
Eur. Phys. J. C (2020) 80:325
https://doi.org/10.1140/epjc/s10052-020-7896-8

Regular Article - Theoretical Physics

Unveiling mapping structures of spinor duals

R. T. Cavalcantia, J. M. Hoff da Silvab

Departamento de Física e Química, Universidade Estadual Paulista, UNESP, Guaratinguetá, SP, Brazil

Received: 1 March 2020 / Accepted: 31 March 2020 / Published online: 17 April 2020
© The Author(s) 2020

Abstract Following the program of investigation of alter-
native spinor duals potentially applicable to fermions beyond
the standard model, we demonstrate explicitly the existence
of several well defined spinor duals. Going further we define
a mapping structure among them and the conditions under
which sets of such dual maps do form a group. We also study
the covariance of bilinear quantities constructed with the sev-
eral possible duals, the invariant eigenspaces of those group
elements and its connections with spinors classification, as
well as dual maps defined as elements of group algebras.

1 Introduction

Spinors play a fundamental role in high energy physics since
the very first theoretical development of the spin phenomena
due to Pauli [1]. The physics based on the spinor concept has
become widely known after the outstanding work of Dirac
in finding the dynamical equation for the electron [2]. The
mathematically formal concept of spinor, concerning its rela-
tion with the Minkowski space physics, on the other hand,
may be traced back to the work of Cartan [3]. The theory
of spinors went through a huge development since then and
both the mathematical and physical aspects acquired great
relevance in the description of fermionic particles. One of
the most important peculiarities of spinors, regarding the
description of fermions, is that a given fermion cannot be
detected alone [4]. The spinorial counterpart of such an asser-
tion is that spinors, as mathematical objects carrying special
representations of SL(2,C), are indeed sensible to the double
connectedness of Poincarè group, and, as such, shall furnish
physically observable quantities only when composed with
the spinor dual. Interestingly enough, the dual a là Dirac was
the only one widely studied until recently. The reason for
that is quite obvious: there was little motivation for an alter-
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native dual theory or further consideration, since the Dirac
dual provides non null, real and Lorentz invariant orthonor-
mality relations, engendering an appropriate quantum propa-
gator, and furnishing the right locality structure for the usual
fermionic quantum fields.

It is somewhat recent the exploration of different fermions
whose dynamics is dictated, up to the present knowledge,
only by the Klein–Gordon equation, the so-called mass
dimension one fermions [5–9]. The main idea of such an
approach is to pursue the construction of a quantum field
theory candidate to dark matter [10–12]. The theory under-
ling these fermions starts by investigating special spinorial
representations of (0, 1/2) ⊕ (1/2, 0) whose relative phases
are fixed in such a way that the resulting spinors are eigen-
spinors of the charge conjugation operator, but not of the par-
ity operator, as the usual Dirac spinors do. The former aspect
is responsible for the neutrality of such spinors with respect
to gauge charges, while the last one implies that they don’t
obey the Dirac dynamics. These spinors are the so-called
Elko1. Such spinors have been inducing a large amount of
new research in recent years, from its formal [13–16] and
phenomenological aspects [17–23] to a wide range of appli-
cations [24–31]. The relevant point to our analysis here is that
since the very early formulation it became clear the necessity
of a more involved approach to reach the physically adequate
Elko dual [10]. This necessity culminates with a theory for
spinor dual [32–35], based on a judicious set of physical and
formal requirements.

In its first version, by requiring a non vanishing invariant
norm, the Elko dual was given by ¯̄ψ = (�ψ)†η (we reserve ψ̄

to the Dirac dual, as usual). Invariance under Lorentz boosts
and rotations sets η = γ0, up to a irrelevant constant, while
a real norm leads to [10,32]

1 Elko is an acronym of the German term “Eigenspinoren des
Ladungskonjugationsoperators”, which means “eigenspinor of the
charge conjugation operator”.
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� = m−1G(φ)γμ pμ, (1)

where, remarkably enough2, G(φ) (φ being part of the
spherical coordinates momentum parameterization) is invari-
ant under the symmetries of H O M(2) subgroup of the
Lorentz group [36,37]. This early version of the theory, so
to speak, had non locality as a troublesome aspect. Non
locality, however, is intrinsically related to the symmetry
underling the theory. Hence, by requiring a Lorentz invari-
ant spin sum it was demonstrated [32] that the dual given by
ψ̃ = (�ψ)†γ0O furnish a local Lorentz invariant theory3.

In this paper we are concerned to understand, following
the judicious inspection of the Clifford algebra general defi-
nition of algebraic spinor duals introduced in Ref. [35], links
between different allowed spinor duals, the maps associating
them, and unveil some hidden algebraic structures behind
those maps. In Sect. 2 we study several duals appearing in
somewhat recent papers and the maps connecting them. In
Sect. 3 we properly investigate the algebraic structures asso-
ciated to the mappings previously defined, as group struc-
tures, invariant eigenspaces associated to the group elements,
and the group algebras defined over the set of mappings con-
necting different duals. It includes the special case of invari-
ant eigenspaces which shrinks the plethora of duals possi-
bilities to the usual Dirac case and the covariance structure
of the bilinear quantities constructed with several different
duals. The Sect. 4 is reserved to the conclusions. We leave
for the Appendix the explicit matrix form of the operators
(group elements) studied in Sect. 3.

2 Spinor duals and dual maps

In order to elucidate the fundamental properties of spinor
duals we shall first make use the algebraic definition of
spinors. As it is well known, algebraic spinors are prop-
erly defined as ideals of Clifford algebras. A Clifford alge-
bra, on the other hand, is the algebraic structure upon which
the Dirac theory is based on (see Refs. [38] and [39] for a
comprehensive introduction to Clifford algebras, spinors and
applications in physics). Our aim in this section, however, is
to briefly revisit the properties of the algebraic definition of
spinors and its respective dual, as well as the construction
of maps connecting different well defined duals. Since we
are mainly interested in algebraic properties of spinor duals,
along this paper we shall usually drop the helicity index and
the space-time point dependence.

The Clifford algebra of the Minkowski space M ≡ R
1,3,

denoted by C�1,3, is defined as the associative unital algebra

2 See the explicit matrix form of G(φ) in the Appendix A.
3 The O operator shall be denoted by A or B in the rest of the paper, in
touch with original notation [32], as necessity appears.

such that the Clifford application γ : R1,3 → C�1,3 is linear
and satisfies4

γ (v)γ (u) + γ (u)γ (v) = 2η(v, u), ∀ v, u ∈ R
1,3,

where η is the Minkowski metric. Algebraic spinors are min-
imal left ideals built upon primitive idempotents of the asso-
ciated Clifford algebra. In fact, given the Clifford algebra
C�1,3 and f a primitive idempotent, the minimal left ideals
are of the form C�1,3 f . Analogously, minimal right ideals
are also built upon primitive idempotents, having the form
f C�1,3. Furthermore, a scalar can be obtained from f C�1,3 f .
It allows the definition of an inner product β by associating
an arbitrary spinor ψ (minimal left ideal) to its correspondent
ψ	 (minimal right ideal), called the adjoint with respect to
the inner product β, such that β(ψ, φ) = ψ	φ ∈ R.

Right ideals can be mapped into left ideals, and vice-
versa, by involutions of the algebra. Idempotents, however,
in general are not preserved by involutions. Namely, denot-
ing an arbitrary involution by α, follows α(C�1,3 f ) =
α( f ) α(C�1,3) = α( f ) C�1,3. Nevertheless, in general,
α( f ) �= f and consequently α( f ) C�1,3 �= f C�1,3.
Notwithstanding, there always exists an element h ∈ C�1,3

such that α( f ) = h−1 f h and α(h) = h [39,40], allowing
one to define ψ	 = h α(ψ) = f h α(ψ). Thus, an inner
product is reached as

β(ψ, φ) = h α(ψ)φ = f h α(ψ)φ f ∈ f C�1,3 f � R, (2)

where α is called the adjoint involution of the inner prod-
uct β. There are two natural involutions inside the structure
of Clifford algebras, the reversion and Clifford conjugation
[39]. These two involutions determine two non equivalent
inner products, being any other inner product determined by
an equivalent involution [40]. The algebra of interest for us
is, in fact, the Dirac algebra, which is the complexification of
C�1,3, denoted byC⊗C�1,3. Composing the complex conju-
gation with any other algebra involution generates a different
adjoint involution, thus a different inner product. The main
adjoint involution in our case is the one equivalent to the her-
mitian conjugation on the algebra representation. For such
it is sufficient that α�(a) = h−1a†h and h† = h, for any
a ∈ C⊗C�1,3 and h ∈ C⊗C�1,3 [39,40]. The adjoint (dual)
spinor ψ	 thus reads

ψ	 = hα�(ψ) → ψ†h = [hψ]†, (3)

where � denotes the complex conjugation in C⊗C�1,3 and
ψ	φ ∈ C. As we have discussed in Ref. [35], by taking h =
γ 0� (with � defined in Eq. (1)) the algebraic dual definition
coincides with the one proposed in Ref. [32]. The constrain
on h, given by h† = h, translates into �†γ 0 = γ 0�, which

4 In this paper the Clifford basis shall be denoted, as usual, by γμ ≡
γ (eμ), where {eμ}3

μ=0 is the basis of the Minkowski space.
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is obeyed by �. A general definition of dual can thus be
achieved by replacing � by a general operator � such that

�†γ 0 = γ 0�. (4)

This is the fundamental constrain on � and furnish an explicit
characterization to � as [35]

� =

⎡
⎢⎢⎣

a11 a12 a13 a14

a21 a22 a∗
14 a24

a31 a32 a∗
11 a∗

21
a∗

32 a42 a∗
12 a∗

22

⎤
⎥⎥⎦ , with a13, a31, a24, a42 ∈ R.

(5)

The above matrix can, then, be displayed as a block matrix
of the form

� =
[

A B
C A†

]
, with B† = B and C† = C. (6)

Hence, the general dual reads

ψ	 = [γ 0�ψ]† = [�ψ]†γ 0 = ψ†�†γ 0 = ψ†γ 0�. (7)

Instead of constructing a dual of the above form, we could,
alternatively, from the dual proposed in [32] to define a dual
map that preserves all the generality of �. We shall denote
such map by �. There are two mainly advantages of using
this approach. The first one is that, unlike �, we can choose
the dual map to explicitly depend on the momentum pμ of
the particle described by the spinor, using the � dependence
on pμ parameters. The second one is that, as we are going
to introduce in the next section, when defined in that way,
some unexpected algebraic structures of the set of � maps
are unveiled. We want to make clear that the momentum
dependency on the dual map is a choice, we could depart from
a different dual associated to � = I and have no momentum
dependency at all. The relationship between � and � is found
by defining an arbitrary spinor dual ψ	 such that,

ψ	 = [�γ 0�ψ]† = ψ†γ 0��. (8)

By comparing the Eqs. (7) and (8) we find

γ 0� = �γ 0�, (9)

or equivalently,

� = γ 0�γ 0� and � = γ 0��γ 0. (10)

From (4) and (10) follows the fundamental constrain of the
� map

�† = γ 0�†�†γ 0 = �γ 0γ 0� = �� = �γ 0�γ 0�. (11)

Now we can check the � maps associated to each of the duals
previously found in recent papers, accordingly:

• A possible dual discussed in Ref. [10] is ψ	 = [�ψ]†γ 0,
where

� = I and � = �. (12)

• The Dirac standard dual is ψ	 = ψ†γ 0, with

� = γ 0�γ 0 = �† and � = I. (13)

• In Ref. [34] it was found an equivalent Dirac dual given
by ψ	 = [M±ψ]†γ 0, thus

� = γ 0 M±�γ 0 = γ 0 M±γ 0�†

= MT±�† = M∓�† and � = M±. (14)

• In Ref. [32] it was also introduced ψ	 = [A�ψ]†γ 0 and
ψ	 = [B�ψ]†γ 0, following

� = γ 0Aγ 0 = A with � = A�. (15)

and

� = γ 0Bγ 0 = B with � = B�. (16)

respectively.

All those � maps are naturally in agreement with the con-
strain given by Eq. (11).

3 Dual Maps and algebraic structures

Now we are able to investigate the algebraic structure asso-
ciated to the � maps. The first one is the possibility of a
set of � maps do form a group. In order to form a group, a
subgroup of GL(4,C) which we shall denote generically by
G�, such set must, as well known, obey the associativity,
include an unit, be invertible and obey the closeness prop-
erty. The associativity is straightforwardly inherited from the
matrix algebra. The unit corresponds to the first case dis-
cussed in the previous Section. The invertibility is guaran-
teed by showing that, for a giving invertible � obeying Eq.
(11), the identity

(
�−1

)† = �γ 0�−1γ 0� holds. In fact,

from �† = �γ 0�γ 0� we have
(
�†

)−1 = �γ 0�−1γ 0�.

Therefore the result follows from
(
�−1

)† = (
�†

)−1
.

The closeness is the less straightforward property. It also
imposes a constrain on the possible G� candidates. In fact,
giving �1 and �2, from Eq. (11) we must have

(�1�2)
† = �γ 0�1�2γ

0�. (17)
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On the other hand,

(�1�2)
† = �

†
2�

†
1 = �γ 0�2γ

0��γ 0�1γ
0�

= �γ 0�2�1γ
0�. (18)

By comparing Eqs. (17) and (18) we conclude that �1�2 =
�2�1, thus G� must be an Abelian subgroup of GL(4,C).
From �1�2 = �2�1 and Eq. (10) we find the correspondent
constrain on �,

γ 0�1�γ 0γ 0�2�γ 0 = γ 0�2�γ 0γ 0�1�γ 0

�1��2� = �2��1�, (19)

which by means of �2 = I leads to

�1��2 = �2��1. (20)

We could not find a simple form for the most general
G�. Nevertheless, the particular cases introduced in the next
Section are fairly straightforward and useful when connected
to the Lounesto classification, as we shall show soon.

3.1 G� Groups

Once established the conditions for G� being a group, we
can now explore some particular cases explicitly. Below are
listed all the � maps we are going to use as group elements,
all of them are defined from compositions of the � operator
and do satisfy the Eq. (11). Note that, despite the different
definition, the G(φ) matrix is the same used in Eq. (1) for
defining �. The matrix form of such elements as well as
some useful properties of them are found in the Appendix A.

• G(φ) = G ≡ m
2E {γ 0, �} = m

2E

(
γ 0� + �γ 0

)
• F(θ, φ) = F ≡ m

2p [γ 0, �] = m
2p

(
γ 0� − �γ 0

)

• F(θ, φ)G(φ) = FG = m2

4Ep [�†, �]
• �†(pμ) = �† = γ 0�γ 0

• G�†(pμ) = m
2E

(
�†� + I

)
γ 0

• H(pμ) ≡ m2��†

• H−1(pμ) = m−2�†� = m−4γ 0Hγ 0

Three group structures are found by observing the above
properties, two of them are straightforward given by GF ≡
{I,G,F ,FG} and G�† ≡ {I,G, �†,G�†}, whose Cayley
tables are given below (Table 1). Those groups are isomor-
phic to the classical Klein four group5 K4. In spite of being
isomorphic, GF and G� are topologically inequivalent. It
comes from the fact that the GF parameters are all compact.

The remaining group, denoted by GH, is not of finite order
as the previous ones. It is generated by {I,F ,G,H,H−1} and

5 For a basic reference on the subject, see [41].

Table 1 Cayley tables for GF ≡ {I,G,F,FG} (left panel) and G�† ≡
{I,G, �†,G�†} (right panel)

GF I G F FG
I I G F FG
G G I FG F
F F FG I G
FG FG F G I

and

GΞ† I G Ξ† Ξ†G
I I G Ξ† Ξ†G
G G I Ξ†G Ξ†

Ξ† Ξ† Ξ†G I G
Ξ†G Ξ†G Ξ† G I

its Cayley table is given below (Table 2), from where we can
see GF as a subgroup. We are going to use this fact later.

In principle, any element of these groups defines a differ-
ent dual. However, as it could be expected, they are not all
disconnected. Under certain circumstances discussed below
the whole group defines a dual equivalent to the standard
Dirac one, besides preserving the Lounesto Classes. At this
point we face an important question regarding those new
duals. Given that some of them are not equivalent to the
Dirac dual nor any other previously discussed, may they have
physical relevance? Specifically, a theory based of such dual
is covariant? We shall study this fundamental aspect of the
dual emerging from the above � groups in the next section.

3.2 Investigating the Covariance

After setting the several possibilities of duals and their group
structure as well, we shall discuss the covariance of the result-
ing bilinear quantities. As the first usual step we recall that
the spinors at hands belongs to a linear representation of
the inhomogeneous Lorentz group and, therefore, must exist
S(�) invertible such that ψ ′(p′) = S(�)ψ(p). To fix ideas
let us restrict the analysis to transformations belonging to
the orthochronous proper subgroup of the Lorentz group.
Hereafter we shall denote S(�) simply by S. Also, bear-
ing in mind that the covariance of Dirac equation demand
Sγ μS−1 = γ ν�

μ
ν and γ 0S−1 = S†γ 0, in order to achieve

the right covariance for all bilinear quantities it is nec-
essary and sufficient that the dual transform under S as
ψ ′	 = ψ	S−1, as the usual Dirac case. Furthermore, the �

operator is given by a specific sum of the type ψψ̄ [5,32], and
therefore �′ = S�S−1, leading to (�′)† = (S−1)†�†S†.

Let us start by investigating the general � map dual
ψ	 = [�γ 0�ψ]†. According to the above discussion,
under a symmetry transformation it must behave as (ψ ′)	 =
ψ†�†γ 0�†S−1, accordingly

ψ ′	 = ψ ′†(�′)†γ 0(�′)† (21)

= ψ†S†(S−1)†�†S†γ 0(�′)† (22)

= ψ†�†γ 0S−1(�′)† (23)
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Table 2 Cayley table for GH ≡ {I,F,G,H,H−1, · · · }
GH I G F FG H H2 · · · H−1 (H−1)2 · · ·
I I G F FG H H2 · · · H−1 (H−1)2 · · ·
G G I FG F GH GH2 · · · GH−1 G(H−1)2 · · ·
F F FG I G FH FH2 · · · FH−1 F(H−1)2 · · ·
FG FG F G I FGH FGH2 · · · FGH−1 FG(H−1)2 · · ·
H H GH FH FGH H2 H3 · · · I H−1 · · ·
H2 H2 GH2 FH2 FGH2 H3 H4 · · · H I · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

H−1 H−1 GH−1 FH−1 FGH−1
I H · · · (H−1)2 (H−1)3 · · ·

(H−1)2 (H−1)2 G(H−1)2 F(H−1)2 FG(H−1)2 H−1
I · · · (H−1)3 (H−1)4 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Hence, in order to preserve covariance, �† must transform
as (�′)† = S�†S−1, or equivalently, �′ = (S−1)†�S†.
Considering the group G�† , � = �† automatically satisfies
the correct transformation law. For � = G, from Eq. (1) it
can be readly verified that G = m−1�γ μ pμ. Noticing that
G† = G we have

S−1G′S = m−1S−1�′γ μ p′
μ

S = m−1(S−1�′S)(S−1γ μ p′
μS), (24)

from which we see that G′ = SGS−1. As G�† straightfor-
wardly obey the same transformation law, we conclude that
the group G�† preserves the covariance.

The group GF is a little more subtle. In fact, it is not
possible to ensure the necessary transformation for any dual
presenting F in its composition. The reason is the following.
By using Eq. (1) and the matricial form for G and F (see the
Appendix) a bit of algebra leads to

F = E

mp
�γ μ pμ − m

p
�γ 0. (25)

Apart from the cumbersome coefficients (which shall not be
taken as a necessary impediment to Lorentz covariance, but
in this case are an element of trouble) the presence of γ 0 in
the last term of the right hand side is problematic, preventing
F to recast F ′ as SF S−1. Recall that the S transformation
is not unitary for Lorentz boosts (the boost sector of Lorentz
transformations render it a non-compact group).

The results discussed so far may be partially applied to
the cases of GH but it needs some additional considerations.
Firstly, the (infinite) elements of GH containing F do not
transform suitable and we cannot see their relevance yet,
apart from mathematical aspects. The elements comprising
H or H−1 are quite interesting though. Notice that

H′ = m2�′(�′)† = m2S�S−1(S−1)†�†S† (26)

(H′)−1 = m−2(�′)†�′ = m−2(S−1)†�†S†S�S−1. (27)

In both cases the correct transformation is ensured if S is
unitary. Again, it is straightforwardly inherited by any power
of H and H−1. As a result, the covariance of duals con-
structed with these elements requires unitarity of the spino-
rial transformation as the unique necessary and sufficient
condition (recall that for F elements, there are additional
inconvenience coming from the coefficients). As mentioned,
this is not fulfilled in the scope of classical fields, but the
case deserves special attention as it could be implemented in
the framework of representations of the little group in the
Hilbert space. Within this case, as it is well known, uni-
tary and finite dimensional representations may certainly
be found. The investigation of how to frame the different
duals here studied requires further exploration, neverthe-
less the particular cases involving H or H−1 could appear
as physically relevant. Being more precise (remembering
that we are concerned with orthochronous proper transfor-
mations), it is possible to achieve Lorentz transformations,
say L(p), connecting kμ to pμ by pμ = L(p)

μ
ν kν such

that p2 = k2 = m2. Moving forward, induced representa-
tions may be reached by means of special W (�, p) elements
given by W (�, p) = L−1(�p)�L(p) whose action on kμ

preserves it. The W elements do form the little group. A set
of spin one-half quantum states, {�k,±1/2}, upon which the
action of unitary and finite dimensional U (W (�, p)) engen-
ders a genuine representation may well be defined. The rele-
vance of duals built withH orH−1 would then be manifest in
a mapping connecting the �k,±1/2 set with its corresponding
adjoint. This analysis is under in progress currently.

Let us finish the section by taking a look at the sub-
groups of GH. The first one, denoted by GG0 , is com-
posed by {I,G}. This subgroup, along with G�† are in a
Lorentz covariant sector, thus physically and mathemati-
cally relevant. The second one, given by GF0 = {I,F}
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does not preserve Dirac nor unitary symmetry. The last one,
GH0 = {I,H,H−1,H2,H−2, . . .}, is associated to unitary
symmetry and its structure opens new possibilities to be fur-
ther explored. The hole group GH can be decomposed in
those subgroups, according to the associated symmetry6

GH = GF0 ⊕ GG0 ⊕ GH0 . (28)

3.3 G� groups and invariant eigenspaces

Before to evince the structure of the related invariant
eigenspaces, we shall say a few words about the so called
Lounesto spinor classification [38] (see [43,44] for details).
Roughly speaking, Lounesto shown that the bilinear covari-
ants (composed with the usual Dirac dual) respecting the
Fierz-Pauli-Kofink may serve to classify spinors. The idea
is, via the inversion theorem [45], to use the values of the
bilinear covariants to categorize spinors. This result in six
disjoint different types of spinors, namely7:

• Type (1) | ψ̄ψ �= 0 and ψ̄γ 0123ψ �= 0;
• Type (2) | ψ̄ψ �= 0 and ψ̄γ 0123ψ = 0;
• Type (3) | ψ̄ψ = 0 and ψ̄γ 0123ψ �= 0.

Elements of the above classes are called regular spinors,
for which all the other bilinear covariants are non null. The
remaining classes are called singular spinors. For them hold
ψ̄ψ = 0 and ψ̄γ 0123ψ = 0, along with:

• Type (4) | iψ̄γ 0123γ μψ �= 0 and iψ̄γ μγ νψ �= 0;
• Type (5) | iψ̄γ 0123γ μψ = 0 and iψ̄γ μγ νψ �= 0;
• Type (6) | iψ̄γ 0123γ μψ �= 0 and iψ̄γ μγ νψ = 0.

Even though the Lounesto classification is build up based
upon the standard Dirac dual, it is instructive to check the
classes associated to the invariant subspaces (eigenspaces)
of the new dual presented here. From elementary linear alge-
bra it is well known that the eigenspaces are invariant under
the action of commuting operators. It means that for any
spinor belonging to those subspaces, the dual defined by its
respective operator will match, up to a scalar (eigenvalue),
the Dirac dual. If the dual is defined by a commuting opera-
tor, on the other hand, it will be equivalent to the Dirac dual
for another spinor of the eigenspace. Given an operator K,
its correspondent eigenspace reads

Eλ(K) =
{
v ∈ C

4 | Kv = λv
}

. (29)

The eigenspaces of the GF , G�† and GH elements have
some characteristics in common. For example, all the associ-

6 Such decomposition is formally well defined, since GF0 , GG0 and
GH0 are normal subgroups of GH and GF0 ∩ GG0 ∩ GH0 = I [42].
7 Here the symbol γ 0123 stands for γ 0γ 1γ 2γ 3.

ated eigenvalues are degenerate with associated eigenspaces
of dimension 2. In addition, the eigenvalues of G, F and �†

are±1 and the eigenvectors belong to a well defined Lounesto
classification, as discussed below.

The G operator has eigenspaces given by

E±1(G) = SpanC

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

∓ie−iφ

0

0
1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎝

0
±ieiφ

1
0

⎞
⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (30)

An interesting feature of the above eigenspace is that any
of its elements is of Type-(5) according to the Lounesto
classification. In fact, the above eigenvectors are also eigen-
vectors of the charge conjugation operator with eigenval-
ues ±e−iφ,±eiφ respectively [43]. As G commutes with any
operator belonging to the G� group introduced here, it fol-
lows that the Lounesto classification (Type-(5)) is preserved
by any operator of the previous section.

For the F operator one finds the eigenspaces

E±1(F) = SpanC

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

±ie−iφ cos θ

±i sin θ

0

1

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

∓i sin θ

±ieiφ cos θ

1

0

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(31)

In such case the eigenvectors, as well as their combinations,
are regular, also according the Lounesto classification. Again,
it means that any operator commuting with F and obeying
the Eq. (11) will define a dual that maps regular spinors into
regular spinors with the standard Dirac dual.

The eigenvectors of H and �† are all of Type-(6). How-
ever, as the Lounesto classification is in general not pre-
served by linear combinations, the eigenspace mix different
Lounesto classes.

E(E∓p)2 (H)

= SpanC

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

0

0

e−iφ(cot θ ± csc θ)

1

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎝

e−iφ(cot θ ∓ csc θ)

1
0
0

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(32)

E±1(�†)

= SpanC

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

0
0

e−iφ(p sin θ∓im)
E−p cos θ

1

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎝

− e−iφ(im±p sin θ)
E+p cos θ

1
0
0

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(33)
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3.4 G� Group Algebras

The linearity of the Eq. (11) guarantee that combinations of
� maps are also � maps. It turns the G� groups into a wider
algebraic structure, namely a group algebra [46]. The Eq.
(11) also restricts the scalars of the linear combination to
belong to R. Thus, as a group algebra element, � is of the
form

� =
∑

ω ∈ G�

aωω, aω ∈ R. (34)

The group algebras of the particular G� groups presented
here are indicated below. Note that the determinant gives the
conditions on the real coefficients for � being invertible:

• G� = G�†

� = aI + b�† + cG + d�†G, (35)

� = bI + a� + dG + c�G, (36)

det[�] = (a + b − c − d)(a − b + c − d)

(a − b − c + d)(a + b + c + d). (37)

• G� = GF

� = aI + bF + cG + dFG, (38)

� = (aI − bF + cG − dFG)�, (39)

det[�] = (a + b − c − d)(a − b + c − d)

(a − b − c + d)(a + b + c + d). (40)

• G� = GH

� = aI + bF + cG + dFG + h1H + h2H2 + · · ·
+ F( f1H + f2H2 + · · · )+
+ G(g1H + g2H2 + · · · )
+ FG( f g1H + f g2H2 + · · · )
+ h−1H−1 + h−2H−2 + · · · ,

� = �[aI + bF + cG + dFG + h1H + h2H2 + · · ·
+ F( f1H + f2H2 + · · · )+
+ G(g1H + g2H2 + · · · )
+ FG( f g1H + f g2H2 + · · · )
+ h−1H−1 + h−2H−2 + · · · ].

The possibility of � maps as composing group algebras
increases considerably the possibility of duals, even for the
very restrict set of � maps explicitly introduced here. Such
possibility deserves a carefully attention in future investiga-
tions.

4 Concluding remarks and outlook

In this paper we have introduced several possibilities with a
rich algebraic structure for spinor duals, evincing different
possibilities coming from solid foundations rooted on Clif-
ford algebra. Rather than trying to find general properties
of the allowed spinor duals, we focused on some interest-
ing particular cases and its underlying group structure. We
also clarify the connection between those group elements, its
invariant eigenspaces and the so called Lounesto classifica-
tion. The group algebra structure of the dual maps were also
introduced.

We would like to finalize this work by remarking some
research paths which can be pursued in order to link the
duals here investigated with physical theories. First of all,
we shall emphasize that it seems indeed necessary to specu-
late about different duals. Apart from the known case previ-
ously mentioned there is also other possibilities8 arising in
the scope of mass dimension one fermions [47]. The fulcrum
of these investigations is the search for quantum field theory
fermionic candidates to dark matter. Therefore, mathemati-
cally well posed duals seems to be a good start.

Two aspects, one algebraic and other physical, concerning
the duals possibilities here found shall be further explored.
On the one hand, it would be important to investigate whether
the Fierz-Pauli-Kofink identities, computed with the covari-
ant bilinears constructed with these duals, holds. For posi-
tive cases, a Lounesto-like classification would be in order,
whilst, for negative cases, one could relate the specific cases
contrasting them to the so called amorphous spinors (sec-
tions of Clifford bundle which does not obey the FPK identi-
ties) [48,49]. On the other hand, the explicit appreciation of
spin sums resulting from the pair spinor/dual with the differ-
ent cases here shown may be a secure rote to explore physical
consequences of fermionic theories constructed upon differ-
ent duals. In fact, by investigating the spin sums one shall
appreciate from the physical invariance of the theory to the
locality structure of the field in question, as well as the right
canonical mass dimension via the quantum propagator.
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Appendix A: Matrix form of the G� elements

We depict here the explicit matrix form of the terms used in
Sec. III for convenience, as well as some useful identities.

G(φ) =

⎡
⎢⎢⎣

0 0 0 −ie−iφ

0 0 ieiφ 0
0 −ie−iφ 0 0

ieiφ 0 0 0

⎤
⎥⎥⎦ ,

G2 = I; G† = G; det[G] = 1;
[G, γ 0] = 0; [G,F] = 0; [G, �†] = 0;
[G,H] = 0; [G,H−1] = 0.

F(θ, φ) =

⎡
⎢⎢⎣

0 0 − sin θ e−iφ cos θ

0 0 eiφ cos θ sin θ

sin θ −e−iφ cos θ 0 0
−eiφ cos θ − sin θ 0 0

⎤
⎥⎥⎦ ,

F2 = I; F† = F; det[F] = 1;
{F, γ 0} = 0; [G,F] = 0; {F, �†} = 0;
[F,H] = 0; [F,H−1] = 0.

FG =

⎡
⎢⎢⎣

− cos θ −e−iφ sin θ 0 0
−eiφ sin θ cos θ 0 0

0 0 cos θ e−iφ sin θ

0 0 eiφ sin θ − cos θ

⎤
⎥⎥⎦ ,

(FG)2 = I; (FG)† = FG; det[FG] = 1;
{FG, γ 0} = 0; [FG,F] = 0; {FG, �†} = 0;
[FG,H] = 0; [FG,H−1] = 0.

�† = − i

m

⎡
⎢⎢⎣

p sin θ e−iφ(E − p cos θ) 0 0
−eiφ(E + p cos θ) −p sin θ 0 0

0 0 −p sin θ e−iφ(E + p cos θ)

0 0 −eiφ(E − p cos θ) p sin θ

⎤
⎥⎥⎦ ,

(�†)2 = I; [G, �†] = 0;
det[�†] = 1; {F, �†} = 0.

G�† = 1

m

⎡
⎢⎢⎣

eiφ p sin θ E − p cos θ 0 0
E + p cos θ e−iφ p sin θ 0 0

0 0 −eiφ p sin θ E + p cos θ

0 0 E − p cos θ −e−iφ p sin θ

⎤
⎥⎥⎦ ,

(G�†)2 = I; (G�†)† = G�;
det[G�†] = 1; [G,G�†] = 0
{F,G�†} = 0.

H =

⎡
⎢⎢⎣

E2 + 2p cos θE + p2 2e−iφEp sin θ 0 0
2eiφEp sin θ E2 − 2p cos θE + p2 0 0

0 0 E2 − 2p cos θE + p2 −2e−iφEp sin θ

0 0 −2eiφEp sin θ E2 + 2p cos θE + p2

⎤
⎥⎥⎦ ,

H = H†; det[H] = m8;
[G,H] = 0; [F,H] = 0.

H−1 =

⎡
⎢⎢⎣

E2 − 2p cos θE + p2 −2e−iφEp sin θ 0 0
−2eiφEp sin θ E2 + 2p cos θE + p2 0 0

0 0 E2 + 2p cos θE + p2 2e−iφEp sin θ

0 0 2eiφEp sin θ E2 − 2p cos θE + p2

⎤
⎥⎥⎦ ,

(H−1)† = H−1; det[H−1] = 1
m8 ;

[G,H−1] = 0; [F,H−1] = 0.

GH =

⎡
⎢⎢⎣

0 0 2iEp sin θ −ie−iφ
(
E2 + 2pE cos θ + p2

)
0 0 ieiφ

(
E2 − 2pE cos θ + p2

) −2iEp sin θ

−2iEp sin θ −ie−iφ
(
E2 − 2pE cos θ + p2

)
0 0

ieiφ
(
E2 + 2pE cos θ + p2

)
2iEp sin θ 0 0

⎤
⎥⎥⎦ ,

FH =

⎡
⎢⎢⎣

0 0 −i
(
E2 + p2

)
sin θ ie−iφ

[
2Ep + (

E2 + p2
)

cos θ
]

0 0 ieiφ
[(

E2 + p2
)

cos θ − 2Ep
]

i
(
E2 + p2

)
sin θ

i
(
E2 + p2

)
sin θ −ie−iφ

[(
E2 + p2

)
cos θ − 2Ep

]
0 0

−ieiφ
[
2Ep + (

E2 + p2
)

cos θ
] −i

(
E2 + p2

)
sin θ 0 0

⎤
⎥⎥⎦ .
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