supplementary Movie 3). Snapshots of manipulation and coding of these

PEG hydrogels in a rectangular reservoir at different time points are shown (Fig. 2u–y). This

task required the orientation and position of each incoming building unit to be adjusted

dynamically by the micro-robot as the geometry of available cavities changed dynamically

after each operation.

Versatility of micro-robotic coding

Untethered micro-robotic coding can also be applied to rigid micro-objects made from a

variety of materials. We demonstrated the coding of silicon chiplets (see Experimental
Methods for details) and PDMS blocks (Supplementary Fig. 2; see Experimental Methods
for details) into square, triangle, and rod patterns in Fig. 3, which shows snapshots of these

2D manipulation and coding processes. These results show that the presented micro-robotic

coding technology holds great potential for broader applications in the coding and repair of

microscale components.

Three-dimensional micro-robotic coding of material composition

The micro-robotic manipulation approach can also be extended to 3D coding. Here, layered

3D complex materials were created in a confined area using raised plateaus and ramps

(Supplementary Movie 4). This strategy allowed the micro-robot to simply push gels to a

desired height, where they can be placed onto an existing gel layer. The results, shown in

Fig. 4a–g, demonstrate three layers of hydrogels built into a pyramid shape. In Fig. 4e–f, the

upper two layers were moved to a new location as a demonstration of the reconfigurable

nature of the robotic coding method. A schematic illustration of the coded pyramid is shown

in Fig. 4g. In Fig. 4h–l, a heterogeneous structure was created with hydrogels encapsulating

copper rods of diameter 10 μm and polystyrene spheres of diameter 200 μm. These objects

were encased by gels on either side and on top to create complex repeating 3D morphologies
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using the versatility of an untethered micro-robot agent. Within a continuous process, the

micro-robot is able to incorporate 3D objects of various sizes and shapes into one structure.

Spatially-coded constructs for tissue culture

The patterning of cell-encapsulating hydrogels is an important task with broad applications

in regenerative medicine, cell-based pharmaceutical research and tissue engineering9.

Application of our untethered micro-robotic coding approach offers a high level of control

over complex tissue architectures. Figure 5 shows the results of cell viability and

proliferation using fluorescence imaging after robotic manipulation. Cell viability is

quantified in Fig. 5a–d for assemblies of three and four hydrogels containing NIH 3T3 cells.

Immunocytochemistry results for groups of two and three assembled gels are shown in Fig.

5e–g, demonstrating the proliferation of cells within the gels on day 4 after robotic coding.

Cells were stained with Ki67 (red), DAPI (blue) and Phalloidin (green) in Fig. 5e–g. To

show the heterogeneous coding capability of the approach, we performed 2D and 3D

assembly of human umbilical vein endothelial cells (HUVECs), 3T3 fibroblasts, and

cardiomyocyte encapsulating hydrogels (Fig. 5h–q). HUVEC, 3T3, and cardiomyocyte cells

were stained with Alexa 488 (green), DAPI (blue), and Propidium iodide (red), respectively.

Further, the cytocompatibility of the micro-robot is studied in Fig. 5r, where MTT assay

results were taken for cell suspensions which were directly exposed to a micro-robot for 5,

20, and 60 minutes (see MTT Assays Section). Results show that cells proliferated over days

(up to 7 days), and there is only statistically significant difference at day 1 among the control

and other groups. These results demonstrate that the micro-robotic coding method is viable

for biological constructs and can be used without causing long-term effects to the biological

growth.

Discussion

The current throughput of the teleoperated 3D micro-robotic assembly is limited by the use

of a single robot. Such throughput is suitable as a scientific tool for the study of

spatiotemporal effects of bioactive molecules or microenvironmental changes on tissue

growth or cellular processes20. For applications that require assembly operations of a larger

volume, the assembly throughput could be improved by assembly automation and parallel

actuation using a large number of micro-robots working as a team. In this direction, viable

methods are reported to both automate assembly of micro-parts using visual feedback21 and

control a team of magnetic micro-robots for addressable actuation towards parallel

assembly 22, 23, 24.

In comparison with pick-and-place manipulation methods, the presented contact-based

micromanipulation approach cannot grasp or lift the micro-components. However, with the

correct system of ramps and plateaus, it is expected that a 3D assembly of up to five layers

could be achieved using the presented method. The process to build multiple layers is

limited by the support of lower gel layers, and the ability of the micro-robot to push gels up

to higher layers.

Blocks that encapsulate different cell lines can be coded onto microchips by the presented

method to bioengineer microphysiological systems with broad applications. For instance,

spatiotemporal manipulation of the microenvironment can be used to investigate numerous

biological processes such as the effect of growth factors on various cell types. Such

applications can be investigated by positioning growth factor-encapsulating hydrogels in the

vicinity of other cell-encapsulating hydrogels. The growth factor-loaded gels can then be

removed or repositioned to investigate spatiotemporal effects. In a previous study8, it was

shown that placing a relatively large microgel next to a small one encapsulating a neuron

resulted in selective axonal growth towards the larger gel. The presented robotic approach
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here can potentially perform dynamical changes in such neural microenvironments, which

are not possible by photolithography or bioprinting. Therefore, the new capabilities allowing

reconfigurability and reversibility of microcomponent placement can broadly enable

researchers to study several transient biological problems in addition to bottom-up tissue

engineering.

In summary, we have presented an untethered micro-robotic approach that provides

temporal and spatial control to code micro- or millimeter-scale building blocks such as rigid

copper bars, polystyrene beads, silicon chiplets, and cell-encapsulating hydrogels into

reconfigurable heterogeneous materials in 2D and 3D. We demonstrated that the

manipulation method can be used with cell-encapsulating microgels without affecting cell

viability and proliferation. Magnetic micro-robots could provide additional functionality as

in-situ tools, for example by functionalizing with on-board cell-encapsulating hydrogels for

toxicity detection. Additionally, the coding and manipulation methodology developed here

can find broad applications in areas such as regenerative medicine, micro-physiological

system engineering, pharmaceutical research, biological research and microscale

manufacturing.

Methods

Fabrication of Microgels

PEG precursor solution was prepared by dissolving (20%, wt/wt) Poly(ethylene glycol)

dimethacrylate (PEGDMA; MW 1000; Polysciences) in Dulbecco’s phosphate-buffered

saline (DPBS, GIBCO). GelMA precursor solution was prepared by dissolving (5%, wt/wt)

gelatin methacrylate (GelMA) foam-like powder in Dulbecco’s phosphate-buffered saline

(DPBS, GIBCO). Then, 2-hydroxy-1-(4-(hydroxyethoxy)phenyl)-2-methyl-1-propanone

photoinitiator (1%, wt/wt, Irgacure 2959; CIBA Chemicals) was added to the prepolymer

solution. In this study, we used photomasks with several geometries (Fig. 2). A 50 μl droplet

of photocrosslinkable prepolymer solution was pipetted onto a glass slide covered by a cover

slip and separated by spacers (cover slip 25 × 25 mm2, thickness: 150 μm). The photomasks

were placed on the cover slip between the UV light and prepolymer. Another 25 × 25 mm2

coverslide was placed onto the droplet. Microgels were fabricated by exposing the gel

prepolymer solution to UV light (500 mW; at a height of 50 mm above the microgels) for 30

seconds, for polymerization to take place on the surface of the glass slide. Then, the

photomask and glass cover slip were removed. Using a scalpel, the microgels were removed

and left to soak in DPBS solution in a standard 60 mm Petri dish (Fisher Scientific).

Fabrication of Silicon Chiplets

Silicon chiplets (1 mm × 1 mm × 0.1 mm) were fabricated from 2-inch silicon wafers

(University Wafer, MA) by automatic dicing saw (Model DAD321, Disco Corp., Tokyo

Japan).

Fabrication of Polydimethylsiloxane (PDMS) Building Blocks

PDMS building blocks were fabricated using photolithography and rapid prototyping with

minor modifications25 (Supplementary Fig. 2). Briefly, an SU-8 master mold with a

thickness of 500 μm was fabricated on a 4-inch silicon wafer using standard

photolithography. Before use, the master mold was coated with a layer of Trichloro(1H,1H,

2H,2H-perfluorooctyl)silane (Sigma) to ease the release of the PDMS structure. PDMS

prepolymer was prepared by mixing PDMS precursor and curing agent with a ratio of 11:1.

The PDMS mold was fabricated by curing the prepolymer on the master mold at 80 °C for 1

hour. Before use, the PDMS mold was coated with a layer of Trichloro(1H,1H,2H,2H-

perfluorooctyl)silane to ease the release of the PDMS blocks. PDMS prepolymer for the
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building blocks was prepared by mixing PDMS precursor and curing agent with a ratio of

9:1. Sudan Red G (Sigma) was mixed with the prepolymer with a final concentration of

0.5% (w/w) for visualization of the PDMS blocks. The prepolymer was poured on the

PDMS mold, followed by removal of the excess prepolymer using a razor blade. The

prepolymer was cured at 80 °C for 1 hour in a oven. The final PDMS blocks were released

by bending the PDMS mold. PDMS blocks were made hydrophilic by oxygen plasma

treatment before coding experiments.

Experimental Setup

The fabricated building blocks (e.g., microgels, silicon chiplets, PDMS blocks) were

suspended in DPBS solution in petri dishes. They were coded into various complex shapes

with a system of eight electromagnets (Fig. 1c). Building units were directed towards a

prespecified location one-by-one through direct pushing by a magnetic untethered micro-

robot. Magnetic micro-robots are actuated by a set of independent electromagnetic coils,

aligned pointing towards a common center point, with an open space of approximately 10.4

cm. The coils are operated with an air or iron core, depending on the desired magnetic fields

and gradients. The maximum fields produced by the system driven at maximum current (19

A each) are 8.3 mT using air cores, and 24.4 mT using iron cores. Similarly, maximum field

spatial gradients are 0.34 T/m using air cores, and 1.02 T/m using iron cores. Fields and

field gradients are linearly related to the coil currents, and are measured using a Hall effect

sensor (Allegro A1321) with an error of about 0.1 mT. Control of the currents driving the

electromagnetic coils are performed by a PC with data acquisition system at a control

bandwidth of 20 kHz, and the coils are powered by linear electronic amplifiers (SyRen 25).

Magnetic micro-robots can be controlled by the magnetic coils surrounding the workspace.

The total magnetic torque T and force F that govern these interactions are:

for a micro-robot with magnetization M, where B is the total magnetic field from the coils.

Micro-robot actuation is performed by a combination of magnetic forces that directly pull in

the plane of the substrate, and magnetic torques that act to break the surface friction and

adhesion with the surface. These torques are applied as a sawtooth wave at a frequency of 10

to 50 Hz, and result in discrete micro-robot steps of about 10 to 300 μm depending on pulse

magnitude and frequency.

Fabrication of Magnetic Micro-Robots

In this work, individual micro-robots were fabricated to be magnetically hard, retaining their

internal magnetization in the absence of an externally applied magnetic field. Micro-robots

were fabricated in a batch process using soft photolithography and molding techniques26.

Micro-robots were composed of neodymium-iron-boron (NdFeB) particles in a polyurethane

(BJB Enterprise, ST-1087) matrix, with fabrication details given in27. In short, soft rubber

molds were made from replica molding of SU-8 features patterned using photolithography

on a silicon substrate (Supplementary Fig. 2). Micro-robots were created from the mold by

pouring the NdFeB-polyurethane slurry into the mold. Due to the high magnetic coercivity

of NdFeB (i.e. fields over 600 mT are required to demagnetize NdFeB), these micro-robots

were not subject to demagnetization from the relatively weak fields applied in this work.

Nominal micro-robot volume magnetization M was about 50 kA/m, as measured in an

alternating gradient force magnetometer (Princeton Measurements MicroMag 2900). The

molding process for all micro-robots was prone to variations in micro-robot geometry (up to
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about 10% from nominal), but the motion control method was not sensitive to small

geometric changes.

Secondary Cross-Linking to Stabilize the Coded Construct

The microgels were coded on the bottom surface of the reservoir and 10 μL prepolymer

solution was added to final construct. The microgels were exposed to secondary UV cross-

linking for 20 seconds to stabilize the shape of the structure.

Cell Encapsulation

NIH 3T3 fibroblasts were cultured in Dulbecco’s modified Eagle’s medium (DMEM;

Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS; GIBCO) in a 5% CO2

humidified incubator at 37 °C. To harvest and encapsulate cells, the cells were first

trypsinized with 1% trypsin (GIBCO) and centrifuged at 1000 rpm for 5 min. The cells were

suspended in 5% w/v GelMA dissolved in PBS (Gibco, Invitrogen) at a density of 1 × 107/

mL, and mixed with 0.5% w/v of photo-initiator (Igracure, Ciba). Cell-encapsulating

microgels were then fabricated via photo-crosslinking with 500 mW UV light for 20 sec

(Fig. 6). The cell-encapsulating microgels were first washed with DPBS and then, incubated

with live/dead dyes for 15 min. The live/dead dyes were prepared by diluting 2 ml of

Calcein AM, and 0.5 ml of Ethidium homodimer-1 (Molecular Probes) in 1 ml of DPBS.

Cells were labeled green with Calcein AM and labeled red with PKH26 Red Fluorescent cell

linker. The fluorescent images were taken using an inverted fluorescent microscope (Nikon,

TE2000). Immunocytochemistry images were taken after 4 days of culture at 37°C, 5% CO2

in humidified incubator.

Staining Hydrogels

To increase visibility during video recording, hydrogels were stained with food dye (Procion

Mx dye), which is composed of small molecules and has a minor interaction with the

polymer. The dye demonstrated enough interaction to stay for a sufficiently long time in the

hydrogel for the coding process and can be seen during the video recording.

Image Recording and Processing

The videos were recorded by a digital camera (Foculus F0134SB) connected to variable

magnification microscope lenses, providing up to a 26 mm × 20 mm field of view from the

top perspective. Cell viability was quantified by analyzing the images using public domain

NIH ImageJ program (developed at the U.S. National Institutes of Health and available at

http://rsb.info.nih.gov/nih/image/). To calculate micro-robot velocity from video, a tracking

algorithm based on a particle filter was used. This algorithm finds the most likely micro-

robot position, and filters the position using a low-pass butterworth filter to reduce tracking

noise.

Immunocytochemistry Staining for UV Cross-linked Gels

Proliferating cells encapsulated into hydrogels were detected with Ki67

immunocytochemistry. Assembled 3T3 cell encapsulating gels (Fig. 5a-g) were fixed with

1% paraformaldehyde for 1h at room temperature and washed. Gels were permeabilized

with 0.3% Triton-X 100 (Sigma), in 1% BSA (Sigma), for minimum 1h at room

temperature. Gels were stained with Ki67 (Ab16667, Abcam) overnight at 4°C. After

washing, gels were incubated with secondary antibody goat anti rabbit Alexa Fluor 564

(A11011, Invitrogen) for 2h at room temperature. Actin cytoskeleton was stained with

Phalloidin Alexa Fluor 488 (Invitrogen) and DAPI was used as nuclear counter staining.

After washing hydrogels were visualized under fluorescent microscope (Zeiss AXIO).
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Fluorescence staining for Heterogeneous Assemblies

HUVEC, 3T3 fibroblast, and chicken cardiomyocyte encapsulating hydrogels were fixed

with 1% paraformaldehyde for 1h at room temperature and washed. Gels were

permeabilized with 0.3% Triton-X 100 (Sigma), in 1% BSA (Sigma) blocking solution, for

minimum 1h at room temperature. Cardiomyocytes were stained with ethidium

homodimer-1 (Life Technologies). HUVECs were stained with Alexa Fluor 488 Phalloidin

(Life Technologies). 3T3 fibroblasts were stained with DAPI (Life Technologies). After

washing, hydrogels were imaged with fluorescent microscope (Zeiss AXIO). The stained

cell encapsulating gels were then assembled by the micro-robot with precision (Fig. 5h-q).

MTT Assays

NIH 3T3 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin mixture

in a humidified and 5% CO2 containing atmosphere at 37 °C.

For MTT viability assay, cells were seeded in a 96-well plate with the density of 105 cells/

ml (in a total volume of 100 μl cell suspension per well). When the cells were attached after

4 h, one micro-robot was placed into each well. The cells were incubated for 5, 20, and 60

min at 37 °C. After incubations, micro-robots were removed and cell culture medium was

aspirated from the wells for all samples. Then fresh cell culture medium and MTT reagent

(10% v/v) were added and incubated for 4 h. At the end of 4 h the resulting formazan was

dissolved in 100 μl MTT solubilizing reagent SDS. Absorbance of the induced formazan

dye was measured by BMG FLUOstar Galaxy - Multi-functional Microplate Reader on the

next day. All determinations were carried out in six repeats for each sample and three

independent experiments were carried out. MTT proliferation assays were performed 0, 1, 3,

5 and 7 days after the removal of micro-robots from cell suspensions. Cells without any

micro-robot presence were used as control.

Statistical Methods

Fluorescent intensity measurements obtained from MTT assay (n=12–15) were statistically

compared using parametric one way analysis of variance (ANOVA) with Tukey’s posthoc

test for multiple comparisons. Statistical significance threshold was set at 0.05 (p<0.05).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Fabrication and micro-robotic coding of cell-encapsulating hydrogels
(a) Cell-encapsulating hydrogel fabrication via Ultraviolet (UV) photocrosslinking. (b)
Fabricated hydrogels and micrograph of L-shaped hydrogels. Scale bar is 1 mm. (c)
Magnetic coil system used to drive magnetic micro-robots remotely. All system components

are shown with the coils in the operational position. Two coils hinge open to allow for

access to the workspace. (d) Motion of untethered magnetic micro-robot and coding of

building units, e.g. soft hydrogels or rigid micro-components. Scale bar is 1 mm. (e) The

pushing speed of a microgel (Gel style F in Supplementary Table 1) by a 750 μm × 750 μm

× 225 μm micro-robot moving on a planar glass surface in phosphate buffered saline (PBS)

solution. Error bars represent standard error of the mean. The micro-robot motion was

guided by a magnetic force of varying magnitude. Average speed is shown for pushing gel

with five runs executed at each pushing force. For pushing forces below 13 nN, the motion

is erratic in direction and magnitude so no data was taken. For pushing forces above 72 nN,

the motion is too fast to reliably push a microgel without flipping it on its edge.
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Figure 2. Two-dimensional micro-robotic coding of material composition
Micro-robotic coding and reconfiguration of Poly(ethylene glycol) dimethacrylate (PEG)

hydrogels (a–k) and gelatin methacrylate (GelMA) hydrogels (l–t) with various shapes into

complex planar constructs. The black object in each image is top-view of a crawling micro-

robot. To demonstrate the precision of micro-robotic manipulation, gels with several shapes

including square, triangle, circle, hexagon, bracket-shape, plus-shape and others were coded.

All of the experiments were performed in 20 mm × 20 mm × 4 mm chamber in phosphate

buffered saline (PBS). Continuous coding and reconfiguring sequences are shown in panes

(a–f), (g–h), (j–k), (l–p), and (r–t). Orientation and position control in untethered micro-

robotic coding of material composition (u–y). Snapshots of “tetris”-shaped PEG hydrogels

in a rectangular reservoir at different time points: 2:08 (u), 8:32 (v), 16:12 (w), 31:39 (x),

48:00 (y) in minutes:seconds format. Orientation and position of incoming hydrogels were

dynamically changed as the geometry of cavities dynamically changed. All the experiments

were performed in a 20 mm × 20 mm × 4 mm chamber. Scale bars are 1 mm.
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Figure 3. Versatility of micro-robotic coding
Micro-robotic coding of (a–f) square silicon chiplets into square and rod patterns, and (g–l)

hexagonal polydimethylsiloxane (PDMS) blocks into triangle and rod patterns. All the

experiments were performed in a 20 × 20 mm × 4 mm chamber. Snapshots of manipulation

of 1 mm × 1 mm square silicon chiplets at different time points (shown at the left corner).

The time stamp format is minutes:seconds. The magnetic micro-robots are shown in a blue

circle (a–f). Black object in each image (g–l) is top-view of the crawling magnetic micro-

robot. Scale bars are 1 mm.
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Figure 4. Three-dimensional micro-robotic coding of material composition
Micro-robotic creation of (a–g) a three-layer heterogeneous pyramid structure consisting of

16, 4, and 1 gel on each layer and (h–l) a heterogeneous structure consisting of

Poly(ethylene glycol) dimethacrylate (PEG) hydrogels which totally encase 100 μm

diameter copper cylinders and 200 μm diameter polystyrene spheres. All of the experiments

were performed in a 20 mm × 20 mm × 4 mm chamber in phosphate buffered saline (PBS).

Snapshots of manipulation stages are shown in each subfigure, with the completed structure

shown in schematic form in (g) and (l), corresponding to panes (e) and (k), respectively.

Gels were placed on the second layer by moving them over a polyester plateau, which is the

same thickness as the first layer of gels. The third layer was reached in (d) by pushing the

gels up a polyester ramp. The time points of images are: 2:45 (a), 12:48 (b), 19:24 (c), 21:19

(d), 22:28 (e), 25:22 (f), 0:00 (h), 3:40 (i), 13:36 (j), and 15:39 (k) in minutes:seconds

format. Scale bars are 1 mm.
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Figure 5. Spatially coded constructs for tissue culture
Fluorescence images of National Institutes of Health (NIH) 3T3 mouse embryonic fibroblast

cell encapsulating hydrogels after the assembly of (a) T-shape, (b) square-shape, (c) L-

shape, and (d) rod-shape constructs. Scale bars are 500 μm for (a–d). Green represents live

cells and red represents dead cells. (e–g) Immunocytochemistry of proliferating cells stained

with Ki67 (red), DAPI (blue) and Phalloidin (green) at day 4. (e) Cells stained with DAPI

and Phalloidin at 20x magnification. Scale bar is 100 μm. (f) Cells stained with Ki67 and

Phalloidin at 20x magnification. Scale bar is 100 μm. (g) Cells stained with Ki67, DAPI and

Phalloidin at 40x magnification. Scale bar is 40 μm. (a-g) Stainings were performed

following the assembly of hydrogels. (h–q) Two- and three-dimensional heterogeneous

assemblies of human umbilical vein endothelial cells (HUVEC), 3T3, and cardiomyocyte

encapsulating hydrogels. HUVECs, 3T3s, and cardiomyocytes are stained with Alexa 488

(green), DAPI (blue), and Propidium iodide (red), respectively. (h) Bright field and (i)
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fluorescence images of an assembly composed of circular and triangular gels. (j–o)
Fluorescence images of several two-dimensional heterogeneous assemblies of HUVEC,

3T3, and cardiomyocyte encapsulating hydrogels. (p) Schematic form and (q) fluorescence

image of three-dimensional heterogeneous assembly of HUVEC, 3T3, and cardiomyocyte

encapsulating hydrogels. Scale bars are 500 μm for (h–q). Stainings were performed before

the assembly of hydrogels for (h-q). Teleoperated assembly durations of (a-d, h-q) are

approximately 10 sec to 5 minute depending on the complexity of final shape. (r) MTT (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole) assay

results of 3T3 cell suspensions in which micro-robots were kept for 5 minute, 20 minute,

and 60 minute durations. The positive control represents the cells that were incubated

without any micro-robot presence. Results are normalized with day 0 absorbance values.

Statistical analysis was only performed between positive control and (5, 20, 60) min cases.

Brackets connecting groups indicate statistically significant difference (n = 6, p < 0.05).

Error bars represent standard error of the mean.
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