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Abstract

The recognition and discrimination of phytoplankton species is one of the foundations of freshwater biodiversity research
and environmental monitoring. This step is frequently a bottleneck in the analytical chain from sampling to data analysis
and subsequent environmental status evaluation. Here we present phytoplankton diversity data from 49 lakes including
three seasonal surveys assessed by next generation sequencing (NGS) of 16S ribosomal RNA chloroplast and cyanobacterial
gene amplicons and also compare part of these datasets with identification based on morphology. Direct comparison of
NGS to microscopic data from three time-series showed that NGS was able to capture the seasonality in phytoplankton
succession as observed by microscopy. Still, the PCR-based approach was only semi-quantitative, and detailed NGS and
microscopy taxa lists had only low taxonomic correspondence. This is probably due to, both, methodological constraints
and current discrepancies in taxonomic frameworks. Discrepancies included Euglenophyta and Heterokonta that were
scarce in the NGS but frequently detected by microscopy and Cyanobacteria that were in general more abundant and
classified with high resolution by NGS. A deep-branching taxonomically unclassified cluster was frequently detected by NGS
but could not be linked to any group identified by microscopy. NGS derived phytoplankton composition differed
significantly among lakes with different trophic status, showing that our approach can resolve phytoplankton communities
at a level relevant for ecosystem management. The high reproducibility and potential for standardization and parallelization
makes our NGS approach an excellent candidate for simultaneous monitoring of prokaryotic and eukaryotic phytoplankton
in inland waters.
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Introduction

Phytoplankton are essential for biogeochemical cycles [1] and

form the base of aquatic food webs [2,3]. Their excessive growth

can also cause significant threats to local biodiversity and

ecosystem functioning, as in the case of toxic algal blooms [4].

Consequently, phytoplankton are used to monitor the status of

aquatic ecosystems and there is a need to understand and predict

the responses of these communities to shifting environmental

conditions, such as climate change, increasing nutrient inputs, and

modifications in flow regimes and land use due to an increasing

anthropogenic pressure [4,5]. Considering that phytoplankton

species differ widely in nutrient requirements, susceptibility to

predation and toxicity, it is important to understand not only the

drivers of total phytoplankton biomass but also of their community

composition.

So far, most studies on the diversity, distribution, and

abundance of phytoplankton taxa have been based on morpho-

logical characteristics using different microscopic techniques.

There are so far no studies on monitoring of combined

phytoplankton communities (i.e. both cyanobacteria and eukary-

otic algae) with molecular methods, but separate monitoring of

eukaryotic phytoplankton communities have been attempted using

single-strand conformation polymorphism and microarrays [6],

real-time PCR (targeting toxic Alexandrium sp.) [7] and terminal

restriction fragment length polymorphism [8,9]. Recently, the

development and throughput of DNA sequencing technology in

the form of next generation sequencing (NGS) has taken giant

leaps forward [10,11]. These developments have facilitated

extensive sequence-based characterization of diverse natural

microbial communities. Compared to microscopy, there are

multiple advantages of using DNA-sequencing for analysis of

phytoplankton communities. For instance, sample handling and
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preparation can be automated and thereby lower analytical costs

as well as increase speed of analyses. This makes it possible to

increase sampling frequency across both time and space and

facilitate large scale comparisons of results from very different

aquatic systems. By using the same protocol, it is also possible to

standardize the analyses in different laboratories around the globe.

Since this sequence-based taxonomic identification can be done in

an identical way regardless of operator and laboratory, this

significantly improves the potential for cross-system comparisons.

Microscopic identification on the other hand, relies heavily on the

skills and experience of each taxonomist. This may lead to

consistency problems when more than one operator carries out the

analyses, for instance in long term water monitoring projects or

global comparative studies, as taxonomic resolution is quite likely

to vary. Another advantage of molecular approaches is that it

becomes possible to recognize and identify nano- and picophyto-

plankton that cannot be discriminated based on morphological

features, such as unicellular cyanobacteria and small flagellates

[12]. Furthermore, NGS based approaches allow the accurate

identification of rare and fragile phytoplankton taxa, allow

unmasking of look-a-likes and do not discriminate between life

stages. A final advantage is the fact that evolving sequence-based

phytoplankton monitoring datasets can be re-analyzed at a later

time, using more refined taxonomic reference databases and other

new information.

In the aquatic environment, these new sequencing technologies

have already been introduced in studies on the diversity of other

organisms lacking morphological detail for identification e.g.

bacteria [13–17], archaea [18,19] and microeukaryotes [20]. NGS

is now allowing us to study patterns of microbial diversity in much

greater detail than with microscopy or previously used molecular

techniques [10], and should be equally useful for phytoplankton

communities. However, the choice of the most informative

taxonomic marker gene is still highly debated for phytoplankton

and has so far hindered the large scale application of NGS

facilitated approaches for phytoplankton monitoring. Still, the

NGS method itself is global as it can be applied to every

taxonomic marker with appropriate PCR primer sites and hence

its development is independent from the marker of choice.

Here, we use the 16S rRNA gene as a marker as it is universal in

prokaryotes including cyanobacteria and also universally present

in the chloroplasts of eukaryotes. This enables simultaneous

detection of prokaryotic and eukaryotic phytoplankton taxa. Using

datasets based on 16S rRNA gene amplicons that have been

sequenced by 454 pyrosequencing, we describe temporal patterns

in three lakes and compare phytoplankton communities among an

additional 46 lakes from temperate, boreal and polar regions. Our

sequence-based data reveals that phytoplankton composition differ

significantly among lakes with different trophic status showing that

our approach can resolve phytoplankton communities and act as a

tool for monitoring trophic status of aquatic systems. Our study

illustrates the potential of DNA sequencing-based analyses as

powerful tools in environmental monitoring by offering accurate,

reliable and rapid identification of phytoplankton taxa from

complex environmental samples.

Methods

Sampling
Water samples were taken from a range of lakes of different

nutrient content (including also some saline Antarctic lakes) as

described previously for Erken (ER [14]); Alinen Mustajärvi (AM),

Mekkojarvi (MJ), Nimetön (N), Valkea Kotinen (VK) and Valkea

Mustajarvi (VM) [17]; Åtvändtjärnen (AT), Bodsjön (Bod),

Bustadtjärnen (Bus), Digernästjärnen (DT), Gravatjärnen (GT),

Häggsjön (Hag), Hallåstjärnen (Hat), Hensjön (Hes), Holmtjärnen

(Holm), Lång-Björsjön (LBS), Medstugusjön (MS), Öster-Noren

(ON), Skalsvattnet (SV), Tännsjön (TS), Väster-Noren (VN) [16];

Alstasjön (AS), Åresjön (AS), Bredsjön (Bre), Fibysjön (Fib),

Funbosjön (Fun), Hasselasjön (Has), Långsjön (LAS), Lille

Jonsvatn (LJ), Lötsjön (LOS), Lumpen (LUM), Övre Långsjön

(OLS), man-made Řı́mov Reservoir (RI), Norrsjön (NS), Ramsen

(RA), Ramsjön (RS), Ryssjön (Rys), Siggeforasjön (Sig), Strandsjön

(Str), Valloxen (VA) and Zurich (ZU; this study); and Antarctic

systems [14]. Metadata including physiochemical parameters were

determined as described previously [14–17] and are summarized

in Table S1. Time-series data were obtained from four systems;

AM, ER, RI and ZU were represented by 44, 71, 48 and 33

samples, respectively. Most other systems (N = 41) were only

sampled once, and 11 systems were sampled twice, bringing the

total number of samples to 259 samples with 56 lakes represented.

Microscopy analysis of phytoplankton community
composition

Samples for assessment of phytoplankton abundance and

biomass were preserved with Lugol’s solution. This was done for

time series data from AM, ER and RI. Phytoplankton were

enumerated using inverted microscopes at 100–10006magnifica-

tion, after sedimentation of a known volume of sample in a

counting chamber [21]. The mean algal cell dimensions were

obtained for biovolume calculation using the approximation of cell

morphology to regular geometric shapes [22]. Species composition

was determined to the finest level possible (usually species). Some

taxa were grouped into non-taxonomical groups due to few

morphological characteristics visible with the chosen analysis

method. Each time-series was analyzed by different taxonomists

using national taxonomic monographs.

DNA extraction, PCR amplification and sequencing
Genomic DNA extraction from filters (0.2 mm) was performed

using the Ultra clean Soil DNA extraction kit as recommended by

the manufacturer (MoBio, Laboratories, Solana Beach, CA, USA).

Except for lakes AM, MJ, N, VK and VM a modified protocol

originally described by Griffiths et al. was used [17,23]. DNA from

the Antarctic lakes was extracted using the Power soil kit (MoBio)

and for lakes AS, AT, Bod, Bre, Bus, DT, Fib, Fun, GT, Hag,

Has, Hat, Hes, Holm, LBS, LAS, LJ, LOS, LUM, MS, OLS, ON,

NS, RA, RS, Rys, Sig, SV, Str TS, VA and VN the Easy DNA

extraction kit (Invitrogen, Carlsbad, CA, USA) was used. PCR

amplification was performed using general bacterial primers 341F

(CCTACGGGNGGCWGCAG) and reverse primers 805R

(GACTACHVGGGTATCTAATCC) with 454 adaptors and a

sample-specific barcode on the reverse primer [13] under

conditions described previously [14–16]. The amplicons were

pyrosequenced with the 454 GS FLX system (454 Life Sciences,

Branford, CT, USA) by different laboratories using both FLX and

Titanium chemistry following procedures as described in detail

previously [13–17].

Sequence processing
Output from the sequencer in the form of SFF files together

with a list of samples including their corresponding barcodes were

used for the analyses. First, ambiguous sequences were removed

from the data set including reads with low quality as inferred from

their flowcharts and those that did not carry the exact primer

sequence (reverse primer 805R) [13]. After reads had been sorted

into samples based on the barcodes, they were denoised using

Next Generation Sequencing of Phytoplankton
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AmpliconNoise Version 1.24 [24]. AmpliconNoise implements

algorithms that remove PCR and 454 pyrosequencing noise as

well as the chimera removal tool Perseus. This procedure resulted

in almost 1.2 Million high quality reads of which almost 90,000

were annotated as cyanobacteria or chloroplasts using a naı̈ve

Bayesian classifier [25] and the taxonomy after Hugenholtz [26].

To obtain a higher taxonomic resolution than provided by the

classifier, a representative sequence from each OTU was aligned

in MOTHUR [27] using kmer for finding the template sequence

and Needleman for aligning sequences against the SILVA106

small subunit rRNA gene database [28]. Aligned sequences were

imported into ARB [29] and the quick parsimony option was used

to add the aligned sequences to the small subunit reference tree

included in SILVA106 database. In addition, a refined classifica-

tion was performed using an in-house cyanobacterial/chloroplast

database using the naı̈ve Bayesian classifier [25]. This database is

based on the 16S rRNA gene sequences of cyanobacteria and

eukaryotic chloroplasts from well-characterized phytoplankton

entries of the SILVA106 database.

Statistical analyses
To assign phytoplankton reads into operational taxonomic units

(OTUs) prior to ordination procedures, sequences were clustered

based on 97% sequence similarity using UCLUST [30]. The perl

script daisychopper.pl (available at http://www.genomics.ceh.ac.

uk/GeneSwytch/Tools. html) [31] was used to resample a

selection of 139 samples (including only chloroplast and cyano-

bacteria related OTUs) to 100 reads prior to statistical analyses.

Samples with less than 100 chloroplast and cyanobacteria reads

were excluded from further analyses.

All statistical analyses were conducted using R (http://www.R-

project.org/) [32] and the vegan package [33]. Non-metric

multidimensional scaling of a Morisita-Horn distance matrix

(function metaMDS) was used to visualize dynamics in phyto-

plankton community structure (beta diversity) using an OTU

abundance matrix based on all OTUs represented by at least 3

reads in the non-resampled data matrix (194 OTUs). Permuta-

tional MANOVA was used to determine significant differences

among lakes of different trophic status. Oligotrophic, mesotrophic,

eutrophic and dystrophic as well as Antarctic samples were placed

into their respective categories based on previous ecosystem

characterization in the literature [14–17]. The direct comparison

of the NGS data with microscopic data (cell abundances and

biovolumes) were done from three lakes by both Procrustes

superimposition and Mantel’s test [33]. The three systems were

analyzed individually as microscopy was performed each by a

different taxonomist.

Results

Taxonomic composition
After quality filtering and preprocessing 1,116 833 reads were

obtained from the 259 sequenced samples included in the study,

whereof nine percent or a total of 89,982 reads could be assigned

to cyanobacteria or chloroplasts (from this onwards termed

phytoplankton). The sequencing effort was highly variable among

the samples ranging from 106 to 32,832 total reads per sample.

Heterotrophic bacteria usually occur in higher numbers than

phytoplankton, which is reflected in the ratio between phyto-

plankton reads and the total number of reads. This ratio was on

average 0.098 (range from 0 to 0.58) and a distribution as depicted

in Figure 1A. Low ratios together with low sequencing effort

caused the number of phytoplankton reads to be too low to resolve

the alpha diversity of the phytoplankton in most samples (see

Figure 1B). To diminish the limitations of small sampling sizes for

analyses on beta diversity and taxon dynamics, samples with less

than 100 phytoplankton reads were removed, leaving 139 samples

(54% of all samples) and a total of 82,825 phytoplankton

sequences. The 139 selected samples represent lakes with a

concentration range in total phosphorus from 2.9 to 149 mg L21,

total nitrogen from 0.4 to 1900 mg L21, chlorophyll a from 0 to

40 mg L21 and dissolved organic carbon from 2 to 32 mg C L21

(see Table 1 for list of lakes used for analyses and Table S1 for

associated metadata).

For each of these 139 samples, the average number of reads

annotated as cyanobacteria and chloroplasts was 596. This is in

the same range as the average number of cells counted and

classified by microscopy (at least 500) [34]. In total 946

Figure 1. The ratio between the total number of reads and the number of phytoplankton reads (A) and rarefaction curves of the
next-generation sequencing data (from all 259 samples) (B). The lines depict different ratios (phytoplankton reads:total number of reads) and
the points represent the samples.
doi:10.1371/journal.pone.0053516.g001
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Table 1. Summary statistics of sequencing data including coordinates and classification of systems.

Lake Lake type #samples #reads #phyto reads #OTUs
#phyto
OTUs Longitude Latitude reference

Lake Abraxas antarctic 2 27652 5884 393 35 78.3 268.5 Logares et al. 2012

Ace Lake antarctic 1 31835 2121 2540 30 78.2 268.5 Logares et al. 2012

Alinen Mustajarvi dysotrophic 19 65380 3822 2133 166 25.1 61.2 Peura et al. 2012

Alstasjon eutrophic 1 15612 739 860 49 12.0 63.0 Severin et al.

Atvandtjarnen oligotrophic 1 30666 1693 1726 91 12.0 63.0 Logue et al. 2012

Bodsjon oligotrophic 1 31330 1469 1748 119 15.4 62.8 Logue et al. 2012

Bredsjon mesotrophic 1 3016 1226 225 94 13.9 61.8 Severin et al.

Bustadtjarnen oligotrophic 1 18987 661 278 72 12.7 63.6 Logue et al. 2012

Crooked Lake antarctic 1 31333 1971 1246 23 78.2 268.6 Logares et al. 2012

Digernastjarnen oligotrophic 1 5671 1951 246 104 12.7 63.6 Logue et al. 2012

Lake Druzhby antarctic 1 2819 491 188 18 78.3 268.6 Logares et al. 2012

Erken mesotrophic 49 75173 11050 2269 196 18.6 59.8 Eiler et al. 2012

Fibysjon mesotrophic 1 15610 109 788 39 17.4 59.9 Severin et al.

Funbosjon eutrophic 1 30221 624 952 59 17.9 59.9 Severin et al.

Gravatjarnen oligotrophic 1 30391 1273 939 95 12.3 63.6 Logue et al. 2012

Haggsjon oligotrophic 1 30334 1774 1330 97 12.7 63.5 Logue et al. 2012

Hallastjarnen oligotrophic 1 7641 1621 265 93 12.6 63.5 Logue et al. 2012

Lake Hand antarctic 1 31348 1702 968 25 78.3 268.6 Logares et al. 2012

Hassellasjon dysotrophic 1 728 118 215 38 16.1 62.1 Comte et al.

Hensjon oligotrophic 1 7846 1604 190 85 15.1 56.5 Logue et al. 2012

Highway Lake antarctic 1 30564 853 1024 18 78.2 268.5 Logares et al. 2012

Holmtjarnen oligotrophic 1 25213 1589 1562 89 12.2 62.5 Logue et al. 2012

Lang-Bjorsjon oligotrophic 1 31242 824 1096 83 12.3 63.6 Logue et al. 2012

Langsjon mesotrophic 1 2857 311 386 40 17.6 60.1 Severin et al.

Lille Jonsvatn oligotrophic 1 1617 162 213 33 10.6 63.4 Comte et al.

Lotsjon mesotrophic 1 14967 226 867 23 18.0 59.9 Severin et al.

Marine Coastal site antarctic 1 10136 1175 223 30 77.9 268.6 Logares et al. 2012

Lake McNeil antarctic 2 41432 4611 1171 33 78.4 268.5 Logares et al. 2012

Medstugusjon oligotrophic 1 8025 2373 313 114 12.4 63.6 Logue et al. 2012

Norrsjon eutrophic 1 3605 451 316 36 18.0 59.9 Severin et al.

Organic Lake antarctic 2 32895 2043 473 6 78.2 268.5 Logares et al. 2012

Oster-Noren oligotrophic 1 24734 2192 262 90 12.8 63.4 Logue et al. 2012

Ovre Langsjon eutrophic 1 3446 374 296 61 18.0 59.9 Severin et al.

Pendant Lake antarctic 2 18187 6662 591 43 78.2 268.5 Logares et al. 2012

Ramsjon mesotrophic 1 2922 626 221 33 17.5 59.8 Severin et al.

Rimov mesotrophic 17 14894 3396 1958 203 14.5 48.8 This study

Rookery Lake antarctic 1 27224 438 1029 12 78.1 268.5 Logares et al. 2012

Ryssjon eutrophic 1 3144 1147 339 93 17.2 59.8 Severin et al.

Lake Shield antarctic 1 666 350 132 14 78.3 268.5 Logares et al. 2012

Siggeforasjon dysotrophic 1 1997 242 221 38 17.2 60.0 Severin et al.

Skalsvattnet oligotrophic 1 18177 1505 198 101 12.2 63.6 Logue et al. 2012

Strandsjon mesotrophic 1 3251 1174 443 69 17.2 59.9 Severin et al.

Tannsjon oligotrophic 1 15094 1546 1933 89 12.7 63.4 Logue et al. 2012

Valloxen eutrophic 1 2586 743 259 30 17.8 59.7 Severin et al.

Vaster-Noren oligotrophic 1 6967 1746 149 99 12.8 63.5 Logue et al. 2012

Vereteno Lake antarctic 1 8358 1344 326 20 78.4 268.5 Logares et al. 2012

Lake Watts antarctic 1 9292 467 194 18 78.2 268.6 Logares et al. 2012

Lake Williams antarctic 2 9694 1234 294 22 78.2 268.5 Logares et al. 2012

Zurich mesotrophic 4 1962 1118 401 35 8.8 47.2 This study

doi:10.1371/journal.pone.0053516.t001
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phytoplankton OTUs were identified using the NGS based

approach with an average 33.8 OTUs in each sample (range 4

to 117). Overall, Heterokonta was the most abundant phylum

(28.3% of the reads), followed by Cyanobacteria (21.0%),

Cryptophyta (18.3%), Chlorophyta (6.2%), Dinophyta (5.7%).

Other phyla including Euglenophyta, Haptophyta and Strepto-

phyta contributed less than 1% each. In addition, 16% of the reads

were annotated to an unclassified sequence cluster, from now on

termed, USC. The twelve taxa, with the highest proportion of

reads in the dataset were (in order of their abundances) annotated

as Thalassiosira sp. (Heterokonta), Plagioselmis sp. (Cryptophyta),

Cryptomonas sp. (Cryptophyta), Aulacoseira sp. (Heterokonta),

Dinophysis-related (most likely Peridinium and Ceratium; Dinophyta),

Cyanobium sp. (Cyanobacteria), Heterosigma-related (most likely

Gonyostomum; Raphidophyceae, Heterokonta), and Microcystis sp.,

Figure 2. Phylogenetic tree (based on SILVA106 reference tree) showing representative sequences from all phytoplankton-related
OTUs. Inner ring indicates the similarity of sequences to the nt/nr database (NCBI) as determined by BLAST search. Outer ring (bars) indicates the
number of reads assigned to each node when using the resampled dataset (100 reads); note that nodes where all reads were removed by resampling
are still given. Colored branches indicate group assignments from Bayesian classifier against a phytoplankton database.
doi:10.1371/journal.pone.0053516.g002
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Synechococcus sp. and Prochlorococcus sp. (all Cyanobacteria; for more

detail see Figure 2).

To obtain the position of the USC reads in a phylogenetic

framework, sequences were aligned and inserted into the

SILVA106 phylogenetic tree. This analysis showed that the

USC sequences form a deeply-branching sequence cluster and fall

outside previously characterized entries (see Figure 2), but close to

Euglenophyta. A Blastn search against the nr/nt databases further

corroborate that USC belong to a so far uncharacterized group of

photosynthetic eukaryotes at least by 16S rRNA gene standards

and is related (up to 95% sequence similarity) to recently amplified

single cell genomes of marine protists reported by Martinez-Garcia

et al. [35].

System comparison
Among the lakes, cyanobacterial reads dominated in samples

from eutrophic systems (45.5%) and were also abundant in

oligotrophic lakes (36.0%), while these lakes also featured a high

proportion of USC reads (43.4%). Other OTUs affiliated with the

USC dominated in humic lakes (32.9%) and were accompanied by

almost equal relative amounts of reads (approx 12%) annotated to

Chlorophyta, Cryptophyta, Cyanobacteria and Heterokonta. In

samples from mesotrophic lakes most reads were annotated to

Heterokonta (30.1%), Cyanobacteria (23.5%) and Cryptophyta

(22.0%). Analysis of phytoplankton community composition by

ordination of NGS data confirmed the clear differences described

above in phylum composition among systems (see Figure 3). Here,

oligotrophic lakes were in the center of the ordination and the

other systems were clustered around these nutrient poor systems.

Antarctic lakes were clearly different from all others, probably as a

result of their saline character and possibly also their geographic

location at high latitudes. Disparity between lakes of different

trophic status was shown to be significant by permutational

MANOVA (p,0.001; R2 = 0.246; pseudo-F = 10.861). Posthoc pair-

wise comparisons confirmed differences among lake types with

mesotrophic and eutrophic lakes showing the least pronounced

separation from each other (Table 2 and Figure 3).

Comparison of methods
Seasonal dynamics were analyzed in three lakes using both

NGS and microscopy. Samples with both microscopic and NGS

data available were 14 for AM, 34 for ER and 16 for RI. Using

microscopy the total number of taxa were 58 in AM, 84 in ER and

107 in RI (see Table S2 for a detailed list); the average number of

taxa in a sample was 25.5 with a range from 11 to 45. Analyzing

the corresponding resampled samples from NGS revealed a total

number of 102 OTUs in AM, 122 OTUs in ER and 140 OTUs in

RI; on average 20 OTUs per sample were detected with a

sampling effort resampled to 100 reads.

Statistical comparisons of seasonal phytoplankton dynamics in

the three lakes (AM, ER, RI) by, on the one hand, cell abundance

and biovolume data from microscopic counts and, on the other

hand, NGS derived read numbers, revealed significant correspon-

dence in the dynamics of community composition between the two

methods, especially between microscopic abundance and NGS

data. Here, both Procrustes superimposition and Mantel’s test

were significant (Table 3). Biovolume data showed a lower

correspondence with NGS data and was not significant for RI.

The correspondence of methods was less clear when comparing

taxonomic groups in more detail (Figure 4). Heterokonta,

Euglenophyta, Cryptophyta and Dinophyta were overrepresented

in the microscopic biovolume data set compared to the NGS data,

RI being an exception. A noteworthy 15% of the reads were

annotated to USC, which was detected by NGS in all three lakes

but was either missed or misclassified by microscopy. Cyanobac-

teria were proportionally overrepresented in the NGS dataset

when compared to microscopic biovolume data (17.7% and 1.7%,

respectively). Additionally, Dinophyta, a major phylum in the

microscopic data, was only once detected by NGS in AM whereas

it was regularly observed under the microscope. For ER, the

Figure 3. Ordination plot showing phytoplankton community
composition among lakes of different trophic status (oligotro-
phic, mesotrophic, eutrophic and dystrophic). Stress value was
0.20. Permutational ANOVA confirmed visual inspection of significant
differences in community composition between lakes of different status
(p,0.001; R2 = 0.254).
doi:10.1371/journal.pone.0053516.g003

Table 2. Results of permutational MANOVA comparing the phytoplankton communities among systems with different trophic
status.

antarctic oligotrophic mesotrophic eutrophic

Fstats R2 p Fstats R2 p Fstats R2 p Fstats R2 p

oligotrophic 22.14 0.39 .0.001

mesotrophic 17.36 0.16 .0.001 13.62 0.13 .0.001

eutrophic 8.48 0.26 .0.001 8.71 0.3 .0.001 2.56 0.03 .0.007

dysotrophic 10.37 0.21 .0.001 9.71 0.22 .0.001 10.23 0.1 .0.001 3.89 0.13 .0.001

doi:10.1371/journal.pone.0053516.t002
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taxonomic profiles corresponded well except for USC and

Streptophyta, which were not detected by microscopy and

Euglenophyta, which was not detected by NGS. In RI, only

Dinophyta, Heterokonta, Cryptophyta and Chlorophyta were

detected by both methods; whereas the other phyla were only

detected by NGS.

Looking at the dynamics in greater detail revealed further

discrepancies but also correspondence between microscopy and

NGS data. In AM, high abundance of Cryptophyta belonging to

the genus Cryptomonas was observed from early spring to the late

summer in the NGS data (Figure 5). An increase in the proportion

of diatoms (Heterokonta) during late summer and their high

abundance in late autumn was observed, whereas Chlorophyta

and Cyanobacteria were negligible in this lake. The microscopic

analysis showed a different pattern. Chlorophyta and Heterokonta

(especially chrysophytes) were dominant during all seasons. Most

other groups, including Cyanobacteria, were scarce. Similar to the

NGS, microscopy revealed that Cryptomonas sp. was an abundant

taxon and present in 93% of the lake samples. The other dominate

taxa in the microscopy dataset were (in order of their abundance)

Oocystis sp, Scourfieldia cordiformis (Chlorophyta), Chrysococcus sp.,

Pseudopedinella sp., Monomastix sp. (Heterokonta), Koliella longiseta,

Monoraphidium sp., Chlamydomonas sp. (Chlorophyta), Rhabdoderma

sp. (Cyanobacteria), Uroglena sp., Mallomonas lychenensis, (Hetero-

konta) and Gymnodinium sp. (Dinophyta). Note also that the NGS

approach was able to pick up sequences from pollen of the tree

Pinus (Figure 5a). Pollen were commonly found but not counted in

phytoplankton analyses based on microscopy.

For ER, the NGS data showed that the succession started with a

Cryptomonas bloom after ice-off immediately followed by a diatom

bloom in spring (Figure 5b). Later during the season, a Gloeotrichia

bloom was observed in July followed by a Microcyctis bloom in

autumn. NGS data also indicated a high proportion of various

putative single celled picocyanobacteria during the decline of the

spring peak (June/July; Figure 5), which was overlooked in the

microscopic analyses. Otherwise the NGS patterns were con-

firmed by the microscopy data as: Heterokonta were important in

spring (mainly diatoms); bloom forming Cyanobacteria dominated

in summer and autumn; Cryptophyta and chrysophytes (Hetero-

konta) were abundant groups throughout the year. The most

abundant taxa based on microscopy were Aphanocapsa sp.

(Cyanobacteria). Other abundant Cyanobacteria were Aphanocapsa

elachista and Coelosphaerium kuetzingianum. Unidentified chrysophytes

were also abundant as were Chrysococcus sp., Aulacoseira granulata var.

angustissima and A. islandica, Asterionella formosa and Dinobryon sp. all

from the group Heterokonta. Cryptomonas sp. and Rhodomonas sp.

were abundant cryptophytes, and Chrysochromulina parva from the

group Haptokonta were also among the most abundant taxa in

this lake.

For RI, the peak of Chlamydomonas sp. under ice, as shown by

NGS (Figure 5c), was also confirmed by microscopy. Chlamydomo-

nas sp. was then replaced by Cryptophyta (Rhodomonas minuta,

Cryptomonas sp.) and Chrysophyta (Synura sp., Chrysococcus sp.) and

later in April by Haptophyta (Chrysochromulina parva) which form

the spring maximum of biomass, as demonstrated by microscopy.

The end of the sampling period was characterized by decreasing

phytoplankton biomass dominated mostly by Cryptophyta. These

complex patterns in Cryptophyta are reflected in the NGS data

even though taxonomic assignments did not entirely correspond

with that invoked by microscopic identification. Unidentified

flagellates accounted for 0.3–17% of the total phytoplankton

biomass, which could possibly be linked to the high presence of

USC in RI as revealed by NGS.

Discussion

Phytoplankton as primary producers, are directly using nutri-

ents as a resource and are therefore early responders to

environmental changes, making them especially suitable as

eutrophication indicators. Our massive NGS dataset from 46

lakes revealed a clear separation of the phytoplankton communi-

ties from lakes of different trophy suggesting that this metric has

potential as a tool for water quality status assessments. Thus,

providing the means to efficiently monitor one of the main

environmental problems in surface waters; eutrophication. Pico-

phytoplankton are particularly useful as early indicators of increase

in phosphorus concentration [36,37] for marine as well as

freshwater systems [38]. These small and often fragile organisms

could be tracked and taxonomically highly resolved using the NGS

based approach. It is also encouraging that seasonal patterns

revealed by NGS data resembled well-described patterns from

microscopy based observations in the three lakes where we had

time series data (Table 3). Potential toxic cyanobacterial genera

such as Gloeotrichia, Microcystis and Plankthotrix were resolved

and tracked over time (Figure 5). To further track the frequency

and intensity of toxic algal blooms, frequent sampling is imperative

and this seems feasible with NGS based approaches.

A critical view on the method
Rarefaction curves clearly show that our sampling efforts only

scratched the surface of the phytoplankton diversity present in

most studied systems. Increasing sampling efforts can provide a

deeper insight into these communities, but this is limited by the

actual proportion of phytoplankton 16S rRNA genes in the total

pool of amplified 16S rRNAs in a sample. As visualized in

Table 3. Results from Procrustes superimposition and Mantel’s test to test for correspondence among methods.

mantel’s test procrustes superimposition

Testing 454 data against R p R p

AM biovolumes 0.259 ,0.013 0.851 ,0.012

AM abundances 0.26 ,0.007 0.89 ,0.005

ER biovolumes 0.268 ,0.001 0.756 ,0.001

ER abundances 0.532 ,0.001 0.842 ,0.001

RI biovolumes 0.083 0.289 0.617 0.371

RI abundances 0.654 ,0.001 0.922 ,0.001

doi:10.1371/journal.pone.0053516.t003
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figure 1A, the ratio of phytoplankton to total reads was above 1/20

(black slope) in 64% of the samples. Meaning that a sampling

effort of at least 20,000 reads per sample in our study would have

resulted in 64% of our samples having 1000 or more phytoplank-

ton reads. By obtaining a sequencing depth of 100,000 reads per

sample, the number of samples with 1000 or more phytoplankton

reads would have increased to 94% (ratio 1/100 as represented by

the red line). Aiming for 20,000 reads per sample will result in

98% of the samples having at least 100 phytoplankton reads as

indicated by our dataset. Exactly how many reads per sample

would be needed for robust estimates of trends in community

composition and diversity among samples is not known with any

certainty. We expect that this will be explored to a greater extent

in coming publications, similar to other studies of bacterial

diversity [39]. The importance of sampling depth when describing

a community is, however, not a problem only in NGS based

approaches, but is relevant also for microscopy based techniques.

We expect that the potential for deep sampling is greater with

NGS especially considering recent improvements in for example

Illumina based sequencing technology [40].

The weaker correspondence of NGS data to microscopic biovolume

estimates compared to abundances (Table 3) is likely explained by

variations in the number of chloroplasts per cell (and corresponding

number of 16S rRNA amplicons) since chloroplast numbers poorly

reflect cell size [41,42]. Further, a difference in taxonomic composition

between NGS and morphological based data cannot be avoided

(Figure 4). For NGS data, biases are introduced by the DNA extraction

and PCR procedures [43,44]. Underrepresentation of taxa in the

microscopy samples can be because of 1) taxon-specific cell-losses

during preservation or handling reported previously for protists [45]; 2)

misleading or low resolution microscopic identification if cells are

missing characters, for example akinetes for some Cyanobacteria, or

flagella that may be lost or are hidden behind cells; 3) diatoms are

almost impossible to discriminate based on morphological identifica-

tions without appropriate preparation; 4) as sedimentation chambers

are commonly used, small cells that do not sink fast enough will be

counted to a lesser extent or missed altogether. Thus, in summary,

discrepancies between the two types of methods exist. Future research

should seek to optimize and standardize all steps for an objective

assessment of true diversity. For instance, the underrepresentation of

certain taxa in some NGS samples (lake AM) can be partly explained

by prefiltration with 50 mm sieves, excluding macrosized phytoplank-

ton. Omitting this step is recommended in future studies.

Moreover, we are in the middle of revising the phylogeny of many

phytoplankton groups. For example in diatoms [46], Cyanobacteria

[47,48] and green algae [49] paraphyletic and polyphyletic groups are

found based on new genetic information. Comparisons of phenotypic

(morphological) and genetic analyses are also hampered by contradic-

tions between morphological and gene-based classification systems.

Novel taxa and taxon resolution
Our analyses identified potential novel taxa and the lack of

sequenced freshwater taxa in current databases. A BLASTn search

revealed that more than 50% of the cyanobacteria and chloroplast

reads in our dataset have no closely related neighbor (more than 97%

similarity to a database entry) among 16S rRNA sequences from

isolated phytoplankton strains (for more details see Figure 2). Many of

the most abundant OTUs in our dataset were most closely related to

database entries of marine phytoplankton (for example Dinophysis,

Heterosigma, Prochlorococcus) which are well represented in 16S rRNA

databases. This clearly shows that our current database does not cover

most freshwater phytoplankton species. Even at a cutoff of 90%

similarity, 1% of the reads were not similar to any sequence entry. In

addition, recent efforts to sequence the microbes of the ocean has

already revealed many phytoplankton taxa that have been previously

missed by microscopy [9,50,51] and our study suggests that the same is

most likely true also for lakes as indicated by the detection of USC.

Barcoding of the cultured and characterized freshwater taxa have to be

expanded before we can compare results from environmental surveys

and can be sure about the existence of novel species or even phyla that

have been missed so far.

Phylogenetic analysis also shows that taxonomic resolution provided

by the 16S rRNA gene of chloroplasts can at best provides classification

to the genus level. Another marker gene that has been used as a pre-

marker for protists is the 18S rRNA gene [52] which provides superior

resolution compared to the 16S rRNA gene of the plastids but at the

cost of missing out on Cyanobacteria [8,53]. We therefore suggest a

Figure 4. Boxplot showing ratios in taxonomic composition (at
phylum level) as revealed by next generation sequencing
(NGS) vs. microscopy. Plots show the ratio between relative reads
numbers and biovolumes (as determined by microscopy) for each
phylum. (AM) Alinen Mustajarvi, (ER) Lake Erken, and (RI) Rimov
Reservoir. A ratio above zero indicates that a specific phylum is
preferentially detected by NGS whereas a ratio below zero indicates an
over representation in the biovolume data relative to NGS. The part of
the plot indicated in grey represents the area where the ratio is the
result of that a phylum was only detected by either method.
doi:10.1371/journal.pone.0053516.g004
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hierachical approach by first targeting the variable region V3–V4 of

the 16S rRNA gene as exemplified by this study. This reveals bacterial

and most eukaryotic organisms with plastids using a single analysis and

can then be coupled to a method with higher taxonomic resolution and

deeper sampling of the eukaryotic (protist) diversity such as a 18S

rRNA gene based second step analysis [54,55]. Specific groups of

protists can then be targeted with more specific markers providing high

(maybe equal to species) resolution.

Outlook
There is a need for improvement in environmental monitoring,

both because of international regulations and because of public

concern about blooms of toxic or nuisance algae and other

environmental pressures. Our analyses suggest that NGS-based

characterization of 16S rRNA genes hold great promise as tools

for phytoplankton monitoring as it allows the simultaneous

monitoring of bacteria and most eukaryotes with plastids in a

high-throughput, reproducible and cost-efficient manner. Still,

many challenges lay ahead before NGS based methods can be

implemented in monitoring programs. Furthermore, NGS based

approaches will of course only be semi-quantitative. Barcoding

initiatives and thorough systematics using both genetic and

morphological information will be required to improve sequence

databases and existing taxonomic frameworks for tracking

phytoplankton groups and monitor phytoplankton communities

by NGS facilitated approaches. The use of alternative marker

genes but also multiplexing need to be explored to improve

taxonomic resolution. Most importantly, taxonomists and molec-

ular biologists must come together and move the field forward to

fully embrace and exploit NGS technologies for phytoplankton

ecology and the quality management of inland waters.
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