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We study the nonlocal response of a confined electron gas within the hydrodynamical Drude model. We address

the question as to whether plasmonic nanostructures exhibit nonlocal resonances that have no counterpart in the

local-response Drude model. Avoiding the usual quasistatic approximation, we find that such resonances do

indeed occur, but only above the plasma frequency. Thus the recently found nonlocal resonances at optical

frequencies for very small structures, obtained within quasistatic approximation, are unphysical. As a specific

example we consider nanosized metallic cylinders, for which extinction cross sections and field distributions can

be calculated analytically.

DOI: 10.1103/PhysRevB.84.121412 PACS number(s): 78.67.Uh, 71.45.Gm, 71.45.Lr, 78.67.Bf

Nanoplasmonics1,2 is presently entering an era where the

metallic structures offer nanoscale features that will eventually

allow both photons and electrons to exhibit their full wave na-

ture. This regime challenges the existing theoretical framework

resting on a local-response picture using bulk-material param-

eters. In tiny metallic nanostructures, quantum confinement3–7

and nonlocal response8–18 are believed to change the collective

plasmonic behavior with resulting strong optical fingerprints

and far-reaching consequences for, e.g., field enhancement and

extinction cross sections. Within nonlocal response, Maxwell’s

constitutive relation between the displacement and the electric

fields reads

D(r,ω) = ε0

∫

d r
′
ε(r,r ′,ω) · E(r

′,ω). (1)

The dielectric tensor ε(r,r ′,ω) reduces to ε(r,ω)δ(r − r ′) in

the local-response limit. Historically, there has been a strong

emphasis on nonlocal response in extended systems with

translational invariance (TI),10 where a k-space representation

is useful. However, for the present problem of metallic

nanostructures, TI is broken and a real-space description is

called for.

Recent theoretical studies of nanoscale plasmonic struc-

tures have predicted considerable differences in the field

distributions and scattering cross sections between local

and nonlocal response theories, both in numerical imple-

mentations of a simplified hydrodynamic Drude model,14–18

and in corresponding analytical calculations.15 Importantly,

additional resonances of the free-electron plasma were found,

also at optical frequencies, which have no counterparts in

local-response theories. Such resonances have already gained

interest both from a fundamental7 and an applied19 perspective.

At present, the status of these optical nonlocal resonances is

unclear, since in Ref. 13 the same nonlocal model was used as

in Refs. 14–18, and yet no corresponding modes were found

at visible frequencies. Resolving this issue is important for the

engineering of ultrasmall plasmonic structures with optimized

functionalities.19–21

In this Rapid Communication we report that unusual

resonances due to nonlocal response do exist in nanoplasmonic

structures, but only above the plasma frequency, not in the

visible. We illustrate this property of arbitrary plasmonic

structures by exact calculations for metallic cylinders. We

also clarify that different implementations of the common

quasistatic approximation9,11 are the reason for the conflicting

results in Refs. 13–18. Here we refrain from making this

approximation altogether, and by comparison analyze the

validity and implementation of the quasistatic approximation

in the hydrodynamic model.

The hydrodynamic Drude model. We express the collective

motion of electrons in an inhomogeneous medium in terms of

the electron density n(r,t) and the hydrodynamical velocity

v(r,t).8 Under the influence of macroscopic electromagnetic

fields E(r,t) and B(r,t), the hydrodynamic model is defined

via10

[∂t + v · ∇] v = −γ v −
e

m
[E + v × B] −

β2

n
∇n, (2)

along with the continuity equation ∂tn = −∇ · (nv), express-

ing charge conservation. In the right-hand side of Eq. (2), the

γ term represents damping, the second term is the Lorentz

force, while the third term is due to the internal kinetic energy

of the electron gas, here described within the Thomas-Fermi

model, with β proportional to the Fermi velocity vF. In analogy

with hydrodynamics, the third term represents a pressure that

gives rise to a nonlocal dielectric tensor, since energy may

be transported by mechanisms other than electromagnetic

waves.

We follow the usual approach11 to solve Eq. (2) and the

continuity equation, by expanding the physical fields in a

zeroth-order static term, where, e.g., n0 is the homogeneous

static electron density, and a small (by assumption) first-

order dynamic term, thereby linearizing the equations. In the

frequency domain, we obtain

β2
∇[∇ · J] + ω(ω + iγ ) J = iωω2

pε0 E (3a)

for a homogeneous medium, where J(r) = −en0v(r) is

the current density, and ωp is the plasma frequency which

also enters the Drude local-response function ε(ω) = 1 −
ω2

p/[ω(ω + iγ )]. We focus on the plasma, leaving out bulk

interband effects present in real metals that could be easily

taken into account,14,22 as well as band-bending effects at the

metal surface.
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The electromagnetic wave equation. The retarded linearized

hydrodynamic model is then fully described by Eq. (3a),

together with the Maxwell wave equation

∇ × ∇ × E =
ω2

c2
E + iωµ0 J . (3b)

In order to see that these coupled equations (3) indeed describe

a nonlocal dielectric response, one can in Eq. (3b) rewrite the

current density J as an integral over the Green’s tensor of

Eq. (3a) and the electric field, whereby the nonlocal dielectric

tensor of Eq. (1) can be identified.

In a local-response description it is commonplace to

introduce the quasistatic or curl-free assumption that ∇ × E =
0.23 This well-established approximation lies at the heart of

most treatments and interpretations of electromagnetic wave

interactions with subwavelength structures. Intuitively, one

might expect that it can be extended to the nonlocal case and in-

deed several nonlocal treatments use this assumption.9,11,13–17

However, as we shall demonstrate, one should proceed with

care.

Three models. Here we solve Eqs. (3) directly, without

further assumptions or approximations. We also compare

the nonlocal model with two other models obtained by

further assumptions. The curl-free nonlocal model enforces

the condition ∇ × E = 0, which with Eq. (3a) implies that

also ∇ × J = 0 in the medium. For the differential-operator

term in Eq. (3a), from now on denoted L̂J , this has the

consequence that ∇[∇·] simplifies to the Laplace operator ∇
2,

which gives the model used by Ruppin in the context of exciton

physics in Ref. 27, and recently in plasmonics by McMahon

et al.14–17 and also by ourselves.18 Finally, by assuming L̂J = 0

in the hydrodynamic treatment (3a), the familiar local model
is obtained, with J and E related by Ohm’s law.

We assume that the static density of electrons n0 vanishes

outside the metal of volume V , while it is constant and equal

to the bulk value inside V , thus neglecting tunneling effects

and inhomogeneous electron distributions associated with

quantum confinement.3,6 As a consequence, J = 0 outside

V for all three models.

Boundary conditions. In the local model the current J

has the same the spatial dependence as the E field. Thus,

in this case there are no additional boundary conditions

(ABCs) to those already used in Maxwell’s equations. For

the nonlocal-response models, on the other hand, ABCs are

in general needed.10,16,24–26 From discussions in the literature

it might appear that the number of necessary ABCs is a

subtle issue, but we emphasize that there should be no

ambiguity. The crucial point is that the required number of

ABCs depends on the assumed static electron density profile

at the boundaries.26 For the present problem with the electron

density vanishing identically outside the metal, only one ABC

is needed in the nonlocal model to obtain unique solutions,26

and it is readily found from the continuity equation and

Gauss’ theorem: n̂ · J = 0 on the boundary, where n̂ is a

normal vector to the surface, i.e., the normal-component of

the current vanishes,10,24,26 for all three models. On the other

hand, in general, the tangential current n̂ × J is nonzero. This

“slip” of the current is not surprising, since the hydrodynamic

equation (2) describes the plasma as a nonviscous fluid.

TABLE I. Summary of the three different response models. V is

the volume of the nanostructure, and ∂V its boundary.

r ∈ V r ∈ ∂V r �∈ V

∇ × J L̂J n̂ · J n̂ × J J

Local �=0 0 0 �=0 0

Nonlocal �=0 β2
∇[∇·] 0 �=0 0

Nonlocal

(curl-free)

0 β2
∇

2 0 0 0

Likewise, in several implementations of the quasistatic

approximation, no further ABCs are needed to uniquely

determine the electric field and current density.11,13 In contrast,

in the curl-free nonlocal model of Refs. 14–18 and 27,

one more ABC is needed. It is assumed that the tangential

components of J vanish at the boundary (n̂ × J = 0), so that

both normal and tangential components of the current field

vanish on the boundary. In the different context of exciton

physics27 these are often referred to as Pekar’s additional

boundary conditions. There, the vanishing of the tangential

boundary currents is motivated by the physical assumption that

exciton wave functions vanish on the boundary.27,28 Instead,

in the hydrodynamical theory of metals, the ABC n̂ × J = 0

seems more ad hoc: not a direct consequence of the quasi-static

approximation, and not correct if that approximation is not

made. The different boundary conditions are summarized in

Table I.

Extinction cross section of metallic nanowires. To illustrate

the surprisingly different physical consequences of the three

models, we consider light scattering by a nanowire. Rather

than solving Eqs. (3) numerically for a general cross-sectional

geometry, we here limit our analysis to cylindrical wires

whereby significant analytical progress is possible. We use an

extended Mie theory, developed by Ruppin,27,29 to calculate

the extinction cross section σext of an infinitely long spatially

dispersive cylindrical metal nanowire in vacuum. Outside the

wire there are incoming and scattered fields (both divergence

free), whereas inside the wire both divergence-free and curl-

free modes can be excited, the latter type only in the case of

nonlocal response. The cross section is30

σext = −
2

k0a

∞
∑

n=−∞
Re{an}, (4)

where a is the radius, k0 = ω/c is the vacuum wave vector,

and an is a cylindrical Bessel-function expansion coefficient

for the scattered fields. We consider a normally incident plane

wave with the electric-field polarization perpendicular to the

cylinder axis (TM). The expression for the coefficients an

depends on the particular response model and the associated

ABCs. For the curl-free nonlocal model, the an are known.27

For the full hydrodynamic model we follow the approach of

Ref. 29, where the ABC of Ref. 25 is employed. This ABC is

for metals in free space equivalent to n̂ · J = 0. We obtain

an = −
[

dn + J ′
n(κta)

]

Jn(k0a) −
√

εJn(κta)J ′
n(k0a)

[

dn + J ′
n(κta)

]

Hn(k0a) −
√

εJn(κta)H ′
n(k0a)

, (5)

121412-2
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FIG. 1. (Color online) Extinction cross sections σext as a function

of frequency for TM-polarized light normally incident on a metallic

cylinder in vacuum. Parameters for Au as in Ref. 14: h̄ωp = 8.812 eV,

h̄γ = 0.0752 eV, and vF = 1.39 × 106 m/s. Inset: Frequency shift of

the maximum σext(ω) for nonlocal against local response, as a function

of radius.

where Jn and Hn are Bessel and Hankel functions of the first

kind and κ2
t = ε(ω)k2

0 . The dn coefficients are

dn =
n2

κla

Jn(κla)

J ′
n(κla)

Jn(κta)

κta
[ε(ω) − 1] , (6)

where κ2
l = (ω2 + iωγ − ω2

p)/β2. In the limit β → 0, the dn

vanish and the an of Eq. (5) reduce to the local Drude scattering

coefficients,30 which confirms that the nonlocal response in our

model requires moving charges.

Are there nonlocal resonances? Figure 1 depicts the extinc-

tion cross section of Eq. (4) for two cylinder radii, comparing

the nonlocal models with the local Drude model. The main

surface-plasmon resonance peak at ωp/
√

2 is blueshifted as

compared to the local model, and more so for smaller radii.

Similar blueshifts have been reported for other geometries12

and in the curl-free nonlocal model.14,27

Figure 1 shows the unusual resonances mentioned in the

title of this Rapid Communication: Additional peaks do appear

in the nonlocal theory but only for frequencies above the

plasma frequency ωp (h̄ωp = 8.9 eV for Ag and Au; 1.5–3 eV

is visible). These peaks (such as P2 in Fig. 1) are due to

the excitation of confined longitudinal modes, which are

bulk-plasmon states with discrete energies above h̄ωp due

to confinement in the cylinder.13 These peaks are analogous

to discrete absorption lines above the band gap in quantum-

confined semiconductor structures. Interestingly, contrary to

FIG. 2. (Color online) Field distributions in the three different

models, for TM-polarized light normally incident on a cylinder of

radius a = 2 nm. (a) Normalized displacement field |D|2/|Din|2 at

the frequency ω = 0.6503ωp (P1 in Fig. 1). Din = ε0 Ein and Ein

is the incident electric field. (b) Analogous plots of |E|2/|Ein|2 for

ω = 1.1963ωp (P2 in Fig. 1).

the common belief that light does not scatter off bulk plasmons,

which is correct in the local theory (i.e., no peak around ωp in

Fig. 1), here in the nonlocal model we do find such a coupling

to longitudinal modes. The corresponding resonances could

therefore be observed with electron loss spectroscopy but also

with extreme UV light. The curl-free model also exhibits these

resonances.

The striking difference between the two nonlocal-response

models is that the curl-free nonlocal model shows additional

stronger resonances, both above and below the plasma fre-

quency, such as P1 in Fig. 1, in particular also at optical

frequencies. These peaks do not show up in the full hydro-

dynamical model, and thus originate from a mathematical

approximation rather than a physical mechanism. It would,

however, be premature to conclude that the quasistatic ap-

proximation breaks down, because in Ref. 13 the modes of

cylinders in the hydrodynamical Drude model were found after

making the quasistatic approximation, and the only different

modes found were the confined bulk plasmon modes above

ωp. Figure 1 also illustrates that for increasing radii, σext in

the two nonlocal models converges toward the local-response

value. This convergence is slower for the curl-free model.

In Fig. 2(a) we depict the scaled displacement-field dis-

tributions for the three models at the frequency marked P1

in Fig. 1, where only the curl-free nonlocal model has a

(spurious) resonance. Correspondingly, in Fig. 2(a) we find

a standing-wave pattern only in that model. Its appearance in

the displacement field illustrates that the spurious resonance

is a transverse resonance, i.e., occurring in the divergence-free

components of E and J . Figure 2(b), on the other hand, shows

the normalized electric-field intensity for a true resonant mode

at the frequency P2 of Fig. 1. Only the two nonlocal models

give rise to resonant electric-field patterns. These confined

bulk plasmon modes are longitudinal and would not produce

standing waves in the displacement field.

121412-3
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Origin of spurious resonances. By eliminating the electric

field from Eqs. (3), it follows that the exact hydrodynamic

current satisfies the pair of third-order equations
(

β2∇2 + ω2 + iωγ − ω2
p

)

∇ · J = 0, (7a)

[c2∇2 + ω2ε(ω)]∇ × J = 0, (7b)

which reduce to the more symmetric Boardman equations31

in the absence of damping. For arbitrary geometry, Eq. (7a)

has damped solutions of ∇ · J for ω < ωp and finite-width

resonances for ω > ωp, as seen in Fig. 1. Both solutions can

be consistent with the quasistatic approximation ∇ × J = 0

that trivially solves Eq. (7b). On the other hand, we find

that the spurious resonances have resonant divergence-free

components of E and J. However, these cannot at the same

time be curl free. Thus the curl-free nonlocal model has

resonant solutions with nonvanishing curl, which is logically

inconsistent. But how could this arise? Once the ∇ × J = 0

assumption has been invoked to simplify the differential

operator into L̂J = β2∇2, the resulting Laplacian equation

analogous to (3a) carries no information that the resulting

solution should also be curl free. Thus, the solutions found for

this equation are not necessarily self-consistent.

Conclusions. We have shown that plasmonic nanostructures

exhibit unique resonances due to nonlocal response in the

hydrodynamic Drude model, but only above the plasma

frequency. The recently reported nonlocal resonances in the

visible14–18 agree with older work,27 but are a surprisingly pro-

nounced consequence of an implementation of the quasistatic

approximation that is not self-consistent. For nanowires, we

find extinction resonances without making the quasistatic

approximation that agree with the quasistatic modes of Ref. 13,

so we do not claim a general breakdown of the approximation

itself. Even though there are no nonlocal resonances in the

visible, plasmonic field enhancements are affected by nonlocal

response. For arbitrary geometries, numerical methods must be

used to quantitatively assess their importance. Self-consistent

versions of the versatile time-domain14–17 and frequency-

domain18 implementations of the hydrodynamical model can

do just that.
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