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Abstract

Comorbidity is an impactful medical problem that is attracting increasing attention in
healthcare and biomedical research. However, little is known about the molecular processes
leading to the development of a specific disease in patients affected by other conditions. We
present a disease interaction network inferred from similarities in patients’ molecular
profiles, which significantly recapitulates epidemiologically documented comorbidities,
providing the basis for their interpretation at a molecular level. Furthermore, expanding on
the analysis of subgroups of patients with similar molecular profiles, our approach discovers
comorbidity relations not previously described, implicates distinct genes in such relations,
and identifies drugs whose side effects are potentially associated to the observed

comorbidities.
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Comorbidity is the tendency for one patient to have an altered risk of developing a second
disease when they are already suffering from a specific one. Comorbidity incidence increases
with age and has a high impact on life expectancy, which decreases considerably in the
presence of a handful of simultaneous diseases ' as is commonly observed in ageing
populations *. Additionally, the presence of comorbid conditions has a high economic impact
as shown, for example, by the increase of 150% of the cost associated to diabetes for people
who are also affected by heart disease >. Thus, it is clear that controlling patient-specific risks
of future comorbidities could increase life expectancy and reduce public health expenditure *.
In the research area of comorbidity, tens of disease-disease interaction networks have been
published since 2007 °, using a variety of data types, such as gene expression profiles °,
combination of disease genes and protein-protein interaction networks ’, miRNA expression
® the microbiome °, medical claims '°, medical records '', human symptoms 12" insurance
claims ", and mixed information '*. The Jensen et al. study considers that patients with the
same disease might present different risks of developing secondary diseases based on their
medical history '', which can be a consequence of the existence of different clinical
phenotypes within multifaceted conditions as described in chronic obstructive
pulmonary disease °. Therefore, in this study we set out to explore the molecular bases of
comorbidity using patients’ transcriptomic profiles to define personalized comorbidity risks.
In a previous study based on differential gene expression meta-analyses '°, we detected that
inversely comorbid Central Nervous System disorders and cancers presented significant
overlaps between genes deregulated in opposite directions in the two sets of diseases,
providing initial molecular evidence for such comorbidity relations. In this new study we
have explored this principle at a different level, calculating differential expression profiles for

each patient to reduce samples’ tissue of origin effect, and defining a patient similarity
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network including over 6,000 patients affected by 133 diseases, including 15 of the top 20
leading causes of death worldwide in 2015 ',

We used patients’ molecular similarity to calculate relative risk interactions between diseases
recovering relations that significantly match previously described epidemiological networks.
Additionally, we extracted distinct patient-subgroups in most diseases, estimated their
relative risk relations and identified subgroups defying general tendencies. Finally, we
successfully assigned patients into their corresponding subgroups, and provide proof-of-

concept strategies to define personalized comorbidity risk profiles.
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Results:

Diseases’ Molecular Similarity Network

To study patient-specific comorbidities, we collected gene expression data from microarray
assays for 6,284 patients suffering from 133 diseases and healthy individuals with 3
phenotypes (smoking, aging, and exercise). We identified differentially expressed genes by
comparing each case sample (from now on patient) to all the control samples from the same
study. Then, we looked for molecular similarities among patients, based on the significant
overlap between the top 500 up- and down-regulated genes '°® (Methods, Fig. 1). Studying the
molecular similarities between patients based on the expression changes observed in the case
sample compared to the controls from the same tissue reduces the tissue of origin effect, as
previously described in the inverse comorbidity relations between Alzheimer’s disease (AD)
and non-small cell lung cancer (NSCLC) '®. Patients with genes deregulated in the same
direction (both up- and down-regulated) were connected by a positive interaction, whereas
patients showing overlaps between genes deregulated in opposite directions (up-regulated in
one patient and down-regulated in the other one and vice versa) were assigned a negative
interaction.

We then generated the Disease’s Molecular Similarity Network (DMSN) calculating
positive (pPRR) and negative (nRR) relative risks between diseases based on similarities
of expression profiles (Methods) with a confidence interval of 95%. In this sense, a pRR
between diseases A and B means that patients with disease A are potentially at a higher risk
of developing disease B compared to all the other patients, based on patients’ molecular
similarity. On the other hand, a nRR interaction means that patients with disease A are
potentially at a significantly lower risk of developing disease B than the rest of the patients in
the network. The resulting DMSN is composed of 136 nodes (all diseases and conditions

considered in this study) and 5,826 edges (Fig. 2). As expected, most of the RR interactions
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were pRR (55%), with 24% of them being interactions between diseases from the same ICD9
disease category. Neoplasms were the most connected category.

To evaluate to what extent our measure of RR is able to reflect epidemiologically-defined
comorbidities, we compared our DMSN with a undirected epidemiological network, the
Phenotypic Disease Network (PDN), generated by Hidalgo et al. using the disease history of
more than 30 million patients '° (Methods). Remarkably, our DMSN significantly recovers
20% of the PDN interactions (704 interactions, pval=0.00005, Fig. 3), as estimated by
randomization (Methods). Then, in order to measure the similarity with a directed network,
we compared our DMSN to the disease-pairs underlying temporal disease trajectories '°. We
obtained a significant overlap between our pRR interactions and their disease-pairs (19,
pval=0.014, Fig. S1). Interestingly, we additionally consider nRR interactions (as potential
evidences of inverse comorbidity), which are not present in the epidemiological networks and
constitute a new layer of knowledge.

The tendencies observed in the epidemiological studies and also in the DMSN indicate that
at least a fraction of patients with one disease will have a higher probability of acquiring the
second disease. Analyzing molecular similarities between patients suffering from the same
disease, we observed different levels of heterogeneity (Fig. 4), which we define as the
percentage ratio between observed vs. total number of possible intra-disease interactions.
According to this definition, diseases with few intra-disease interactions, in which patients
are less similar to each other, have higher molecular heterogeneity. The ICD9 categories
“diseases of the skin and subcutaneous tissue”, “symptoms, signs, and ill-defined conditions”
and “neoplasms” are the ones with the lowest molecular heterogeneity (Fig. 4). On the
contrary, “mental disorders” and “diseases of the nervous system and sense organs” are the
most molecularly heterogeneous ones (Table S1), potentially as a consequence of diagnostic

methodologies. Such results denote that high molecular and phenotypic heterogeneity


https://doi.org/10.1101/431312

bioRxiv preprint doi: https://doi.org/10.1101/431312; this version posted October 3, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

might drive different comorbidity patterns in patients with the same disease. We
therefore generated subgroups of patients within each disease considering differentially
expressed genes (Methods). In total we obtained 1,051 subgroups, 17% of them including
patients from different studies (which constitutes 62% of the diseases with multiple studies),
with an average number of 7.8 subgroups per disease. Interestingly, even large subgroups
composed by 70 patients, share genes that are deregulated in the same direction in all the
patients within it, supporting the reliability of molecularly defined patient-subgroups.

To quantitatively evaluate the heterogeneity of diseases and consistency of the subgroups, we
calculated the intra- and inter-disease/subgroup interaction percentages for each patient (Fig.
4). Most patients presented a higher intra-subgroup than intra-disease interaction percentage.
Such difference was especially higher in patients affected by more heterogeneous diseases,
e.g. mental disorders and diseases of the nervous system, where inter-disease/subgroup
interactions did not vary. In summary, disease-related molecular heterogeneity can indicate
the presence of patient-subgroups, as observed in diseases such as diabetes *° and different
cancers *'**. Regarding patient-subgroups, it is clear that, based on medical records, not all
patients with a disease have a tendency to the same comorbidity patterns '°. Defining these

subgroups we provide the conceptual basis to design a clinical stratification based on

patient-specific comorbidities.

Stratified Comorbidity Network

Considering interactions between patient-subgroups, we obtain a network with 1,051 nodes
and 139,622 edges, which we call the Stratified Comorbidity Network (SCN). Exploring
disease interactions at the more detailed level of patient-subgroups, we can potentially
confirm relations observed between diseases, discover new relations not detected at the

disease level, and also find comorbidities opposite to the ones described at the disease level.
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We corroborated 95% (5,554/5,826) of pRR and nRR interactions detected in the DMSN.
When considering patient-subgroups instead of diseases, we detected more than 8,000 new
interactions in total. Interestingly, 761 interactions revert the general trends observed at
disease level, showing that not all the patients with a specific disease present the same
comorbidity relations, as expected given the observed disease heterogeneity.

To deepen the analysis of our SCN, we focussed on patient-subgroups composed of at least 4
patients with shared deregulated genes (Fig. S2). The resulting network comprises 182
subgroups and 1,624 interactions, corresponding to 385 interactions among 70 diseases. 39%
of these disease-disease interactions were not present in our DMSN. Based on a curated list
of PubMed papers, we observed that 55% of such patient-subgroup interactions have been
previously described by epidemiological studies (Fig. 5, Supplementary Text). For example,
we observed a higher than expected risk of developing AD in a subset of smokers, a tendency
which was previously suggested in the literature .

These results show that our networks (DMSN and SCN) derived from expression data
recapitulate many previous epidemiological results, showing their applicability in the
discovery of novel direct and inverse comorbidity relations between diseases. Importantly,
we go beyond disease definitions and find positive and negative comorbidity relationships

between specific patient-subgroups.

Association of differential expression profiles to known drug effects

Since gene expression can be altered by drug intake, we investigated if any of the observed
interactions could be related with the effects of drugs on gene expression patterns as
previously done by Jahchan et al. **. To this end, we compared patients’ differential
expression profiles with those reported in the LINCS L1000 library (Methods). We added

LINCS drugs as nodes in our SCN and investigated whether specific patient-subgroups have
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any common drug associations. If the changes generated by the drug were similar to the ones
observed in specific patient-subgroups, we could surmise that the drug is responsible for such
patterns. On the other hand, if the changes were opposite to the ones observed in patient-
subgroups, then this would suggest that the drug could serve to treat those patients
specifically, opening the way to drug repurposing ****. Our results show that patients within
each subgroup had significantly more common drugs associated to them than expected by
chance (Methods, Fig. S3.).

For in-depth analysis of the possible relations between diseases and drugs, we restricted our
network to subgroups composed of at least 4 patients with expression profiles correlating
with a given drug. From the resulting network, we obtained 152 cases where subgroups from
2 different diseases presented both negative and positive RR relations while being associated
with the same drug. For example, we obtained 20 pRR interactions between 6 smoker and 14
NSCLC subgroups, and one nRR interaction, with edrophonium being identified as a
potential player in the nRR interaction (Fig. 5). These results suggest that, despite the well
known increased risk of developing lung cancer in smoking patients, a small subset of
smokers might be at a lower risk of developing the disease due to their specific molecular
characteristics.

Another noteworthy example is the case of AD and endometriosis, which are directly
comorbid based on our disease level network. In the SCN, we obtain two pRR and one nRR
between 3 AD and 2 endometriosis subgroups (Fig. 5) and observe interactions with
bortezomib, which suggests that this drug can potentially increase the risk of AD, as well as
protect against endometriosis. Interestingly, bortezomib is currently being explored as a
therapeutic option for endometriosis *°.

Strikingly, we identified different molecular mechanisms potentially involved in the

comorbidity between specific patient-subgroups in the same pairs of diseases (Fig. 2).
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For example, focusing on the AD - NSCLC inverse comorbidity relation, we detected 142
nRR interactions between patient-subgroups. Selecting only those interactions with an
associated drug, this number decreased to 18. Interestingly, several drugs targeting different
molecular mechanisms were detected in those nRR interactions, with MST312 (telomerase
inhibitor), tacrolimus (immunosuppressive agent), and Antimycin A (antibiotic) among
others, suggesting that different molecular mechanisms might explain the same relationship
between diseases.

In summary, the use of the SCN filtered by shared drugs allows a deeper analysis of the

molecular processes potentially involved in comorbidity. This approach is especially

interesting in those cases in which a set of patients present comorbidity relations opposite to

the ones observed at the disease-level.

Patients’ comorbidity profiles

The final application of the presented approach is to develop a methodology that could be
used to identify the most probable comorbidities each specific patient is likely to develop. To
this end, for each patient, we ranked the diseases from the most probable to the least based on
patients’ molecular similarities (Methods), associating LINCS drugs to the comorbidity risks.
Finally, we looked for examples where a patients’ first-line-treatment might be causative of
increasing the risk of developing the most probable secondary diseases (Fig. S4). As an
example, we detected one AD patient connected to rivastigmine (an inhibitor of
acetylcholinesterase used for AD treatment) at a significant RR of developing muscular
dystrophy. Since 6 out of 7 patients with muscular dystrophy are positively connected to
rivastigmine, it could be speculated that treating this specific AD patient with rivastigmine
would increase his/her risk of developing muscular dystrophy, suggesting that alternative

treatments should be sought.
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This approach can be extended systematically to all the other patients and diseases, but each
case requires a careful analysis of the relation with drugs. In addition to the proof of principle

results reported in this paper, we make all the generated results accessible to the research

community through the Disease PERCEPTION portal (http://disease-perception.bsc.es/),
which allows exploration of the Diseases’ Molecular Comorbidity Network and the Stratified

Comorbidity Network (Fig. 6).
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Discussion:

In this study we produced networks that are predictive of comorbidity risk at disease and
patient level by estimating patient-patient similarities based on differential gene expression
information between cases and controls We identified transcriptional heterogeneity in
different diseases, which could reflect the presence of molecular disease subtypes *° or low-
specificity in the diagnostic procedures (indeed, conditions diagnosed using more accurate
methods like biopsies - neoplasms - show lower transcriptomic heterogeneity compared to
others, e.g. Central Nervous System disorders, based on neurocognitive evaluation).
Differences between patients can be due to genetics and the environment >/, more explicitly
living conditions, food and drug intake **. Despite all these factors contributing to the
heterogeneity of the expression profiles, the similarities measured as pRR between diseases
are strong enough to reveal significant overlaps with relations previously observed at
epidemiological level. Furthermore, the presented molecular analysis allows the detection of
nRR, that are not reported in the large epidemiological studies, but are well known at the
level of specific population studies, including the ones between Central Nervous System and
cancer >’

As a demonstration of the potential of this approach, the selection of the positive and
negative RR interactions in the SCN based on shared deregulated genes allows for a deeper
analysis of the molecular bases of comorbidities. For example, a potential driver of the
increased risk of developing AD in smoking patients detected in our study (F13A1) encodes
the coagulation factor XIII A subunit, which has been described to be up-regulated in
smokers °' and also in AD patients, where it has been proposed as a serum biomarker that
correlates with PiB-PET data as an early diagnostic method of the disease **.

Further, we found patient-subgroup comorbidities that defy the ones described at the disease

level. For example, we identify a subgroup of smokers who might be protected against the
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development of NSCLC. Interestingly, using LINCS for relating drugs to expression profiles,
a cholinesterase inhibitor (edrophonium) is found to produce a transcriptional signature
compatible with the expression changes observed in the smokers subgroup, which are also
opposite to the ones observed in the NSCLC patient-subgroup. Remarkably,
acetylcholinesterase inhibitors have been shown to reduce nicotine dependency ** while
contributing to lung cancer progression ", suggesting that the intake of these drugs to reduce
nicotine dependency by this subgroup of smokers might increase their risk of developing
NSCLC. An additional case of inverse comorbidity is the one between AD and
endometriosis, in which the drug that increases the risk of AD may at the same time reduce
the risk of endometriosis. Interestingly, the drug bortezomib might generate expression
changes similar to the ones observed in AD by inhibiting the proteasome and thus mediating
amyloid-beta neurotoxicity *. This drug has been proposed as a potential novel therapeutic
strategy for the treatment of endometriosis *°.

The importance of a personalized approach to comorbidity relations is evidenced by the
association of different pairs of AD and NSCLC patient-groups to different drugs, which
suggests different molecular mechanisms underlying the same protective effect. Interestingly,
the altered molecular mechanisms detected by our analysis have been previously described in
both diseases separately. Telomerase inhibition shows a strong antiproliferative effect on
lung cancer *° and, at the same time, a significantly accelerated rate of telomere shortening
has been described in AD patients *’. The use of tacrolimus was shown to attenuate cognitive
deficits and oxidative stress in rats with induced AD type dementia ** while increasing the
risk of developing solid tumours after liver transplant **.

Taken as a whole, our results suggest that investigating expression profiles could be a useful

tool that allows the detection of different processes potentially driving comorbidities between

pairs of diseases. The comparison of expression profiles as indicators of physiological states
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serves as an initial quantification of how different patients with the same disease have

different comorbidities driven by different molecular processes. Our approach suggests that it

might be possible to reverse-engineer the network to deduce genes or pathways likely to

underlie the observed relationships, identifying comorbidity biomarkers.

In conditions that are diagnosed based on biopsies, transcriptomic data will be available very
soon at a limited cost. The characterization of patients’ molecular phenotypes, through
transcriptomics, proteomics or other experimental techniques, will allow a deeper study of
complex comorbidity patterns and mechanisms, beyond the statistical picture traditionally
provided by epidemiological approaches. Indeed, the consistency of the results for different
tissues and diseases suggests that the molecular basis of comorbidities have a systematic
character, and profiling patients’ blood samples in the future could be used to produce

4041 Understanding and managing

comorbidity risk profiles, as suggested in other scenarios
multi-morbidity has been identified as a priority for global health research **. We argue that a

person’s molecular profile can be used as a predictor of disease comorbidity risk and as a key

component in a personalized comorbidity management strategy.


https://doi.org/10.1101/431312

bioRxiv preprint doi: https://doi.org/10.1101/431312; this version posted October 3, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Methods

Gene expression analysis

Gene expression raw data (CEL files) were downloaded from the Gene Expression Omnibus
(GEO, GSE* files http://www.ncbi.nlm.nih.gov/geo) and ArrayExpress (EMTAB* files
https://www.ebi.ac.uk/arrayexpress/) for 133 diseases and 3 risk factors, including 186
datasets (Table S2). Studies undertaken on HG U133Plus2 Affymetrix microarray platform
were selected to allow using the frozen Robust Multiarray Analysis (fRMA) normalization
method * and reduce the bias due to inter-platform differences. The linear regression model
provided by the LIMMA package was used to identify differential gene expression **,
comparing each sample case with all the control samples from the same study (from now on
denoted as patient).

Interactions between patients within the same disease (using the same threshold used in

. . 16,18
previous studies

) were calculated, varying the number of genes selected as significantly
differentially expressed, demonstrating that the number of detected significant interactions
between patients increases while increasing the number of selected genes (Fig. S5). The Top
500 up- and down-regulated genes were selected as significantly differentially expressed for

posterior analyses based on the t-values provided by LIMMAs differential gene expression

analysis.

Patient-patient interaction analysis:

Following the strategy reported by Ibafiez et al., 2014 '°, overlaps between pairs of patients
were assessed by one-tailed Fisher’s exact tests on lists of DEGs. Two patients are positively
connected if they present significant overlaps between genes deregulated in the same
direction (both up- and down-regulated). On the other hand, two patients are negatively

connected if they present significant overlaps between genes up-regulated in one patient and
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down-regulated in the other one, and vice versa. If both types of significant overlaps are
detected in the comparison (e.g. significant overlaps between genes up- and down-regulated
in both patients and between genes up-regulated in one patient and down-regulated in the
other one), there is no link between those patients.

1,000 permutations were conducted randomly selecting 500 genes as up- and down-regulated.
The Fisher’s exact test threshold for the detection of significant overlaps was varied to
establish a value for which no significant interactions were detected in the random cases

(FDR<0.0005, Fig. S6).

Patient clustering:

Same disease patients were clustered based on their discretized differential gene expression
information into disease subgroups denoted from now on as patient-subgroups. The optimal
number of clusters within each disease was obtained using the Silhouette method **, where k-
means analyses were conducted using Hartigan and Wong’s algorithm * varying the number
of clusters from 2 to the total number of patients within the disease. The number of clusters
with the highest silhouette score was selected as the optimal number of clusters.

For each disease we extracted the total number of genes commonly deregulated in the same
direction in all the patients within each subgroup. Then, we shuffled 1,000 times the patients
among the subgroups from the same disease and calculated the total number deregulated
genes. Only those patient-subgroups from diseases with a total number of shared genes
higher than the expected by chance were selected as true patient-subgroups.

Additionally, we extracted the number of patient-subgroups with shared genes, selecting
those subgroups with at least one gene up- and one gene down-regulated in all the patients
composing the subgroup. This number was compared to the values expected by chance,

shuffling 10,000 times for each disease the patients and extracting the number of subgroups
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with shared genes. Most patients within subgroups shared at least one gene deregulated in the
same direction, more than expected by chance (98% vs. 79%) Fig. S7. The same was done
with the drugs, estimating the number of subgroups with at least one drug connected with the
same sign to all the patients within a subgroup.

To deepen our analysis of the molecular bases of comorbidity relations between patient-
subgroups, we filtered those subgroups with at least 4 patients and shared molecular
alterations, in terms of commonly up- and down-regulated genes (at least one gene up- and
one gene down-regulated in all the patients), selecting only those interactions with
overlapping genes deregulated in the same direction in both patient-subgroups for positive

interactions, and in opposite directions for negative interactions.

Disease heterogeneity analysis:

Looking at the patient interaction network defined previously, we estimated whether patient
clusters were consistent with grouping by disease and by patient-subgroups. The agreement
was assessed based on intra- and inter-disease interaction percentages for each disease

separately.

Relative risk estimates:

For each pair of diseases we consider a contingency table counting the number of positive
interactions connecting patients from the two diseases and the ones connecting one of the

diseases with other ones.


https://doi.org/10.1101/431312

bioRxiv preprint doi: https://doi.org/10.1101/431312; this version posted October 3, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Disease B No disease B Total
. anb annb
Disease A Ta
(interactions of interest) (other interactions)
. Pqnab Pqnanh
No disease A | ‘ ‘ . . Tha
(interactions of interest) (other interactions)

We can then define the proportion of interactions connecting patients from the two diseases
of interest to the total number of interactions of disease A (Pexposed) and the proportion of
total number of interactions connecting patients of disease B and diseases other than A,
compared to the total number of interactions outside of disease A (Pnonexposed). Positive
interactions between patients are considered as interactions of interest, merging both negative

and no-interactions as the other interactions.

Nnab

Pexposed = Nab ; Pnotexposed =

Ta Tna

These quantities allow us to define relative risk (RR) for each pair of diseases, according to
the following formula:

Pexposed
RRab = ————
Pnotexposed

Repeating the same procedure using negative interactions (considering positive interactions
as no interactions) we similarly define negative Relative Risks (nRR).
95% confidence intervals were calculated for diseases, patient-subgroups and patient-disease

relations using the following formula.

[Ta — Nab Tna — Nnab

Nuab Nnab
LN(RR)+ 1.96x% +
(RR) % v Ta Tna



https://doi.org/10.1101/431312

bioRxiv preprint doi: https://doi.org/10.1101/431312; this version posted October 3, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Comparison with epidemiological networks:

To validate our results regarding comorbidities, we compared them with the ones obtained at
an epidemiological level by Hidalgo '° and Jensen "°. Hidalgo et al. used ICD9 disease codes
to associate patients to diseases generating a disease-disease network called PDN. We
therefore started by grouping our patients using the same disease taxonomy and calculated
relative risks between ICD9 codes as previously done at the disease level, reducing the
confidence interval to 99% as in their analysis. To verify the significance of the overlap
between our relative risks and protections with the ones detected by Hidalgo et al, we
conducted 100.000 randomizations generating random interactions between the common set
of 94 ICD9s. The same was done to compare our network with the disease trajectories,

associating in this case our patients to ICD10 codes.

L1000 LINCS analysis:

The t-values obtained for each patient when compared against all the control samples in each
disease were used as gene expression signatures of the patients, and compared against the

LINCS L1000 library (http://www.lincscloud.org/), as performed previously. The LINCS

L1000 library is a large catalogue of gene expression signatures in cancer cell lines induced
by drug treatment or gene knockdown *'.

From the L1000 library drug induced expression signatures were obtained from experiments
in which the transcriptional state of the cell is measured before and after the treatment with
the drug. This allows to study the transcriptional effect of the drug. In order to obtain
consensus expression signatures for each drug, a differential expression analysis was
performed on control vs. treated cells using limma **.

In the LINCS L1000 data, all the wells in which the same drug was used were considered as

treated samples. All the DMSO treated wells from all the plates with at least one treated well
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were considered as untreated controls. The plate in which the drug was tested was taken as a
covariate in the expression analysis. As only a type of cell line is used in each plate, using
this covariate we take into account the technical batch due to different plates and the
biological variability due to different cell lines. Different drug concentrations and exposure
time to the drug were not taken into account. In the LINCS L1000 data some drugs
(pert_iname) are represented by different molecules, (pert id) usually from different vendors.
In these cases, we obtained the pert id associated signatures, that is, associated to the
molecule, and a consensus signature in which all the pert id corresponding to the same drug
were considered. In this last case, the pert_id was also taken as a confounding variable.

The t-moderated statistic was used as a measure of the expression of the gene. It was
preferred over the logFC because the t statistic takes into account the sampling variance.
However, both statistics were highly correlated in all the signatures tested.

In order to measure the similarity of each patient signature to a given drug signature, the
enrichment of the top 250 up-regulated and down-regulated genes by the drug was
determined in the patient signature using a pre-ranked GSEA.

The fgsea R package was used *. A consensus Enrichment Score (ES) was obtained

subtracting the ES values of the DN signature from those ES of the UP signature.

New patient classification and comorbidity prediction:

Each patient of the study was classified into their corresponding disease and patient-subgroup
using a leave one out approach, comparing the patients’ differential gene expression profile
with the ones of each other patient (up-regulated genes were denoted with 1s, down-regulated
ones with -1s and all the other ones with 0s) using euclidean distances. TP, TN, FP and FN
values were calculated for each disease, and for each patient-subgroup within the same

disease. Precision, recall and specificity values were calculated (selecting the same number of
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TP-FP and TN-FN) and compared to random expectation, shuffling 10,000 times the gene
expression values across patients.

Then, two new AD and NSCLC datasets, analyzed using the same microarray platform (HG
U133 Plus 2), were downloaded from GEO (GSE84422 and GSE27262), with 17 and 25
patients respectively, and classified into one of our 136 diseases and risk factors based on

their differential gene expression profiles.

Personalized comorbidity profiles

For each patient, based on patients’ molecular similarities, we calculated the pRR and nRR of
developing each of the analyzed diseases as done before with diseases and patient-subgroups,
producing a ranked disease list from the most probable to the least. Then, for each disease we
added LINCS drugs and ranked them from the one similar to most patients to the one similar

to the least, highlighting the first-line-treatments (https://www.vademecum.es). As a final

step, we look for examples where a patients’ first-line-treatment might be causative of
increasing the risk of developing the most probable secondary diseases (Fig. S4), this is,

drugs that are positively connected to most patients of the secondary diseases.

Disease PERCEPTION portal

The portal is composed by a database loader, a SQL database, a REST API and a web
frontend. The tabular data and the source code of the database loader, REST API and web

frontend are available at the GitHub project https://github.com/inab/disease perception.

The database loader is written in Python 3.5, and it uses pandas ** and SQLite to prepare a
SQLite database instance. The SQL database is composed by 16 tables, with the disease

groups, diseases, patient subgroups, patients, studies, genes, drugs and their relationships.
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The data loaded comes from all the results consolidated from the analyses previously
described.
The REST API is written in Python 3.5, and it uses Flask, Flask-RESTPlus and Flup. It is

available at http://disease-perception.bsc.es/api/, and it is documented using OpenAPI.

The Disease PERCEPTION web frontend is written in Javascript ES7/ES2016, and it uses
Cytoscape.js *°, the external layout plugins COLA, COSE-Bilkent, Dagre and Klay, JQuery,
Bootstrap, Tippy and Popper. It is built using yarn, babel and webpack, as it is described in

its documentation on the GitHub repository.
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Figure 2. Disease-disease interaction network and Stratified Comorbidity Network. A)
Heatmap of the disease-disease relative risk interactions. Blue and red squares represent
positive and negative relative risks respectively. Intensity of the interactions denote the
relative risk values. Relative risk interactions’ directions go from rows to columns. Diseases
are colored based on the disease-group they belong to. B) Heatmap of the interactions
between NSCLC and Alzheimer’s disease patient-subgroup with at least 4 patients. Blue and
red squares represent positive and negative relative risks respectively. C) Heatmap of the
interactions between NSCLC and Alzheimer’s disease patient-subgroup with at least 4
patients with at least one drug associated in the same direction to all the patients within the
same subgroup. Blue and red squares represent respectively positive and negative relative

risks with shared drugs in the correct direction (at least a drug is associated in the same



direction to all the patients within both subgroups in the case of positive interactions, and in

opposite directions in the case of negative interactions).
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Figure 4. Intra-disease patient-patient interaction network

and associated disease

heterogeneity. A) Intra-disease patient-patient interaction network. Each node represents a

patient. Green and red edges represent positive and negative interactions respectively. Nodes

are colored based on the disease-group they belong to. Organic layout was used to represent

the ne

twork

B) Patients’

intra- vs. inter-disease interaction percentages. Number of



patients within each interval of intra- and inter-disease (or subgroup) percentage are

indicated.
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Figure 5. Size 4 patient-subgroups with shared genes (a) and drugs (b & c¢). A) Each

node represents a patient-subgroup, colored based on the disease-group they belong to. Solid

and dashed lines represent positive and negative relative risk interactions. Blue, red and grey

colored interactions represent interactions matching, opposing and not previously described

in epidemiological data respectively. B & C) Circle and diamond nodes represent patient-

subgroups and drugs respectively. Blue and red colored edges represent positive and negative

interactions respectively. Solid lines denote relative risk interactions while dashed lines

denote subgroup-drug interactions.
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Figure 6. The Disease PERCEPTION portal. Through this user-friendly and
programmatically accessible portal, the user can visualize comorbidity relations at the disease
and patient-subgroup levels. Moreover, users can extract patient-subgroup information,
filtering by subgroup size, intra-subgroup connectivity, as well as by shared drugs and/or
genes. Genes and drugs in the networks are hyperlinked to databases, facilitating an

interactive exploration of the molecular basis of each connection. A) Disease network view.



Each node represents a disease, coloured based on the disease category they belong to. Blue
and red edges denote positive and negative relative risk (pRR, nRR) interactions. Relative
risk cut-off can be modified. B) Alzheimer’s disease neighbours view. Desired diseases can
be selected to show their patient-subgroups. C) Alzheimer’s disease and non-small cell lung
cancer patient-subgroups with >4 patients per subgroup. D) Same as C) excluding intra-
disease interactions. E) Same as C) showing only patient-subgroup interactions with shared
drugs. Selecting edges of interest displays genes and drugs potentially involved in the

selected interactions.
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