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Abstract

In this paper, we address the problem of unsupervised

learning of usual patterns of activities in an area under

surveillance and detecting deviant patterns. We use video

epitomes for segmenting foreground objects from back-

ground and obtain an approximate shape, trajectory and

temporal information in the form of space-time patches. We

apply pLSA for finding correlations among these patches to

learn usual activities in the scene. We also extend pLSA to

classify a novel video as usual or unusual.

1. Introduction

In this paper, we address the problem of unsupervised

learning of usual patterns of activities and detecting deviant

patterns from a surveillance video. The activity patterns are

described by the shape and trajectories of moving objects in

the video sequences. We use video epitomes [3] to segment

the foreground object in the form of space-time patches and

pLSA (probabilistic Latent Semantic Indexing) [5] to find

spatio-temporal correlations among these patches. The spa-

tial correlations among the patches in a frame define the

approximate shape of the object while the spatio-temporal

correlations across frames describes the trajectory. We also

use pLSA to discover landmarks and correlations among

these in the area under surveillance. By landmarks, we

mean common locations at which people enter, exit or are

static. The correlations among these landmarks provide in-

formation about the common paths taken in the scene. The

main contributions of our work are:

1. Segmentation of foreground objects from low resolu-

tion video epitomes, that gives us both the approximate

shape and the trajectory of the objects in the form of

space-time patches (4.2).

2. Spatio-temporal correlations among related patches

using pLSA for learning usual activity patterns

in the video without performing high reolution

segmentation(4.3).

3. Correlations among short tracks using pLSA to find the

common paths and landmarks in the scene (4.3).

4. Extension of pLSA for classifying a novel video as

usual or unusual.

In our framework, we use video epitomes [3] because an

epitome represents the complete original video at a low res-

olution and captures nearly all the spatial and temporal in-

formation of the video. Moreover, a video epitome is the

smallest compressed form of a video from which the com-

plete video can be reconstructed and is also capable of re-

constructing lost frames. It is to be noted that by using video

epitomes for segmentation, the complete shape, trajectory

and temporal information of the foreground objects in the

scene can be obtained in the form of space time patches,

inspite of lost frames in the original video.

We use pLSA for finding spatio-temporal correlations

among the space time foreground patches and also among

the landmarks and use these correlations to model the usual

activities in the scene. The spatio-temporal correlations

give us the approximate shape and trajectory of the fore-

ground object. Moreover, pLSA also correlates short bro-

ken tracks on the same path and overcomes the shortcom-

ings of tracking based unusual activity detection methods,

that fail when the tracks are not complete. This also gives

us the ability to break the video into fixed sized clips ran-

domly, where the clips need not contain the complete tra-

jectory of an object. This makes the system robust with re-

spect to small broken tracks which occur due to undetected

features and variations in segmented shape of foreground

object. It also enables detecting unusual activities based

on both the shape and the trajectory of the object without

performing high resolution segmentation. For example, if

a person crawls on a usual trajectory instead of walking,

it shall be detected as an unusual activity (if it is an un-

common activity in that area). This is advantageous over

detecting unusual activities based on trajectories alone.



Our framework extends pLSA to classify a novel video

as usual or unusual based on the shape and trajectory infor-

mation found by segmentation. To do so, a new class called

unusual class, is introduced in addition to the classes found

by pLSA during the training phase. Then, a novel video clip

is classified into one of these classes. A video is unusual if

it is classified to the unusual class or if its log-likelihood is

below a threshold in the usual class to which it is classified.

In the next section, we discuss the related work. In Sec.

3, an overview of video epitomes is given. Sec. 4.1 gives

how clips are generated. In Sec. 4.2 we present our segmen-

tation procedure. Sec. 4.3 discusses the learning procedure

that uses pLSA to learn the common paths in the scene and

correlations between trajectories. In Sec. 4.4, our exten-

sion of pLSA for classifying a novel video clip as usual or

unusual is discussed. In Sec. 5, we present the results and

conclude in Sec. 6.

2. Related Work

Activity analysis in the context of visual surveillance has

become an important area of research recently [1, 14, 12,

15]. The Hidden Markov Models (HMMs) and its vari-

ants like parametrized HMM, coupled HMM have been a

popular technique for activity analysis [4, 10, 11, 2]. An-

other popular technique for activity recognition is Bayesian

networks [6, 7, 17, 16]. In [6, 7], supervised training us-

ing Bayesian formulation is used for estimating the param-

eters of a multi-layered FSM model that is proposed for ac-

tivity recognition. Very recently, Bayesian framework has

been used for action recognition using ballistic dynamics

[18]. This method is based on psycho-kinesiological obser-

vations,that is, on the ballistic nature of human movements.

These methods are based on feature detection and tracking

whereas our method is independent of both these. Since our

method uses video epitomes and pLSA we can work with

videos with missing frames which leads to loss of trajectory

information of the objects.

In statistical methods for activity recognition and un-

usual activity analysis, the notion that an event is normal

is automatically learnt. On this basis, a novel activity is

classified as usual or unusual. This is more realistic since

in real life scenarios, it is very difficult to predefine all pos-

sible usual and unusual activities. Many a times an activity

is unusual because there are no previous occurrences of it.

Authors in [19], use unsupervised learning for detecting un-

usual events. We also believe that for a normal event, many

similar events should be present in the database. Also, if

there are no similar events in the database then the event is

unusual. But unlike [19], our method does not extract any

features but uses only the foreground patches.

In [9], the aim is to detect irregularities in images and

videos. It is posed as an inference process and belief prop-

agation is applied to solve it. Each video is divided into

a multitude of space time patches at multiple scales and

their descriptors, which capture the local information about

the appearance or behavior, are stored in a database. To

classify a new observed video, patch descriptors from the

query video are compared with the patch descriptors in the

database for a similar configuration of patches. If the re-

gions in the query cannot be explained by the database

patches, then the query is regarded as suspicious. Authors

in [13], apply pLSA model with ‘bag of video words’ rep-

resentation for human action recognition. The video words

are extracted using space time interest points and do not rep-

resent the complete foreground object. They use pLSA to

categorize and localize the human actions in a video. Our

work is fundamentally different from theirs in that our aim

is to learn the usual activity patterns in a scene and not rec-

ognize/ characterize human actions. Like [9] and unlike

[13], we do not use any features extracted from the video.

But unlike [9], we work with foreground space time patches

of fixed size, which are extracted using the epitome of the

video. This gives us the advantage of working with videos

with lost frames. Our method uses pLSA for finding cor-

relations among these patches in space as well as in time.

This allows it to detect unusual activities based on both the

shape and the trajectory as well as learn the correlations be-

tween the landmarks in the scene. Therefore, our method

is capable of detecting irregularities in behavior and learn-

ing the common paths and shapes in the scene. Moreover,

we extend pLSA for classifying a novel video as containing

usual or unusual activities.

3. Background

Recently, video epitomes were introduced by Jojic and

Frey [3]. We give a brief introduction to video epitomes for

the sake of completeness.

3.1. Video Epitome

A video epitome is a compact representation of a video

which is smaller in both space and time as compared to the

input video. The epitome is learnt from a large collection

of 3D patches ( i.e. patches in both space and time) from

the input video and captures nearly all spatial and tempo-

ral patterns in the video. These epitomes have been used

for various reconstruction tasks such as dropped frame re-

covery, video in-painting, video super-resolution, etc. An

input video can be considered as a 3D array vx,y,t of real

valued pixels where x ∈ {1, ..., X}, y ∈ {1, ..., Y } and

t ∈ {1, ..., T}. On the other hand, it’s epitome is of size

Xe × Ye × Te where XeYeZe < XY T and each pixel in

the epitome corresponds to a Gaussian probability distribu-

tion which is parametrized by a mean µx,y,t and a variance



φx,y,t.

ex,y,t(.) = N(.;µx,y,t, φx,y,t) (1)

A particular pixel value v can be evaluated under any of

these probability distributions. To build the epitome, first

sample 3D patches are drawn from the input video and

then a learning algorithm is applied to construct the epit-

ome. Each 3D patch describes a set of coordinates S. For

example, a patch starting at location (5, 8, 7), (where 7 is

the frame number (5, 8) are x and y coordinates) of size

say, 20 × 20 × 4 describes the set of coordinates S =
{5, ..., 24}×{8, ..., 27}×{7, ..., 10}. Here S(k) denotes the

kth coordinate in the patch, for example, S(1) = (5, 8, 7).
Let vS denote the observed pixel values in the video cube

described by the set of coordinates S in the input video and

cS denote the video cube predicted by the epitome for same

coordinates S in input video. The goal of the learning al-

gorithm is to make the predicted cubes similar to original

cubes i.e. cS ≈ vS . The cube cS is predicted using a set of

distributions in the epitome. Let eT denote the set of distri-

butions from epitome e at coordinates T . Assuming that T
and S are of the same size, the probability density evaluated

using distributions at coordinates T and predicted values cS

is eT (cS).

p(cS |T ) = eT (cS) =

|T |∏

k=1

eT (k)cS(k) (2)

The above equation describes the probability model for an

individual cube. However, for overlapping coordinates S
and S′ in the video, predicted video cubes cS and cS′ should

make similar predictions for overlapping pixels. We now

explain how the whole video is generated from the epitome.

Consider a video pixel vx,y,t represented as a dot in Fig.

1. The overlapping video cubes in the input video contain-

ing (x, y, t) are {Si1 ,. . ., Sin
}, two of which are shown in

the input video. These predicted cubes,{cSi1
,. . .,cSin

} are

generated from the epitome by randomly selecting locations

in the epitomes {Ti1 , . . . , Tin
}, represented by dots in the

video epitome, and then generating the pixel values for the

predicted cubes under the distribution given by the epitome

for the locations, eTi1
(cSi1

), . . . , eTin
(cSin

). Each of these

cubes cSi1
, make predictions for the pixel vx,y,t and these

predictions are combined to generate a single pixel value.

We discuss in Section4.2 how we use video epitomes for

segmenting the foreground from the background.

4. Activity modeling using pLSA

In order to learn correlations between foreground epit-

ome patches (words) and build models for usual activity

patches using pLSA, we need to define words and docu-

ments.

Figure 1. Reconstruction of video from its

epitome [3]

Figure 2. Result of segmentation performed

using video epitomes.

4.1. Clip Generation

To generate a document, we divide a video into short

clips of d frames each. Since video epitomes are used for

the purpose of segmentation, dropping frames while creat-

ing these documents does not effect the result. Therefore,

the clips can also be generated by dropping frames and

taking alternate or every third frame from a longer clip such

that every document is of length d frames.

4.2. Segmentation

We use video epitomes for segmenting the foreground

objects from the background. Suppose Eb is the epitome

of a background clip Vb and Ea is the epitome of a clip Va

having some activity. Assume that the epitomes are of size

Xe × Ye × Te and were constructed using patches of size

Px × Py × Pz . The premise of our segmentation procedure



is that if a 3D patch of Ea predicts a background 3D patch

of Va then it is likely to have a high correlation with one

of the 3D patches of Eb. Similarly, if a 3D patch of Ea

predicts a foreground patch of Va then it will have low cor-

relation with all the possible patches of Eb since patches of

Eb can only predict the background. Therefore, foreground

epitome patches can be computed from epitome Ea and Eb

by using an appropriate threshold on the correlation mea-

sure between patches from the two epitomes. Since epitome

patches are randomly placed, a patch from Ea would have

to be correlated with each patch of Eb in a sliding window

fashion. To do this efficiently, first we reconstruct the videos

Va and Vb from epitomes Ea and Eb respectively. After re-

construction, we hash the epitome patches Pea that predict a

patch at position T in Va and similarly, for epitome patches

Peb that predict the patch at position T in Vb. Then, correla-

tion is found between patches from Ea and Eb that predict a

video cube at the same position T and a threshold is put over

the correlations obtained to get the foreground patch loca-

tions. Since we use a common threshold for all video clips,

it is possible that some of the foreground patches remain

undetected. We show in the next section that using pLSA

we are able to discover the undetected foreground patches.

4.3. Learning spatio-temporal correlations
through pLSA

We use pLSA to obtain spatio-temporal correlations

among the foreground patches. This overcomes the two

main issues of inaccurate segmentation and broken tracks.

Since segmentation is performed at a coarse level, some

foreground patches remain undetected. Spatial correlations

among the patches from all the clips in the training data

helps in correlating patches that belong to the same ob-

ject but are not connected to each other because of miss-

ing patches. The spatio-temporal correlations among the

patches give the approximate shape and trajectory of the

objects. pLSA performs spatio-temporal clustering of these

space-time patches and these clusters represent the usual ac-

tivity patterns in the scene. We now explain the learning

procedure.

Document Generation: The documents are the clips which

are generated as described in Sec. 4.1. We assume that over-

lapping patches denote one object and if there are more than

one segmented object in a clip, then we create a separate

document for each of them.

Codebook generation: We find the locations of the space-

time patches in the original video clip by reconstructing the

video from its epitome. Let Pi denote the collection of fore-

ground patches obtained for clip i. Then, each Pi is a Ni×3
matrix where Ni is the number of foreground patches in clip

i. Each row (xj , yj , tj) corresponds to the location of the

jth foreground patch in the reconstructed video. The vocab-

ulary is built by clustering on the starting location (x, y, t)
of all the foreground patches across all the video clips. This

collection of patches, C is an N × 3 matrix where N is

the total number of foreground patches taken over all video

clips. Each cluster obtained is represented as a word as

shown in Fig. 3.

Learning process: We now explain how this clustering

Figure 3. The black patches in the images are

the sample words from the vocabulary.

Figure 4. An example situation

over patches and pLSA helps us in learning the shape and

paths taken by the people in the scene. The documents in

this case are the video clips and the foreground patches in it

form the words in the document. Suppose the scene is as de-

scribed in Fig. 4 where people walk from left to right. The

two clips show the various positions of people at different

times. But none of the clips can alone describe the com-

plete path taken. This situation is similar to the tracking

problem where it is difficult to obtain the complete trajec-

tories. pLSA can discover the complete path through these

small clips because both these clips will have some com-

mon words. For example, as indicated in Fig. 4, patch P1

and P2 are likely to be in one cluster and thus, represent the

same word across those two clips. Many more words will be

common due to patches obtained on the arms and legs and

hence, the two documents are likely to be classified into the

same class. The co-occurrence matrix to be used by pLSA

is built as follows :-

For all patches in C

• Identify the document d of the patch

• Identify the word (or cluster) w to which the patch be-

longs

• Update n(d, w) = n(d, w) + 1;



Through pLSA, we are able to discover the various hidden

classes z which capture motion of the foreground patches as

well as their spatial arrangement. Hence, each of the video

clips can be classified into one of the hidden classes using

the standard Expectation Maximization algorithm where the

E and the M step are as given below: E-step

P(z|w, d) =
P(w|z)P(z|d)∑

z∈Z P(w|z)P(z|d)
(3)

M-step

P(w|z) =

∑
d∈D n(d, w)P(z|w, d)∑

w∈W

∑
d∈D n(d, w)P(z|w, d)

(4)

P(z|d) =

∑
w∈W n(d, w)P(z|w, d)∑

z∈Z

∑
w∈W n(d, w)P(z|w, d)

(5)

Here, P (z|d) is the probability of a topic z occurring in doc-

ument d, P (w|z) is the probability of a word w occurring in

a topic z and P (z|w, d) is the probability of a topic z given

the word w in document d. After convergence, we assign a

topic to the words as follows:

topic(w) = argmaxz∈Z{P (w|z)} (6)

Each collection of words Ci = {w|topic(w) = i} gives

us the correlation between the different landmarks in the

scene.

Shape recovery using pLSA: As mentioned before, due

to a threshold on the correlation measure, sometimes we

are not able to get all the foreground patches in some of the

clips. Assume that for some of the clips, say a collection

Scorrect, we have obtained all the foreground patches. We

recover lost foreground patches for a clip C with the help

of Scorrect. This can be done because through pLSA we

learn the spatial arrangement of patches on an object using

Scorrect. We now describe how these foreground patches

can be recovered for a clip C using the probabilities com-

puted as above. Assume that a clip C for which we want

to recover lost foreground patches, gets classified to class

z. We pick a clip C ′ from class z which has the maximum

probability P (z|d) and look at the spatial arrangement of

patches in a particular frame of C ′. Suppose, at frame i
in the clip C ′ there exists a collection of 2D foreground

patches P . We compute the centroid c of P and relative

position of patches Ri from the centroid as follows:

c = (1/|P |)(
∑

i

xi,
∑

i

yi) (7)

Ri = (xi − cx, yi − cy) (8)

Suppose now we want to recover lost foreground patches

for clip C. For each frame in C we compute the centroid

cC of foreground patches in that frame as explained above.

Figure 5. Recovered foreground patches us-

ing pLSA.

Then, we generate a new collection of patches Ni for this

frame as follows:

Ni = Ri + cC (9)

These generated patches Ni could possibly be the fore-

ground patches for the particular frame in C. We declare a

generated patch Pgen to be a foreground patch using back-

ground subtraction, that is, if the following holds:

|Pgen − Pback| > ǫ (10)

where Pback is the background epitome patch correspond-

ing to the coordinates described by Pgen and ǫ is an appro-

priate threshold. In Fig. 5, the left column shows that some-

times some foreground patches are not recovered during

segmentation. The right column shows the corresponding

frames with the foreground patches recovered using pLSA.

4.4. Novel video classification

After we have learnt the probabilities as discussed above,

we use them to classify a novel video as usual or unusual.

An unusual video clip which cannot be explained by our

training set and therefore, is marked as suspicious. In order

to classify a novel video or a collection of novel videos,

we first segment out the foreground as explained earlier and

then build a co-occurrence matrix as follows:

For each patch P in the novel video

• Identify the word w closest to the patch.

• If d(P,w) > r(w) then n(d, wu) = n(d, wu) + 1

• Otherwise, n(d, w) = n(d, w) + 1



where, d(P,w) denotes the Euclidean distance between the

location of patch P and cluster center w, r(w) denotes the

radius of the cluster w and wu represents an unusual word

that has not been seen in training. Since wu is not in our

training vocabulary, we add this word and update the prob-

ability P (wu, z) as 0 for all z. Also, we add one more hid-

den class zu which represents an unusual class such that

P (w, zu) = 0 and P (wu, zu) = 1.

We now apply the EM algorithm again, except that we

do not update P (w|z) but use the values computed from the

learning process. If a novel video gets classified into the

unusual class zu, then it is marked as suspicious. However,

this is not the only case when a novel video is marked sus-

picious. A novel video can be unusual even if it does not

contain unusual words. Hence, we also mark a test video

as suspicious if it’s likelihood is low compared to the like-

lihood of the training documents. An example of such a

document is provided in the next section. Log-likelihood of

a document d is computed from the estimated probabilities

P (w|z) and P (z|d) as follows:

LL(d) =
∑

w∈W

N (d, w) log(
∑

z∈Z

P (w|z)P (z|d)) (11)

Low likelihood implies that the document cannot be ex-

plained by the training data with much confidence.

5. Results

We conducted experiments in both outdoor and indoor

scenes. We have used the video epitome code available at

[8] for learning the epitome and reconstructing the video

clip from its epitome.

5.1. Results: Indoor scene

In the indoor scenario, we collected video data of over

four days and made 49 clips of size 320 × 240 × 20 as the

training data. The size of the epitomes used is 45× 50× 6.

These got classified to 4 hidden classes using pLSA. Each

of these classes correspond to the structure of patches and

the path taken by the objects. A few of the frames from

the different documents belonging to the hidden class 2 are

shown in the Fig. 6. Class 2 contains documents in all of

which people walk in the center of the corridor away from

the camera. Fig. 7 shows a few frames from class 3. In these

documents people walk along the right wall of the corridor

towards the camera. This shows that pLSA learns the differ-

ent classes based on the position of the space time patches.

As shown in Fig. 8, we have been able to obtain the corre-

lations between various landmarks in the scene. Red point

denotes the starting point of a trajectory while the blue point

denotes the endpoint. Each trajectory in Fig. 8(a) represents

Figure 6. Frames of documents in class 2 of

the indoor scene. Frames in a row are from

the same document.

Figure 7. Frames of documents belonging to

class 3. Frames in a row are from the same

document.

a clip or document belonging to a particular class. These

trajectories are obtained by computing the centroid of the

foreground patches on a frame by frame basis. No feature

tracking has been performed here. In both Fig. 8(a) and (b),

none of the trajectories represent a complete path taken by

the people but the correlations between these broken trajec-

tories show the complete paths that are commonly walked

across in the corridor. They also show that fixed sized clips

that are randomly generated can be used for the learning

process and it is not required that a clip should contain the

complete path taken by a person.

Fig. 9 shows frames from the unusual activity clips

which are provided as the novel test videos to our system.

The video corresponding to activity in Fig 9(a) gets classi-

fied to the unusual class since it contains too many unusual

words. These words are unusual because no patches occur

at the height of the ceiling in the training clips. The video

clip corresponding to Fig. 9(c) is unusual because crawling

is not a usual activity as depicted by its low log-likelihood.

The clip corresponding to Fig. 9(d) is unusual because in

general, people do not walks along the width of the corri-

dor.



Figure 8. Correlations obtained for two differ-

ent classes.

Figure 9. Examples of unusual activities in

the indoor scene.

Figure 10. Plot of the log-likelihoods of the

documents in the indoor experiment

In the plot shown in Fig. 10, shows the log-likelihood of

the documents. The green crosses are the log-likelihood of

the training data while the red circles at the bottom of the

curve correspond to the unusual clips shown in Figs. 9(b),

(c) and (d). The blue stars (‘*’) are the usual test cases that

Figure 11. Frames from documents in class 2
for the outdoor scene. Each row corresponds

to frames from the same document.

Figure 12. Frames from documents in class 5
for the outdoor scene. Each row corresponds

to frames from the same document.

were supplied to the detection system along with unusual

clips. They have been correctly classified as usual activities.

The runtime is 30 minutes for epitome generation for each

clip on a dual core 4GB RAM machine and 1 minute for

the learning and classification on a dual core 1GB RAM

machine.

5.2. Results: Outdoor scene

Figure 13. Correlations between various

landmarks in the scene as described by the

different classes.

In the experiment in an outdoor scene, the training data

consisted of 75 clips of size 320 × 240 × 20 that were ran-

domly generated. Here, too the size of the epitomes used



is 45 × 50 × 6. These got classified to 6 hidden classes

through pLSA. Fig. 11 shows a few frames from the docu-

ments that were classified into class 2. Documents that got

classified into class 5 are shown in Fig. 12. Even when there

are multiple objects in the same clip, the corresponding doc-

uments contain only one segmented object each. Fig. 13

shows the correlations between different landmarks in the

scene that have been captured by using pLSA. Some un-

usual activities in the scene are shown in Fig. 14. The clip

corresponding to Fig. 14(a) is classified to the unusual class

while the others are classified as unusual due to their low

log-likelihood measure. In clip of Fig. 14(b) the person is

taking an unusual path whereas in clip of Fig. 14(c) the per-

son is crawling, which is an unusual activity in this scene.

Fig. 15 gives the plot of the log likelihood of the documents.

Figure 14. Unusual activities in the outdoor

environment.

Figure 15. Plot of log-likelihood of the docu-

ments in the outdoor experiment

The green crosses correspond to the log-likelihood of the

training clips, the red circles correspond to the unusual ac-

tivities including those in Fig. 14(b) and (c) and the blue

stars correspond to the test cases which depict usual activ-

ities. The runtime for epitome generation of each clip is

the same as before and is 2.5 minutes for the learning and

classification on a dual core 1GB RAM machine.

6. Conclusion

We see that video epitomes can be used for segmenting

the foreground objects in the scene in the form of space time

patches. The correlations among these space time patches

define the approximate shape and trajectory of the object.

We have used pLSA to find the spatio-temporal correla-

tions among the patches. This has allowed us to learn the

usual activity patterns on the basis of both shape and tra-

jectory of the objects. Our framework finds the correlations

among the landmarks in the scene as well as finds the com-

mon paths taken in the scene, using pLSA. For classifying a

novel video clip as usual or unusual, we have presented an

extension of pLSA.
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