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Abstract

We have selected a sample of 11 massive clusters of galaxies observed by the Hubble Space Telescope in order to
study the impact of the dynamical state on the intracluster light (ICL) fraction, the ratio of total integrated ICL to
the total galaxy member light. With the exception of the Bullet cluster, the sample is drawn from the Cluster
Lensing and Supernova Survey and the Frontier Fields program, containing five relaxed and six merging clusters.
The ICL fraction is calculated in three optical filters using the CHEFs ICL estimator, a robust and accurate
algorithm free of a priori assumptions. We find that the ICL fraction in the three bands is, on average, higher for the
merging clusters, ranging between ∼7% and 23%, compared with the ∼2%–11% found for the relaxed systems.
We observe a nearly constant value (within the error bars) in the ICL fraction of the regular clusters at the three
wavelengths considered, which would indicate that the colors of the ICL and the cluster galaxies are, on average,
coincident and, thus, so are their stellar populations. However, we find a higher ICL fraction in the F606W filter for
the merging clusters, consistent with an excess of lower-metallicity/younger stars in the ICL, which could have
migrated violently from the outskirts of the infalling galaxies during the merger event.

Key words: galaxies: clusters: general – techniques: image processing

1. Introduction

The intracluster light (ICL) is starting to get some attention
for its ability to give insights into the processes driving galaxy
cluster evolution. Defined as the light of the stars that do not
belong to any of the galaxies of the clusters but are

gravitationally bound to the potential of the system, the ICL
origin, general properties, and evolution are almost completely
unknown. Its contribution to the total luminosity of the cluster
can be significant, ranging from 10% to 50% of the total light,
where the upper limit was claimed by Bernstein et al. (1995) in
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the core of the Coma cluster. This contribution is known as the
ICL luminosity fraction (hereafter the ICL fraction), and it is
formally defined as the ratio between the ICL and the total
luminosity of the cluster. The total luminosity comprises the
ICL and the light from the galaxy members of the cluster.
Although this parameter is conceptually very simple, accurate
measurements of the ICL are not trivial to obtain, which largely
explains the scatter in the results reported in different studies in
the literature with inconsistent methodologies. Disentangling
the ICL from the light of the stars in the galaxies is not
straightforward, being especially complex in the case of the
brightest cluster galaxy (BCG). Traditional methods are often
ambiguous, relying on different a priori hypotheses that tie
conditions to the final measurements, leading to different
conclusions on the nature of the ICL and its properties.
Assuming that the ICL formation is mainly driven by ongoing
processes (e.g., tidal stripping or total disruption of dwarf
galaxies), it is predicted that the ICL fraction will grow with
decreasing redshift (Willman et al. 2004; Rudick et al. 2006,
2011; Krick & Bernstein 2007; Burke et al. 2012). However,
several works failed to find any significant redshift dependence
of the ICL or the ICL fraction probed at different redshift
ranges (Krick & Bernstein 2007; Guennou et al. 2012; Montes
& Trujillo 2018; Morishita et al. 2017). In addition, it has been
suggested that the ICL fraction should be related to the
dynamical evolutionary stage of the cluster, such as a merger,
since it is expected that the amount of ICL would increase with
the infall material on the cluster (Adami et al. 2004, 2013;
Pierini et al. 2008). In fact, although involving a smaller scale,
some authors reported a correlation between the fraction of
diffuse light and the dynamical state in groups, finding that the
intragroup light (IGL) fraction was higher in the case of active
groups (e.g., Da Rocha & Mendes de Oliveira 2005; Da Rocha
et al. 2008).

The major difficulty in looking for quantitative and
qualitative relations between the ICL and other cluster
properties comes from a combination of small-number statistics
of clusters with measured ICL, the different data quality, and
the use of very disparate methodology. In particular, the latter
makes direct comparisons of results from different works
extremely difficult, since we cannot determine if the conclu-
sions are in fact real or the result of a bias induced by the
different techniques used, the different hypotheses assumed, or
selection effects. The aim of this work is to study in a
consistent way the role of the cluster’s dynamics in the ICL
formation. We selected a significant sample of massive
merging and relaxed clusters spanning a redshift range of
0.18<z<0.54, which is of special interest, since several
works suggest that the ICL is mainly formed at later times, i.e.,
z�1 (e.g., Burke et al. 2012; Montes & Trujillo 2014, 2018;
Morishita et al. 2017), with the most dramatic evolution in the
ICL fraction happening at z∼0.5 (Montes & Trujillo 2018).
We estimated the ICL fraction in this sample using an accurate
technique free of a priori assumptions called the CHEFs ICL
Estimator (CICLE; Jiménez-Teja & Dupke 2016). CICLE is
based on the use of Chebyshev–Fourier functions (CHEFs;
Jiménez-Teja & Benítez 2012) to model the surface light
distribution of the galaxies and curvature maps to disentangle
the ICL from the light of the BCG. CICLE studies the ICL two-
dimensionally, without the need to simplify its surface
distribution to a profile and, thus, not assuming any kind of
symmetric distribution. It does not assume any previous

hypothesis either, apart from the fact that the radial profiles
of the BCG and the ICL must be different, i.e., analogous to
having different “slopes,” which in practice is translated in
surface analysis as having different curvatures. Notice that this
is a minimum condition, since if it is violated, no method
would be able to disentangle the two light distributions. CICLE
has been successfully tested with mock data and applied to real
data from cluster Abell 2744 (Jiménez-Teja & Dupke 2016).
The test sample used in this work consists of 11 massive

clusters with well-defined dynamical states and similar
observational characteristics, all with Hubble Space Telescope
(HST) observations available. Most of the clusters are part of
the Cluster Lensing and Supernovae Survey with Hubble
(CLASH; Postman et al. 2012) and the Frontier Fields (FF)

program (Lotz et al. 2017). Both programs provide data of
exceptional quality and depth, ideal for using CICLE. In this
work, we present the analysis of the ICL fraction for these 11
massive clusters in three different HST bands. We divided the
sample into two groups, merging and relaxed clusters, aiming
to study their ICL fraction colors (defined as the difference
between two measurements of the ICL fraction of a cluster
made at different wavelengths) and to unveil the possible
progenitors of this ICL. The paper is organized as follows.
Section 2 describes the clusters in our sample and the criteria
used to choose them. The observational characteristics of the
data used and the preprocessing carried out are explained in
Section 3, while the CICLE algorithm is outlined in Section 4.
In Section 5, we describe previous results regarding the ICL of
the clusters in our sample in order to compare them, to the
extent possible, with the results that we obtain with CICLE in
Section 6. Finally, we discuss our results in Section 7 and draw
the conclusions in Section 8. Throughout the paper, we assume
a standard ΛCDM cosmology with H0=70 km s−1,
Ωm=0.3, and ΩΛ=0.7.

2. Sample Selection

The data used for this work come mainly from CLASH35

(Postman et al. 2012) and the FF program36
(Lotz et al. 2017),

which includes both relaxed and merging massive clusters
observed by the HST.
The CLASH program was mainly devoted to studying the

dark matter distribution in galaxy clusters using both strong
and weak lensing and to search for SNe Ia out to redshift z∼2
in 25 specially selected massive clusters. Twenty of these 25
systems were initially chosen to be likely relaxed, according to
their symmetric surface brightness distribution in the X-ray.
The remaining five clusters were selected for being well-known
high-magnification lenses. The cluster sample is distributed in
the range 0.15<z<0.9 and has masses in the range

M M5 30 10vir
14< < ´  (Postman et al. 2012; Umetsu

et al. 2014; Merten et al. 2015). All of them have X-ray
temperatures TX>5 keV. Each cluster was observed with both
the Advanced Camera for Surveys (ACS) and the Wide Field
Camera 3 (WFC3) in 16 passbands covering the NUV, optical,
and NIR wavelengths (Postman et al. 2012).
The FF program (PI: Lotz) has also observed with

unprecedented depth six massive clusters using both ACS
and WFC3. These systems were also chosen for being well-
known high-magnification lenses, with the aim of not only

35 http://www.stsci.edu/~postman/CLASH/Home.html
36 http://www.stsci.edu/hst/campaigns/frontier-fields/FF-Data
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studying the dark matter distribution in their cores but also
analyzing the distant galaxies in the background, improving our
knowledge of the universe in the epoch of reionization. The six
clusters, with redshifts ranging from z∼0.3 to∼0.55 and
masses spanning the interval M M10 30 10vir

14~ < < ´ ,
have been observed in seven different optical and NIR bands
using 840 Hubble orbits (Lotz et al. 2017).

Our sample is composed of six CLASH clusters (Abell 383,
Abell 611, MS 2137−2353, MACS 1115.9+0129, RXJ 2129.7
+0005, and Abell 209), four FF clusters (Abell 2744, MACS
J0416.1−2403, MACS J0717.5+3745, and MACS J1149.5
+2223), and the western subcluster of the Bullet system.
Although MACS J0416.1–2403, MACS J0717.5+3745, and
MACS J1149.5+2223 also belong to the CLASH sample, we
used the FF images to analyze them, given that the CLASH
data are included in them. Two more clusters were initially
considered—the eastern subcluster in Bullet and the CLASH
cluster MACS 1931.8−2635—but, due to the pollution from a
nearby bright star in the first case and the lack of enough
spectra in the HST field of view in the second, these two
systems were not included in the final study. The criteria to
select these systems were (a) having similar masses, (b) having
high-quality HST data available, (c) having enough spectro-
scopic information available on the galaxies in the images for
the cluster membership determination, and (d) having a well-
defined dynamical state, as determined by several indicators, if
possible. The goal is to consistently study the ICL fraction with
respect to the dynamical stage of the systems, using a
homogeneous sample of objects under the same observational
characteristics with deep-imaging data and a significant number
of precise galaxy redshifts. Splitting the sample according to
the dynamical stage is thus crucial to disentangling which are
the main mechanisms responsible for the ICL formation in
each case.

The dynamical state of a cluster has been traditionally
determined through visual inspection analyzing the morph-
ology and the presence of substructure. Regular (relaxed)
systems are, by definition, virialized, so they should be roughly
circular, symmetric, and without tidal features. They usually
exhibit higher concentration indexes c (here defined as the ratio
between the light enclosed by a fixed inner aperture and the
total light of the cluster) than unrelaxed systems (Cassano et al.
2010; Donahue et al. 2016). The existence of multiple BCGs is
also an indicator of dynamical activity in a cluster related to its
appearance. Furthermore, we also considered other parameters
measured in X-rays, such as the symmetry of the gas
distribution. Dynamical interactions produce shocks or pressure
waves that often break the symmetry of the gas distribution.
Deviations from this symmetry are quantified through the
power ratio and the axial ratio. The power ratio is a multipole
decomposition of the X-ray surface brightness distribution that
is sensitive to the presence of substructure, while the axial ratio
is simply the ratio between the lengths of the minor and major
axes of the X-ray distribution, thus providing an idea of its
degree of elongation (see Cassano et al. 2010 and Donahue
et al. 2016 for a detailed description of these parameters). Also,
the centroid shift w, defined as a statistical measurement of the
projected offset between the X-ray peak and the centroid of the
cluster measured within different circular apertures, serves to
quantify the dynamical state of the system. It is expected that in
relaxed clusters, the gravitational potential dominates the

geometry of the system, making the hot X-ray–emitting gas
approximately align with the total mass distribution.
In the last decades, the presence of radio halos and relics has

also been associated with merging clusters (e.g., Cassano et al.
2010, 2016; Cuciti et al. 2015; Pandey-Pommier et al. 2016),
especially in the case of massive systems, through diffusive
shock acceleration (e.g., Enßlin et al. 1998). Electrons in the
intracluster gas are accelerated diffusively, using part of the
energy dissipated during mergers in active clusters to energies
where they would emit cluster-scale (∼Mpc-scale) synchrotron
radiation. This emission appears in nonrelaxed clusters in the
form of giant radio halos or giant radio relics. Relatively
passive systems with cool cores also exhibit diffuse synchro-
tron radio emission, but on smaller scales (∼100–300 kpc), in
what is known as radio mini-halos. In this case, the electron
acceleration process is likely produced by active galactic nuclei
(AGN)-driven turbulence in cool-core clusters (i.e., clusters
with temperature profiles falling toward the center) causing this
nonthermal emission (Brunetti & Jones 2014) and is not related
to the overall cluster dynamical state (e.g., Bravi et al. 2016).
Before describing the sample, it is important to keep in mind

that it is much easier to tell if the cluster is merging than if it is
relaxed. If there is no evidence of departures from relaxation,
we consider the clusters to be relaxed. One should notice that
the results of the analysis will not be dependent on the precise
estimation of the relaxation level, just that we compare clusters
that have plenty of evidence of merging with those that do not.
We will now describe the properties of each one of the 11
clusters in our sample, particularly their dynamical states,
according to all of the indicators previously described.

1. Abell 383 (hereafter A383; z∼0.187) is identified as a
relaxed cluster according to the X-ray morphological
parameter diagrams built by Cassano et al. (2010; see
Figure 1 in Cassano et al. 2010 and Figure 3 in Donahue
et al. 2016). Its power ratios are very small, and its X-ray
distribution is highly circular, with an axis ratio of
∼0.97±0.01 within a metric radius of 500 kpc (Donahue
et al. 2016). It has a cool core with just a single point radio
source of less than 5 kpc detected at the BCG (Giacintucci
et al. 2017). All evidence suggests that this is a regular
system.

2. Abell 611 (hereafter A611; z∼0.288) is also part of the
CLASH sample displaying a circular and symmetric
distribution in the X-ray (Postman et al. 2012). Although
bright in the X-ray, it is clearly relaxed, as the
measurements of X-ray concentration, centroid shift,
and power ratios made by Donahue et al. (2016) indicate.
No diffuse extended radio emission is detected, just
central emission connected to the BCG (Venturi
et al. 2008; Pandey-Pommier et al. 2016).

3. MS 2137–2353 (hereafter MS 2137; z∼0.313) appears
to be a well-relaxed cluster, as its X-ray morphological
measurements suggest (Donahue et al. 2016). We did not
find any information on possible radio emission available
in the literature.

4. MACS 1115.9+0129 (hereafter MACS 1115; z∼0.352)
is a cool-core cluster that is not as circular in the X-ray as
other clusters in the CLASH sample (AR∼0.85±0.03)
but has a high X-ray concentration and small centroid
shift and power ratios (Donahue et al. 2016), all
compatible with a relaxed state. A radio mini-halo was
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detected by Kale et al. (2013, 2015), Pandey-Pommier
et al. (2016), and Giacintucci et al. (2017).

5. RXJ 2129.7+0005 (hereafter RXJ 2129; z∼0.234) is
also a clearly relaxed cluster according to its X-ray
morphological properties, although its axis ratio is not as
high as that from other systems in the CLASH “relaxed”
sample (AR∼0.87±0.01; Donahue et al. 2016). It has
a cool core. Its BCG hosts a strong radio source that is
surrounded by a mini-halo (Kale et al. 2015; Pandey-
Pommier et al. 2016; Giacintucci et al. 2017).

6. Abell 209 (hereafter A209; z∼0.206) is a rich, X-ray–
luminous cluster (Mercurio et al. 2003a, 2003b) that was
originally selected as a relaxed cluster in the CLASH
survey due to its symmetric X-ray distribution, although
several indications of marginal departures from relaxation
were also pointed out (Postman et al. 2012). It is a non-
cool-core cluster, showing substructure in the galaxy
velocity distribution and a marked luminosity segrega-
tion, strongly suggesting a merging state (Mercurio
et al. 2003a, 2003b). Despite having a small centroid
shift and power ratios, its X-ray concentration is
compatible with that of a merging cluster (Donahue
et al. 2016). The presence of a giant radio halo associated
with its BCG (Venturi et al. 2007; Pandey-Pommier et al.
2016; Giacintucci et al. 2017) seems to confirm that A209
is in fact a nonrelaxed cluster, and it is either undergoing
a merging event or at the end of a massive merger phase
(Venturi et al. 2007; Pandey-Pommier et al. 2016).

7. Abell 2744 (hereafter A2744; z∼0.307) is the first
cluster observed by the FF program. It is a richness 3
cluster with a significant enhancement of the blue galaxy
population (a blue fraction ∼2.2±0.3 higher than that
found in the same core regions of nearby clusters; Couch
& Sharples 1987) mainly composed of starburst and post-
starburst galaxies (Couch 1998). Analyzing combined
X-ray and spectroscopic data, Owers et al. (2011)
identified two major substructures in the velocity
distribution corresponding to the remnants of two major
subclusters in a post-core-passage phase of merging with
a large line-of-sight component, along with an interloping
minor merger model. This model was later confirmed and
refined by Merten et al. (2011), who concluded that it is
in fact a quadruple merging system. This result confirmed
the previous works addressing the unrelaxed dynamical
state of A2744 by Kempner & David (2004) and Boschin
et al. (2006). It hosts a giant radio halo first found by
Giovannini et al. (1999) and later confirmed by Venturi
et al. (2008), Kale et al. (2013), and Giacintucci et al.
(2017), as well as a single radio relic in the outskirts
(Govoni et al. 2001a, 2001b; Kale et al. 2015). All of the
evidence points to a heavily disturbed merging system.

8. MACS J0416.1–2403 (hereafter MACS 0416; z∼0.396)
is the most elongated cluster in the CLASH sample. It is a
high-magnification gravitational lens with an associated
ultra-steep-spectrum radio (USSR) halo. It is the most
powerful halo ever observed (Pandey-Pommier et al.
2016). Its power ratios, significantly higher than the
average of the CLASH relaxed sample, also suggest a
nonvirialized state. With a low X-ray concentration and
high centroid offset, it is clearly classified as a nonrelaxed
cluster according to the Cassano et al. (2010) diagram
(Donahue et al. 2016). Moreover, there are several shifts

between the peaks of lensing mass and the X-ray and
radio emission, which, in conjunction with the presence
of the USSR halo, point to an impressive four-cluster
post-merging scenario similar to that of A2744, the
Pandora cluster (Pandey-Pommier et al. 2016).

9. MACS J0717.5+3745 (hereafter MACS 0717; z∼
0.548) is the CLASH system with the lowest X-ray
concentration and highest centroid shift, also showing
high dipole power ratios (Donahue et al. 2016). It hosts a
very powerful radio halo and a bright relic located
between the merging structures of the cluster (Van
Weeren et al. 2009; Pandey-Pommier et al. 2016). An
offset between the mass, X-ray, and radio distribution
peaks is observed, which suggests that the system is an
ongoing merger in this case, since the steepness of the
hosted radio halo is lower than that of MACS 0416
(Pandey-Pommier et al. 2016).

10. MACS J1149.5+2223 (hereafter MACS 1149; z∼
0.544) is the MACS cluster with the highest velocity
dispersion (∼1800 km s−1

). According to X-ray morpho-
logical diagrams by Cassano et al. (2010) and measure-
ments by Donahue et al. (2016), this system is clearly
classified as merging. The X-ray analysis performed by
Ogrean et al. (2016) confirms that this is a merging
system with several substructures, displaying a line-of
sight component, and with no evidence of a compact cool
core. However, the lack of temperature substructures or
surface brightness features, which would be expected in
such a complex merger, suggests that MACS 1149 is an
old merger. This scenario is supported by Bonafede et al.
(2012), who reported evidence for a giant, very steep
radio halo, as well as a double relic system, which could
point to a post-violent merger phase (Pandey-Pommier
et al. 2016). In addition, the dynamical analysis by
Golovich et al. (2016) confirms that this system seems to
be composed of two different mergers involving three
subclusters.

11. The cluster 1E 0657–558 (hereafter Bullet; z∼0.296)
has been thoroughly studied in the literature since its
discovery in the 1990s (e.g., Barrena et al. 2002 and
references thereafter). It is a textbook case for merging
clusters, and its nickname comes from the prominent
Mach cone observed in X-rays, originated by a merger
between two clusters very close to the plane of the sky
(Markevitch et al. 2002, 2004). It is an ongoing merger
where an infalling subcluster is observed just after its first
core passage (Springel & Farrar 2007). The presence of a
radio halo was first noticed by Liang et al. (2000), and
several other authors have confirmed this detection at
different levels of significance (e.g., Shimwell
et al. 2014).

3. Data

We analyzed the HST ACS images obtained in the CLASH
and FF programs. The formidable depth and quality of the HST
data are fundamental to studying the ICL, given its low surface
brightness of, typically, μV�26.5 magarcsec2 (e.g., Montes
& Trujillo 2014). Deep ground-based data could also be used to
detect and measure the ICL, although the fact that the absolute
level of background contribution is larger makes the use of
HST data preferable to decrease the uncertainty introduced by
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this component. Due to the reduced field of view of the ACS/
WFC instrument (202 × 202 arcsec2), some clusters had
effectively imaged only its central area. CLASH data are
available in eight optical ACS filters: F435W, F475W, F555W,
F606W, F625W, F775W, F814W, and F850LP, whereas the
FF images are observed in just three of them: F435W, F606W,
and F814W. We decided to analyze the three common bands,
not only to compare the ICL fractions between merging and
relaxed clusters at the same wavelength but also to study if any
statistical trends in ICL fraction colors could be identified.
Detailed analysis of stellar populations in the ICL is beyond the
scope of this paper and will be covered in a future paper, and
that is why we do not attempt to quantify specific spectral
features using other IR filters here. We have thus used the
broadband F435W and F814W filters, as well as the F606W
whenever it was possible. For one of the systems in our sample,
MS 2137, the data in the F606W band lacked the superb
quality of the rest of the observations, and, to maintain a similar
quality level for the sample, we decided to use the F625W filter
instead. In any case, to test for possible biases due to this
choice, for some clusters, the ICL fractions for these two
intermediate-wavelength filters have been estimated as a proxy
to show the difference in the ICL fraction between them.
Although the FF data are deeper than those from CLASH, the
excellent quality of the CLASH data, with a 5σ limiting AB
magnitude ranging from 27.2 (F435W) to 27.7 mag (F814W),
guarantees that the ICL can be safely measured with these
observations and compared to that obtained from the FF
images.

For both CLASH and FF, we used the combined drizzled
HST mosaics that have been created for these projects. These
mosaics have been produced in a two-step process, where the
first step in all cases begins with the individual raw exposures
that are processed with the calibration pipeline CALACS37 at
STScI, which includes corrections for bias, dark current, flat
field, nonlinearity, charge transfer efficiency losses, and
electronic gain and photometric calibration. For CLASH, these
exposures were then subsequently aligned, corrected for
geometric distortion, cosmic-ray rejected, and combined using
the MosaicDrizzle pipeline (Koekemoer et al. 2002, 2011) to
produce mosaics with a pixel scale of 0 065 pixel–1. The FF
mosaics were similarly processed, following the same techni-
ques, with the pixel scale being 0 060 pixel–1 and using the
Drizzlepac software tools that were developed by Gonzaga
et al. (2012). These fully calibrated high-level products can be
retrieved from the Mikulski Archive for Space Telescopes.38

Despite the fact that the Bullet cluster does not belong to the
CLASH or FF samples, the CLASH team reduced and
combined HST/ACS observations of this cluster too, putting
them at the collaboration’s disposal. For the western subcluster
of the Bullet system, we did not find observations in the
F435W filter, and this is the reason we will not provide the ICL
fraction measurement in this band. Even though the images in
the three filters were available for the eastern subcluster, the
contamination from a nearby, very bright star made it
impossible to obtain reliable results, so that subcluster was
excluded from the analysis.

As we need to measure the total luminosity of the cluster to
estimate the ICL fraction, cluster galaxy members must be

identified. Given the deep, high-quality images of our clusters,
we require spectroscopic information to identify the cluster
members accurately and thus derive precise ICL fractions. We
prefer just using spectroscopic redshifts to avoid the larger
uncertainty and the interlopers that cluster membership
algorithms based on photometric redshifts entail. Thus, the
clusters in our sample were chosen for having not only reliable
estimates of their dynamical state but also enough spectro-
scopic information. Table 1 shows the number of reliable
spectroscopic redshifts publicly available for each cluster in our
sample, as well as the source of these data. For the redshifts
provided by the NASA/IPAC Extragalactic Database (NED),39

we have rejected those with photometric or poor quality.
Table 1 also shows the number of galaxy members confirmed
by our two-step cluster membership algorithm (see Section 4
and Jiménez-Teja & Dupke 2016 for further information on the
classification procedure). Initially, our sample also included
the CLASH cluster MACS 1931.8–2635, but after applying the
cluster membership criteria, we discovered that too few
galaxies with spectroscopic redshift lay on the field of view
of the CLASH observations; therefore, it was discarded.
In order to know how the use of spectroscopic redshifts

affects our results, we will examine the limiting magnitudes of
the spectroscopic surveys used in this work. Given that for each
cluster, we have different sources contributing to the final
spectroscopic sample (see Table 1), with the deepest data
completing the previous spectroscopic surveys, we have
determined that the worst-case scenario is presented by the
cluster MACS 0717 (excluding the Bullet cluster). This cluster
not only has the shallowest spectroscopic sample (r<21.2 in
the rest frame; Ebeling et al. 2014), but it is also the one with
the highest redshift (z∼0.548). Calculating the distance
modulus for this redshift, DM=42.50, we determine that
our spectroscopic sample is complete up to an absolute
magnitude of Mr=21.2–42.50=−21.3 mag for cluster
MACS 0717. Analyzing the luminosity functions calculated
by Connor et al. (2017) using photometric redshifts and
assuming a completeness and purity of 100% for the cluster
galaxy members so derived, we estimate that our total
luminosity might be underestimated by ∼19.7%, for our

Table 1

Spectroscopic Redshift Information Available for Each Cluster, Number of
Galaxy Members after Applying the Cluster Membership Algorithm, and

Bibliographic Sources

Cluster z No. of Spectra No. of Members Source

A383 0.187 1420 254 1, 2
A611 0.288 1202 158 1, 3, 4
MS 2137 0.313 1874 408 1, 2
MACS 1115 0.352 1681 487 1, 2, 4
RXJ 2129 0.234 1654 184 3
A209 0.206 1037 528 1, 2
A2744 0.307 1518 348 1, 7
MACS 0416 0.396 4386 643 6
MACS 0717 0.548 1267 581 1, 5
MACS 1149 0.544 617 311 1, 5
Bullet (eastern) 0.296 112 64 1

Notes. References: (1) NED, (2) VLT/VIMOS, (3) Hectospec, (4) SDSS/
BOSS, (5) Ebeling et al. (2014), (6) Balestra et al. (2016), and (7) Owers
et al. (2011).

37 http://www.stsci.edu/hst/acs/performance/calacs_cte/calacs_cte.html
38 https://archive.stsci.edu/prepds/frontier/ 39 https://ned.ipac.caltech.edu/
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worst-case cluster. For the best system in our sample, cluster
A383—which has the lowest redshift and spectra from VLT/
VIMOS—a similar analysis yields an underestimation of its
total luminosity of ∼0.2%. We will analyze in Section 6 the
impact of this possible underestimation in the final ICL
fractions.

4. CICLE

In Jiménez-Teja & Dupke (2016), a new algorithm called
CICLE was developed to study the ICL and estimate the ICL
fraction. The motivation was the need to find a reliable and
efficient algorithm able to disentangle the ICL from the light in
cluster galaxies without assuming any a priori hypothesis.
Traditional methods assume certain characteristics of the ICL,
such as its surface brightness, density, distance to the brightest
galaxies in the cluster, a symmetric morphology, or a certain
radial profile. Instead, CICLE uses the CHEFs (Jiménez-Teja &
Benítez 2012) to model the light surface distribution of all the
galaxies in the image to obtain ICL and background maps.

The CHEFs are mathematically orthonormal bases optimized
to fit the two-dimensional light distribution of the galaxies.
They are built in polar coordinates using Chebyshev rational
functions to model the radial coordinate and Fourier modes to
expand the angular component. The Chebyshev rational
functions inherit the excellent properties of the Chebyshev
polynomials, which have been proven to provide optimal
interpolations for smooth functions (Boyd 2000; Mason &
Handscomb 2003). In addition, these approximations are
readily computed, since the Chebyshev basis is very compact,
and we just need a few components to fit a profile with high
precision (Jiménez-Teja & Benítez 2012). The Fourier modes,
perfect to interpolate periodic functions, make it possible to fit
any galaxy morphology without requiring rotational symmetry.
Thus, CICLE creates a two-dimensional CHEF model for every
galaxy in a cluster image, including the BCG, to later remove
it. Stars are just masked out.

Although fitting a regular galaxy is straightforward for the
CHEFs, the case of the BCG is more complex, since it is
difficult to know where the halo of the BCG ends and the ICL
starts. For this reason, the BCG requires a differentiated
treatment (Jiménez-Teja & Dupke 2016). After removing the
CHEF models for all galaxies, CICLE reinserts the CHEF
model of the BCG. In this way, this central area is completely
restored, and we obtain an image composed just of the BCG,
ICL, and background. To estimate the limits of the light
belonging to the BCG, a curvature map is calculated for the
entire image. The curvature parameter is a characteristic of each
pixel, and it represents the change in slope of a surface at a
certain point in every direction. CICLE only assumes that the
BCG and ICL profiles have different slopes, otherwise it could
be impossible to disentangle them. Under this assumption, the
bidimensional limits of the BCG are defined by the points
where the slope changes most, estimated through the curvature
parameter. Once the outline of the BCG is computed, a new
model for the BCG is built within the area delimited by its
boundary. After removing this model, an image containing just
ICL and background is obtained. We refer the reader to
Jiménez-Teja & Dupke (2016) for a more detailed description
of CICLE.

In Jiménez-Teja & Dupke (2016), the background level was
estimated using images of nearby fields, obtained at approxi-
mately the same epoch under the same observational

characteristics. Since this is not possible for all of the clusters
in our current sample, and in many cases, there are no blank
areas in the images to measure the background, we decided
to use a homogeneous (albeit not so precise) approach to
be able to draw a consistent comparison between the final
ICL fractions. We used the software SExtractor (Bertin &
Arnouts 1996) to estimate the background map for each cluster
in our sample, using exactly the same background parameters.
First, the background map is iteratively estimated through a κσ-
clipping algorithm in each mesh of a grid that covers the whole
image. The size of each mesh is defined by the parameter
BACK_SIZE, and it is one of the most influential parameters in
the final background estimation. As a general rule, BACK_SIZE
must be higher than the average size of the objects in the image,
otherwise some flux from these objects could be absorbed in
the background. It cannot be too large, either, because small-
scale variations of the background would be erased. However, as
we are trying to disentangle the background from the diffuse
extended light in the intracluster medium, small fluctuations are
not as important as avoiding the contamination of light from
the cluster galaxies and the ICL, so we set BACK_SIZE=512
(Holwerda 2005).
The grid of values yielded by this algorithm was later smoothed

by applying a median filter of size BACK_FILTERSIZE. Again,
as we were more interested in the average trend of the background
than in small features, we chose a large filter of 5×5 pixels to
smooth out any possible contamination from galaxies, stars, and
ICL. Then, this filtered grid was fit by applying a bicubic-spline
interpolation, which was later refined by recalculating the
background locally around the objects in the image. For each
object, the background was estimated in an annulus centered on it,
with thickness set to BACKPHOTO_SIZE=24, which is the
typical value for this parameter (Holwerda 2005).
With this approach, we intended to obtain a background map

for each cluster, estimated consistently to allow for a fair
comparison of the final results. As can be noticed, our selection
of values for the background-related parameters was very
different from the usual SExtractor configuration, and some of
them were intentionally high, with the aim of insuring, to the
extent possible, that the background maps were smooth enough
and did not contain any light from the galaxies or the ICL.
Finally, in order to measure the ICL fraction once we have a

background-free ICL map, we created an image of the cluster
removing the CHEF models of the foreground and background
galaxies. As described in Jiménez-Teja & Benítez (2012), the
cluster membership is determined in a two-step process,
the PEAK+GAP algorithm (Owers et al. 2011), using the
spectroscopic data available for each system. This composite
method first identifies the peak of the cluster in the redshift
space and selects a redshift window wide enough to contain the
whole distribution of velocities assigned to that peak.
Implicitly, the size of this window is proportional to the
velocity dispersion of the clusters: merging clusters, with a
more scattered velocity distribution, will need a wider window,
compared to relaxed systems. This crude selection of cluster
member candidates is obviously prone to contamination by
interlopers. So, we further refine it using the shifting gapper
method (Fadda et al. 1996; Girardi et al. 1996; Boschin
et al. 2006; Owers et al. 2011), which uses velocity and spatial
information on the candidates simultaneously. The shifting
gapper method spatially distributes the candidates according to
their clustercentric distance in radial bins. The mean velocity of
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the candidates within each bin is calculated, and those
candidates with velocities that are too far from the others are
rejected. As unrelaxed clusters are more likely to have a
broader spatial distribution, this procedure naturally allows
candidates at larger distances to be identified as cluster
members for these systems. These two steps are, thus, essential
to guarantee that our cluster membership algorithm implicitly
takes into account the dynamical state of the systems and does
not bias the measurement of their total luminosity, while
minimizing contamination by interlopers at the same time. We
refer the reader to Jiménez-Teja & Benítez (2012) for further
information on the cluster membership selection algorithm.

5. ICL in CLASH and FF Clusters: Previous Results

The properties of the ICL in the CLASH and FF clusters have
already been extensively studied by several authors using
different techniques. We will briefly describe their results for
different subsamples of the CLASH (Presotto et al. 2014; Burke
et al. 2015; DeMaio et al. 2015, 2018) and FF clusters (Krick &
Bernstein 2007; Montes & Trujillo 2014, 2018; Morishita et al.
2017). The work by Presotto et al. (2014) was focused on the
CLASH cluster MACS J1206.2–0847, z∼0.44, which does not
belong to our sample. They used deep multiband Subaru data
to study the ICL properties. Light from cluster galaxies and
foreground and background objects was modeled using traditional
analytical profiles, such as single or double Sérsic functions,
masking out the galaxies with poor fits. To disentangle the BCG
from the ICL, they fit a composite de Vaucouleurs plus Sérsic
model, yielding a final ICL fraction of 4.3%±0.2% at R500 for
the Rc band (λ0=6550 Å). They compared this result with that
obtained using a surface brightness threshold to identify the ICL,
concluding that this method yields very different ICL fractions,
depending on the value of this threshold, and systematically
higher than that from the fitting technique. Assuming a surface
brightness level of

Rc
m =29.87mag arcsec−2

(equivalent to
μV=27.5 mag arcsec−2 at z=0), they got an ICL fraction
of 4.7%±0.4%.

DeMaio et al. (2015) studied the ICL in the IR for four
CLASH clusters with 0.44�z�0.57, with MACS 1149
being the only one that we have in common in our sample. The
ICL radial profile is measured from an ICL map obtained by
masking out the light from the galaxies either using the
SExtractor segmentation maps or by eye. Three of the clusters
showed a significant radial gradient toward bluer color at larger
cluster radii (MACS 1149 among them), interpreted as a
gradient in metallicity assuming a fixed age for the ICL. The
color of the ICL in the fourth cluster was found to have a flat
distribution. This study was later continued by DeMaio et al.
(2018), analyzing a larger sample composed of 20 clusters
drawn from the CLASH set plus seven groups from HST
program #12575, aiming to study the ICL colors and
progenitors as a function of the halo mass. They obtained
similar radial color gradients to those in DeMaio et al. (2015)
and did not find a statistical difference between clusters and
groups. They did find a higher BCG+ICL mass fraction
(assuming a fixed mass-to-light ratio) for groups than for
clusters, as well as a more efficient ICL formation mechanism
for low-mass halos within a radius of 100 kpc. In both papers,
they concluded that the ICL formation is primarily driven by
tidal stripping of the outskirts of massive galaxies
(M M1010.4 > ). No ICL fractions were reported.

A subsample of 23 clusters from CLASH was analyzed by
Burke et al. (2015) using the technique of thresholding the surface
brightness of the ICL (μB=25mag arcsec−2) and masking out
the stars and nonmember galaxies with circles of radius
proportional to their areas. They were able to estimate the ICL
fraction in 13 out of the 23 clusters, reporting values between
∼2% and 23%. They found that their ICL fractions strongly
correlate with redshift, independently of the dynamical state of the
clusters, growing by a factor of ∼4–5 in 0.18�z�0.90 versus
the ∼1.4 growth factor found for the BCG from the accretion of
its companions in the same redshift range. They concluded that
the evolution of the ICL is mainly driven by minor mergers at low
redshifts z∼1, as opposed to the BCG, which is primarily
evolving at higher redshifts.
Montes & Trujillo (2014) processed the images of the first FF

cluster observed, A2744, using the rest-frame colors g−r and
i−J. They measured the ICL using three different estimates:
the rest-frame surface brightness in the J band of the ICL (μJ),
the logarithm of the stellar mass density (log(ρ)), and the radial
distance to the most massive galaxies of the cluster (R). The
corresponding thresholds established for each parameter were
24mag arcsec−2 <μJ<25mag arcsec−2, log(ρ)<1.2, and
R>50 kpc, yielding ICL fractions of 5.1%, 4.0%, and 10.5%,
respectively, within a radius of 400 kpc. They also used these
two colors to study the properties of the stellar populations in the
ICL, finding clear negative radial gradients for both age and
metallicity toward the outskirts of the cluster. Their results
suggest that the ICL in A2744 is mainly formed by the
disruption of infalling satellite galaxies with similar mass
(M M3 1010 ~ ´ ) and metallicity as the Milky Way, being
on average ∼5 Gyr younger than the most massive galaxies of
the system. This cluster had its ICL fraction previously
calculated by Krick & Bernstein (2007), using ground-based
data observed by the du Pont 2.5 m telescope at Las Campanas
Observatory in two filters, the Gunn r (λ0=6550 Å) and V

(λ0=5400 Å). Krick & Bernstein (2007) defined the ICL in
these two bands using the rest-frame surface brightness thresh-
olds of μr=26.4 and μV=26.1 mag arcsec−2, respectively,
yielding corresponding ICL fractions of 11±5 and 14±5
within one-quarter of the virial radius. They found the ICL
distribution to be multi-peaked, with a color significantly redder
than the red cluster sequence.
The work by Montes & Trujillo (2014) with A2744 was later

expanded to the whole FF sample in Montes & Trujillo (2018).
The ICL stellar population properties are defined using distance
criteria, assuming that the ICL is the luminous component that
extends beyond a radius of 50 kpc once the galaxies in the image
are masked using the segmentation maps provided by SExtractor.
Under this definition, they found that the metallicity of the ICL for
these six clusters is subsolar, on average, and that its mean stellar
age is between 2 and 6Gyr younger than the most massive galaxies
in the systems. They confirmed the stripping of M M1010 > 
galaxies to be presumably the principal driver of the ICL formation,
occurring at z<1. To measure the ICL fraction, they followed an
approach similar to that developed for the A2744 cluster, setting a
surface brightness threshold of μV=26mag arcsec

−2, which
yields ICL fractions in the range of ∼1%–4% in the V band for
all FF clusters. In order to include the effect of the ICL flux that lies
(in projection) within the area dominated by the BCG (defined as
r<50 kpc), Montes & Trujillo (2018) linearly interpolated their
ICL surface brightness profiles. The new ICL fractions ranged
between ∼4.8% and 13% within the R500 radius, with a mean of
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∼7%, with their most relaxed cluster presenting marginal evidence
of having a higher ICL fraction compared to the other systems in
the sample. Contrary to Burke et al. (2015), they did not find any
correlation of the ICL fraction with redshift.

The properties of the ICL in the six FF clusters were also
studied by Morishita et al. (2017) but with a completely different
method. The brightest galaxies in the images (mF160W<26) were
fitted using single Sérsic profiles plus a constant sky component in
fixed-size “postage stamps” of 300 × 300 pixels. The constant
sky level within these boxes was identified with the local ICL. A
global ICL map was built as the weighted mean of all the
overlapping boxes. The BCG did not receive a differentiated
treatment, as its light is disentangled from the ICL as any other
luminous galaxy in the field. Analyzing the colors of these ICL
maps out to R�300 kpc, they observed a radial gradient toward
blue at larger cluster radii, as in previous studies. They also
calculated the stellar mass distribution of the ICL, finding that the
ICL is primarily dominated by moderately old stellar populations
between ∼1 and 3 Gyr old that could have been stripped from
quiescent cluster galaxies withM M109.5 <  plus an ∼5%–10%
fraction of younger stars (A- and earlier-type, ∼1Gyr) at
R�150 kpc presumably coming from recently star-forming/
infalling galaxies. Although ICL light fractions are not computed,
they reported ICL mass fractions calculated from SED fitting for
all six clusters, ranging between ∼7% and 23% within a radius of
300 kpc and ∼4%–19% for R�500 kpc. Again, no trend can be
identified with redshift, as in Montes & Trujillo (2018).

ICL or ICL+background maps of CLASH and FF clusters
have also been obtained as by-products in other works with
photometric or gravitational-lensing purposes, although neither
the ICL properties nor the ICL fraction are studied in these
works (e.g., Merlin et al. 2016; Connor et al. 2017; Livermore
et al. 2017; Molino et al. 2017).

6. Results with CICLE

We estimated the ICL fraction of our sample of 11 massive
clusters in three ACS/WFC broadbands (F435W, F606W, and
F814W) whenever possible. In the case of MS 2137, the F606W
observation from CLASH was not as good as the rest of the data,
so we decided to process the F625W filter instead. We also
estimated the ICL fraction in the F625W filter (as well as in the
F606W band) for one of the merging clusters (MACS 0416) and
one of the relaxed systems (A383), just for comparison. In the
case of the Bullet cluster, we only estimated the ICL fractions for
the eastern subcluster, since the measurements for the western
subcluster were polluted by the presence of a nearby very bright
star. Unfortunately, we did not have data for the eastern subcluster
in the F435W filters, and that is why we report the ICL fractions
just in the F606W and F814W bands.

The images were first preprocessed to mask out the brightest
stars, since they are not smooth enough to be processed by the
CHEFs (Jiménez-Teja & Dupke 2016). We masked the areas
associated with these stars in the SExtractor segmentation map for
the F814W band, enhanced using a 10×10 pixel filter. The same
mask is applied to the other two filters, F435W and F606W, to
ensure that the differences in the ICL fractions are physical and
not induced by different masking. These masked pixels are
excluded from the final measurement of the ICL fraction.

Then, we run CICLE to obtain ICL+background maps (see
Section 4). The original images and the resulting maps for each
cluster in the different filters are displayed in Appendix A:
Figures 3–7 for the relaxed subsample and Figures 8–13 for the

unrelaxed systems. The typical value of the background found for
our whole sample ranges from approximately (7–8)e–05 cps for
the three main filters considered, completely consistent with the
values calculated by Morishita et al. (2017) using a different
algorithm. These background values represent ∼33% (F435W),
∼9.0% (F606W), and∼8.5% (F814W) of the ICL flux. Using the
r200 radii reported by Boschin et al. (2006), Maier et al. (2016),
Martinet et al. (2017), and Morishita et al. (2017), we calculated
the apparent size of the clusters in our sample. We found no
correlation between the background values measured in the three
main filters and the apparent size of the clusters, guaranteeing that
our background measurements are not biased.
We then computed the radial flux profiles of the ICL surface. As

in Jiménez-Teja & Dupke (2016), these radial profiles are obtained
by averaging the flux inside the natural contours of the ICL in the
core of the cluster and inside ellipses in the outskirts. These radial
profiles show a negative slope reaching a minimum from which
the ICL flux starts to increase due to the instrumental light from the
borders of the images, or where the ICL submerges into the
background. We thus measured the ICL fraction up to that radius,
where the flux profile is minimum, and beyond which our
estimation would be unreliable due to spurious instrumental effects,
as described in Jiménez-Teja & Dupke (2016). Given the similar
depths in the filters F606W and F814W for the CLASH data
(∼27.6 and ∼27.7 AB mag for a 5σ point source within a 0 4
diameter aperture, respectively; Postman et al. 2012), we can
presume that difference in the ICL radii between these two filters is
physical. However, the F435W depth is ∼27.2 ABmag, which is
why observational characteristics might be the cause of the different
areas. As for the FF images, the F435W and F606W depths are
virtually the same,∼28.8 AB mag, while F814W is slightly deeper
(∼29.1 AB mag; Merlin et al. 2016; Lotz et al. 2017).
We summarize in Table 2 the resulting ICL fractions and the

corresponding radii of the measurements. The errors associated
with the ICL fractions were estimated as the quadratic sum of the
photometric error of the measured flux and the intrinsic error of
the CICLE algorithm in the disentanglement of the BCG from the
ICL. The former error is negligible in comparison to the latter in
most cases, due to the high signal-to-noise of the HST images.
However, as we described in Section 3, the use of spectroscopic
redshifts for the cluster membership could cause a possible
underestimation of ∼19.7% in the total luminosity of the cluster,
for the worst system in our sample (excluding the Bullet cluster).
Propagating the errors and using the highest ICL fraction found
for this cluster (22.27%, which yields the largest error associated
with this problem), this would imply, if anything, a maximum
error of ∼4.39% to be added to the values listed in Table 2. This
upper limit in the error induced by the limiting magnitude of the
spectra confirms the advantage of the use of these data, whenever
available, instead of photometric information for the cluster
membership, since it is small compared with the potential
contamination introduced by photometric redshifts in this
identification. For the sake of comparison, the underestimation
of the total luminosity for our best-case cluster, A383, is
approximately ∼0.2%, which is translated into an additional
ICL fraction error of ∼0.02%, which is completely negligible.
As was described in Jiménez-Teja & Dupke (2016), the second

source of error, the error of the CICLE algorithm, was estimated
using mock images with the same characteristics as the real data:
for each image, we created a simulated image of the same size and
containing two exponential profiles with effective radii and
surface brightness equal to those of the real BCG and ICL
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surfaces. We then polluted the mock images with 10 realizations
of noise with the signal-to-noise ratio of the original observations
and applied CICLE to them. The final error was obtained as the
mean of the errors of the 10 realizations.

The obtained ICL fractions are plotted in Figure 1, where the
merging clusters are represented with red symbols and the regular
systems with blue symbols. For clarity, measurements for some
clusters have been slightly offset horizontally by 30Ågaps. We
observe that the relaxed systems seem to have a nearly constant
gradient in the ICL fraction within the error bars, while the
disturbed clusters surprisingly show a clear increase in the F606W
ICL fraction. Although, on average, the ICL fractions of the
merging sample are higher than those of the regular clusters, we
conclude from Figure 1 that the bluest and reddest filters, F435W
and F814W, cannot be used to discriminate between relaxed and
nonrelaxed systems. However, the ICL fraction in the F606W
broadband quantitatively describes a significant difference
between the dynamical states of the clusters.

Due to the disparate techniques applied, the different reference
filters used, and the different apertures to estimate the ICL

fraction, it is difficult to have a direct quantitative comparison of
the ICL fractions estimated by us to those in the literature (see
Rudick et al. 2011 for a comparison of methods). Our ICL
fractions are, in general, comparable to or higher than those
reported previously. This is partially explained by the fact that
CICLE includes in the estimations the ICL projected over the
BCG-dominated area, and this is not the case for surface
brightness– and radial distance–based methods. By design, in
these traditional techniques, the ICL projected over the central
regions is not added up to the final estimation of ICL flux, since
these pixels are excluded. This lost flux is of great importance,
since the ICL is known to be more concentrated in the central
area, and this may cause a significant underestimation of the ICL
fraction (Willman et al. 2004; Rudick et al. 2006). Moreover, our
ICL fractions are not measured homogeneously up to the same
metric radius, but we restrict our calculations to the total area of
the aperture that is not contaminated by spurious instrumental
light. In many cases, our radii are smaller than those used in the
literature, thus yielding higher ICL fractions (Rudick et al. 2006).

Figure 1. ICL fractions yielded by CICLE for our sample of 11 clusters. Red symbols represent merging clusters, while blue symbols are associated with relaxed
systems. The black lines indicate the error-weighted mean for each subsample (solid for relaxed clusters and dashed for merging systems), and the shaded areas
represent the mean of the errors. For clarity, we have horizontally offset the points by 30 Ågaps.

Table 2

Results Yielded by CICLE for the 11 Clusters in Our Sample: ICL Fractions and Errors for the Different Filters and the Radii Used to Measure These ICL Fractions

F435W F606W F625W F814W

Cluster ICL Fraction Radius ICL Fraction Radius ICL Fraction Radius ICL Fraction Radius
(%) (kpc) (%) (kpc) (%) (kpc) (%) (kpc)

A383* 11.16±0.77 63.6 8.25±2.18 104.0 10.06±2.84 94.7 6.18±5.33 108.2
A611* 7.48±3.98 141.1 7.22±1.26 159.1 L L 9.41±0.95 252.5
MS 2137* 9.48±0.71 135.4 L L 7.16±2.99 179.6 4.86±2.80 316.0
MACS 1115* 7.29±5.79 163.8 9.52±2.13 252.0 L L 10.99±3.79 250.5
RXJ 2129* 2.95±3.74 63.9 10.26±0.31 227.6 L L 7.95±7.53 176.2
A209 13.45±0.67 128.6 18.03±3.57 312.2 L L 17.24±4.04 276.5
A2744 16.23±0.78 183.8 19.95±3.06 288.4 L L 19.30±1.18 330.8
MACS 0416 15.12±0.22 336.8 22.78±0.19 328.3 19.90±0.51 310.6 11.29±1.60 332.8
MACS 0717 7.22±0.81 275.3 22.27±3.68 562.5 L L 13.63±3.60 421.6
MACS 1149 11.90±1.34 172.5 20.52±2.24 336.2 L L 18.39±5.91 626.3
Bullet (eastern) L L 20.64±7.35 217.9 L L 12.00±1.11 349.5

Note.Systems belonging to the relaxed sample are marked with an asterisk.

9

The Astrophysical Journal, 857:79 (18pp), 2018 April 20 Jiménez-Teja et al.



We do not observe any trend in the ICL fraction with redshift, in
contrast with Burke et al. (2015) but in line with the works by
Krick & Bernstein (2007), Montes & Trujillo (2018), and Morishita
et al. (2017). One should notice that, as we are working with ICL
fractions and not ICL fluxes, the results shown are robust without
the need for applying any correction for redshift or evolution.

7. Discussion

A first attempt to link the dynamical state of the clusters with
the properties of the ICL was made by Feldmeier et al. (2002),
although without quantifying the amount of ICL or the ICL
fraction. Similarly to us, Krick & Bernstein (2007) obtained
lower ICL fluxes for apparently more relaxed systems when
they analyzed a sample of 10 clusters in the redshift range
0.05�z�0.3. Using the M3–M1 parameter (magnitude
difference between the first- (M1) and third- (M3) brightest
galaxy members of the cluster) as an estimator of the dynamical
age of the system, they found that it correlates with the ICL
luminosities measured in the broadband Gunn r band (with a
central wavelength λ0=6550 Å,which can be considered
comparable to our ACS F606W filter). They also observed
similar relations for other dynamical indicators, as, for instance,
the M2–M1 magnitude difference (defined in a similar way as
the M3–M1) or simply the presence of single, large elliptical
galaxies (cD) in the cluster core. Moreover, the ICL fluxes
found for clusters without cD galaxies are twice as high as
those measured in systems with cD galaxies, on average.
Interestingly, in spite of using a different sample, data with
different observational characteristics, and a different techni-
que, yielding lower ICL fractions than ours, Krick & Bernstein
(2007) observed the same trend. However, as the timescales
governing the dynamics of the stars in the ICL are not
consistent with settling down into the center of the gravitational
potential (or BCG) due to angular momentum or energy losses
(Merritt 1984), Krick & Bernstein (2007) concluded that either
stars in the ICL have been formed early in groups that migrate
to the center, or they have been directly stripped at the center of
the cluster potential at later times, or even that the ICL is

observationally indistinguishable from the BCG halo. They
also find steeper ICL profiles for relaxed clusters, which would
favor the hypothesis of an ICL evolution linked to the BCG
formation: as groups are being merged with the BCG, they
could bring their primordial ICL stars with them and, at the
same time, create even more ICL by ram pressure of the gas or
dynamical friction. However, in the absence of a central
dominant galaxy, groups and cluster galaxies would evolve
slowly by tidal forces and dynamical friction, barely influen-
cing the stars in the ICL and displaying shallower ICL profiles.
Moreover, whereas the energy and angular momentum of the

groups dissipate and they bring their ICL stars with them, any ICL
formed by galaxy interactions would stay in the orbit where it was
formed (Krick & Bernstein 2007). If this mechanism for producing
ICL can be efficient at larger radii, this would explain the ICL
radial color gradient reported by several authors (e.g., Montes &
Trujillo 2014; DeMaio et al. 2018), in particular for the systems in
the CLASH and FF samples. DeMaio et al. (2018) found that 75%
of the ICL luminosity in the CLASH clusters was consistent in
color with the stars stripped from the outskirts of cluster galaxies
with M M1010.4 > , while Morishita et al. (2017) observed that
90%–95% of the ICL mass in the FF systems had colors that were
compatible with the outer regions of quiescent cluster galaxies of
M M109.5 < . Then, if the lower-metallicity/younger stars
stripped from the outskirts of the luminous galaxies stay in their
orbits, they will create the bluer trend observed toward larger
cluster radii. This gradient would also be expected from the
contribution to the ICL from the disruption of low-mass, low-
metallicity dwarf galaxies, which are completely shredded at larger
cluster radii compared to more massive, metal-rich galaxies
(DeMaio et al. 2015, 2018).
Numerical simulations predict a growth in the ICL fraction with

decreasing redshift (Willman et al. 2004; Rudick et al. 2006, 2011).
However, some authors found that the ICL fraction changes
slightly over short timescales (as major mergers or collisions
occur). For instance, Willman et al. (2004) predicted that the
amount of ICL is directly linked to the infall of large groups
already containing unbounded ICL stars, although they also find
that this does not necessarily change the ICL fraction. Rudick et al.

Figure 2. ICL fractions yielded by CICLE for our subsample of merging clusters at rest-frame wavelength. Lines are color-coded by redshift, and different styles are used to
represent the wavelength range covered by each one of the three filters: dotted for the F435W filter, solid for the F606W filter, and dashed for the F814W filter. Vertical gray
lines separate the wavelength intervals where the emission peaks of the different stellar spectral types are included, as indicated at the bottom of each region.
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(2006) made a very detailed study of the effect of the dynamics on
the ICL fraction in three different clusters, concluding that the ICL
fraction growth is mainly driven by accretion events of massive
galaxies and groups falling into the cluster center. For those
systems that did not experience major interactions, the ICL fraction
evolved passively, rising slowly. However, it is interesting that,
although the amount of ICL increases dramatically in mergers
(potentially even doubling the luminosity), they observed a decline
in the ICL fraction at the beginning of the interaction. This is
explained by their definition of ICL through a surface brightness
threshold of μV=26.5mag arcsec

−2, which biases their measure-
ments of the ICL fraction in the time preceding a major merger. As
the galaxy groups start to infall, the luminosity appears more
concentrated and thus temporarily increases the surface brightness
of the cluster. Stars belonging to the ICL are therefore boosted and
misclassified as part of the cluster galaxies during a short time. At
later merging epochs, they did observe a rise in the ICL fraction
associated with the merger event, in general agreement with our
results. This conclusion was later corroborated by other authors
with different numerical simulations (e.g., Murante et al. 2007;
Contini et al. 2014).

In general, Rudick et al. (2011) proved that the different
definitions of ICL fraction show consistent behaviors, in spite of
yielding very different values for the ICL fraction. In particular,
the ICL fraction was found to rise irregularly during the cluster
evolution due to merging events, which can easily cause the ICL
fraction in individual clusters to deviate from the global average
trend with redshift. This implies that the ICL fraction alone in a
single filter cannot be a robust estimator of the dynamical stage of
the clusters, since a merging cluster at higher redshift could have a
similar ICL fraction as a relaxed system at lower redshift.
However, our findings raise the possibility of using the ICL
fraction color instead of the ICL fraction to estimate the dynamical
stage of clusters, at least in the case of massive systems.

For our subsample of relaxed systems, we observe that the
distribution of the ICL fractions along the different wavelengths is
nearly constant within the error bars, except for the case of the
cluster RXJ 2129 (see Figure 1). That means that the colors of the
ICL are coincident, on average, with those of the stellar populations
in the galaxies, considering the cluster as a whole. This is consistent
with the idea that these systems have reached a virialized stage, the
ICL stellar populations are just evolving passively, and the ICL
fraction is slowly fed by the stars stripped out from the cluster
member galaxies by dynamical friction. However, for the
subsample of merging clusters, the ICL fraction exhibits a strong
increase in the F606W band, significant at 2.5σ with respect to the
subsample of relaxed systems. Compared to the increase observed
in the other two filters, this excess is especially significant with
respect to the F435W filter, given the smaller error bars. So, for
clusters suffering major merger events, we see an excess of flux for
the ICL in the F606W band compared to the cluster galaxy light,
meaning that a significant fraction of bluer stars, presumably with
lower metallicities, is being stripped out violently from the outskirts
of the infall galaxies. The presence of these stars (Goddard
et al. 2016a, 2017b) would cause the ICL to be bluer than the
overall light from galaxies, in comparison to relaxed clusters. An
interesting question is why this blueing-merger effect is more
pronounced systematically in the F606W filter than in the F435
band. In their detailed analysis of the properties of the ICL in the
six FF clusters, Morishita et al. (2017) found that the ICL was
mainly composed (in mass) of moderately old stellar populations
(∼1–3Gyr), which would contribute more to the F606W filter than

to the F435W. However, they also observed a nonnegligible
fraction of the ICL stellar mass that was likely associated with a
bluer/younger population (∼1 Gyr). They estimated that approxi-
mately 5%–10% of the ICL mass was compound of A- or earlier-
type stars, probably stripped from star-forming galaxies during the
cluster merging process. The A-type stars have a lifetime of
∼1Gyr, on average, which, compared to an average crossing time
(∼1Gyr), would make it possible to see the influence of these stars
on the ICL fraction. In Figure 2, we can visualize the filters where
A-type star flux would contribute the most, according to the redshift
of each cluster. The ICL fractions are now plotted at the rest-frame
wavelengths, color-coded by the redshift of the clusters, and the line
style indicates the wavelength range covered by each filter: dotted
lines for the F435W band, solid lines for the F606W filter, and
dashed lines for the F814W band. Given that A-type stars display
temperatures from 7500 to 10000 K, their peak emission will range
from ∼2900 to 3900Å. For the two highest-redshift clusters in our
sample, MACS 1149 and MACS 0717, at z∼0.544 and 0.548,
respectively, this emission would be almost completely included in
the F606W filter, with little contribution to the F435W flux. For the
merging system MACS 0416 at z∼0.396, the young population
flux contribution would be divided between the two filters.
However, for the lowest-redshift FF cluster in our sample, A2744
(z∼0.307), A-type stars would be mostly observed in the F435W
band, which could presumably explain why the gradient between
the F606W and F435W filters in this cluster is not as pronounced
as for the rest of the merging subsample. Although the cluster A209
does not belong to the FF sample, and we do not have information
on the possible ICL stellar populations, its low redshift (z∼0.206)
and ICL fraction colors coincident with those of A2744 suggest a
similar explanation based on the presence of younger stars.
We must also notice that, in spite of having ICL fractions

consistent with those of our relaxed sample, the regular cluster RXJ
2129 displays an ICL fraction color distribution behavior similar to
that of the merging sample, with a peak in the F606W. Even
though the errors estimated for the F435W and F606W
measurements are high, we can presume that the ongoing minor
mergers pointed out by other authors (Kale et al. 2015; Pandey-
Pommier et al. 2016; Giacintucci et al. 2017) could be the origin of
this fluctuation. This would be an interesting prediction for the
relation between dynamical activity in clusters and the color
(spectral energy distribution) gradient described in this work. If this
is confirmed, the color distribution of an individual cluster’s ICL
fraction could be used to estimate the mass ratio of mergers solely
using optical data.
The relation between ICL fraction color gradient and cluster

dynamics described in this work can be extremely useful, not
just to select clusters for further analysis of the merging process
but also to exclude merging clusters from scaling relations for
mass proxies used in cosmology with purely optical data, such
as those incoming from the current and near-future mega-
surveys, such as DES40 and J-PAS.41

8. Conclusions

We have analyzed the ICL in 11 systems with high-quality
imaging and enough spectroscopic information available, with
the aim of characterizing their dynamical state through the ICL
fraction. We have applied CICLE, a new algorithm described in
Jiménez-Teja & Dupke (2016) that is free of a priori

40 http://www.darkenergysurvey.org
41 http://www.j-pas.org
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assumptions on the properties of both ICL and galaxies. In that
work, CICLE was found to estimate the ICL fraction with a
maximum error of 10% in the absence of noise for reasonable
configurations of the ICL+BCG system. CICLE was thus
proved to be robust and accurate, ideal for consistently
studying our sample of 11 HST-observed clusters.

The dynamical stage of the clusters was carefully determined
by compiling the different results available in the literature and
gathering probes on X-ray morphology, dynamical analysis, and
radio information. Five of the systems had strong indications of
being relaxed systems, while the other six showed clear signs of
dynamical activity. The resulting ICL fractions in the three optical
broadband filters F435W, F606W, and F814W for the subsample
of regular clusters were nearly constant within the error bars,
ranging between ∼2% and 11%. For the six merging clusters, we
report higher ICL fractions, on average, in the three filters in the
interval∼7%–23%. A different behavior is displayed in observing
the ICL fraction colors, with a significant peak in the ICL fraction
measured at the intermediate band. Both the higher ICL fractions
and the peak at the F606W band are consistent with previous
results in the literature, although derived from simulations or
analyses of the ICL colors. No obvious trend is identified in the
ICL fraction with redshift.

Although a larger sample of galaxy clusters with clearly defined
dynamical states and HST-like observational characteristics is
necessary to improve our statistical significance, we have shown
that the ICL fraction colors, measured robustly and consistently,
can offer valuable information on the dynamical processes
occurring in clusters. Since bona fide relaxed systems are more
difficult to classify as such than merging systems, the addition of a
truly relaxed system ICL fraction measurement would be
extremely desirable to establish the range variation of this color
gradient with respect to merger stage. In that case, systems that are
very old and relaxed, such as fossil groups of galaxies with deep

enough observations at comparable redshifts, would be the best
candidates, which are currently unavailable in the HST archive.
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Appendix A
ICL+background Maps

Here Figures 3–7 show the relaxed subsample and Figures
8–13 show the unrelaxed systems.

Figure 3. Original images of the relaxed cluster A383 (top) and ICL+background maps provided by CICLE (bottom) in the F435W, F606W, F625W, and F814W
filters (from left to right). The scale of the original and ICL+background images is the same for each filter.
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Figure 5. Original images of the relaxed cluster MS 2137 (top) and ICL+background maps provided by CICLE (bottom) in the F435W, F625W, and F814W filters
(from left to right). The scale of the original and ICL+background images is the same for each filter.

Figure 4. Original images of the relaxed cluster A611 (top) and ICL+background maps provided by CICLE (bottom) in the F435W, F606W, and F814W filters (from
left to right). The scale of the original and ICL+background images is the same for each filter.
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Figure 6. Original images of the relaxed cluster MACS 1115 (top) and ICL+background maps provided by CICLE (bottom) in the F435W, F606W, and F814W
filters (from left to right). The scale of the original and ICL+background images is the same for each filter.

Figure 7. Original images of the relaxed cluster RXJ 2129 (top) and ICL+background maps provided by CICLE (bottom) in the F435W, F606W, and F814W filters
(from left to right). The scale of the original and ICL+background images is the same for each filter.
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Figure 8. Original images of the unrelaxed cluster A209 (top) and ICL+background maps provided by CICLE (bottom) in the F435W, F606W, and F814W filters
(from left to right). The scale of the original and ICL+background images is the same for each filter.

Figure 9. Original images of the unrelaxed cluster A2744 (top) and ICL+background maps provided by CICLE (bottom) in the F435W, F606W, and F814W filters
(from left to right). The scale of the original and ICL+background images is the same for each filter.
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Figure 10. Original images of the unrelaxed cluster MACS 0416 (top) and ICL+background maps provided by CICLE (bottom) in the F435W, F606W, F625W, and
F814W filters (from left to right). The scale of the original and ICL+background images is the same for each filter.

Figure 11. Original images of the unrelaxed cluster MACS 0717 (top) and ICL+background maps provided by CICLE (bottom) in the F435W, F606W, and F814W
filters (from left to right). The scale of the original and ICL+background images is the same for each filter.
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Figure 12. Original images of the unrelaxed cluster MACS 1149 (top) and ICL+background maps provided by CICLE (bottom) in the F435W, F606W, and F814W
filters (from left to right). The scale of the original and ICL+background images is the same for each filter.

Figure 13. Original images of the unrelaxed Bullet cluster (top) and ICL+background maps provided by CICLE (bottom) in the F606W and F814W filters (from left
to right). The scale of the original and ICL+background images is the same for each filter.
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