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A classical way for exploring the scattering behavior of a small sphere is to approximate Mie coefficients with a
Taylor series expansion. This ansatz delivered a plethora of insightful results, mostly for small spheres supporting
electric localized plasmonic resonances. However, many scattering aspects are still uncharted, especially with
regards to magnetic resonances. Here, an alternative system ansatz is proposed based on the Padé approximants
for the Mie coefficients. The results reveal the existence of a self-regulating radiative damping mechanism for
the first magnetic resonance and general resonating aspects for the higher order multipoles. Hence, a systematic
way of exploring the scattering response is introduced, sharpening our understanding of the sphere’s scattering
behavior and its emergent functionalities.
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Light scattering and absorption from a single homogeneous
sphere is a widely studied canonical problem encountered in
branches such as material physics, chemistry, nanotechnology,
and engineering [1]. New fundamental phenomena related to
the scattering and absorptive behavior of a sphere were recently
understood, such as anomalous light scattering [2] or the iden-
tification of Fano-like resonant line shapes of the scattering
spectrum [3]. Additionally, many more novel functionalities
emerged through the metamaterial paradigm [4,5], reinforcing
its long-standing significance.

The first mathematically rigorous attempt at finding a
physically sound explanation for the triggered scattering
mechanisms was derived by Lord Rayleigh for very small scat-
terers (electrostatic case) [6]. Later developments attributed to
Thomson, Love, Lorenz, Debye, and Mie [7] delivered a full
electrodynamic perspective about this problem. Lorenz-Mie
(simply Mie) coefficients rigorously quantified the material
and size contributions of the overall scattering behavior as
a set of fractional functions consisting of spherical Bessel,
Hankel, and Riccati-Bessel functions, viz.,

an = m2jn(mx)[xjn(x)]′ − μcjn(x)[mxjn(mx)]′

m2jn(mx)
[
xh

(1)
n (x)

]′ − μch
(1)
n (x)[mxjn(mx)]′

, (1)

bn = μcjn(mx)[xjn(x)]′ − jn(x)[mxjn(mx)]′

μcjn(mx)
[
xh

(1)
n (x)

]′ − h
(1)
n (x)[mxjn(mx)]′

, (2)

where an and bn denote the electric and magnetic coefficients,
respectively [8]. The size parameter, x = ka, is a function
of the sphere’s radius a and host medium wave number k =
ω

√
εμ; ε1 and μ1 are the sphere’s material parameters with a

wave number of k1 = ω
√

ε1μ1. Finally, m = k1
k

is the contrast
parameter.

This blend of straightforward and complicated expressions
rarely offers any physical intuition on the studied problem.
A widely used method in circumventing the aforementioned
obstacle is to approximate Eqs. (1) and (2) with a Taylor series
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expansion for small x, i.e.,

aT
1 ≈ −i

2

3

εc − 1

εc + 2
x3 − i

2

5

(εc − 2)(εc − 1)

(εc + 2)2
x5 + O[x]6, (3)

bT
1 ≈ −i

1

45
(εc − 1)x5 + O[x]7, (4)

where εc = ε1/ε is the permittivity of a magnetically inert
(μc = 1) dielectric sphere [7–9].

The first term of expression (3) is often characterized as a
static term [10], while higher order terms are characterized
as dynamic depolarization terms [11]. Indeed, the afore-
mentioned system ansatz offers important physical insights
and intuition about the sphere’s scattering features [12],
mostly due to its form [Eq. (3)] [or its inverse form (aT

1 )
−1

],
which allows a clear perspective about the material induced
resonances; useful results have been extracted regarding the
dipole behavior of small spheres/scatterers [10,12], mainly
for the electric resonances triggered by the localized surface
plasmon (plasmonic) oscillations [2,8].

However, the aforementioned system ansatz cannot be
easily applied for studying the magnetic Mie terms, since
its Taylor series expansion converges slowly with respect
to the size parameter x for the first magnetic resonance
[Eq. (4)]. This inherent characteristic can be somehow im-
proved by including higher order terms, resulting in long and
complicated expressions. Hence, simple expressions for the
magnetic coefficients are not easily extracted. In addition,
insightful expansions are especially needed to support recent
nanotechnology advancements, where all-dielectric devices
exploit the strong magnetic and electric resonances of their
elementary building blocks, such as spheres [4,13].

In this Rapid Communication we propose an alternative
system ansatz as a way to extract valuable physical information
about the scattering resonant behavior of a small sphere.
By studying expressions (1) and (2) it becomes clear that
a complicated zero/pole resonant scheme occurs for a given
material-size combination. Notably, the Taylor series expan-
sion of such resonating expressions might converge slowly,
especially close to the poles. Moreover, coefficients (1) and (2)
are in a fractional function form, making clear that a system
ansatz capable of describing the coefficients as a fractional
set of rational functions could possibly reveal their zero/pole
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trends, providing us with the necessary intuition about the
scattering resonant behavior. Such a system approximation
covering all the above features is the Padé approximant [14].

The Padé approximant is a special type of rational fraction
approximation [14], used particularly for the description of
many physical problems where a complex resonant physical
system is described and/or observed, such as in cosmology [15]
or in quantum chromodynamics [16]. This is due to its inherent
ability to describe a function as a set of a rational polynomial
functions, expanding each of the fractional terms in a power
series polynomial [14,17].

To our knowledge, similar expressions were first given by
Wiscombe [18] and in Refs. [19,20], giving a numerically
efficient way for evaluating the Mie coefficients in the small
size parameter limit. However, these studies do not focus on
either the resonant conditions or the physical mechanisms
for either electric or magnetic resonances of a homogeneous
sphere. An equivalent approximative procedure has been
followed in Ref. [2]; Mie coefficients were decomposed in
a fractional r

r+is
form and a Taylor series expansion calculated

for each r and s term. In this way the pole conditions
are obtained for the electric multipoles at the plasmonic
regime, revealing peculiarities of the scattering behavior of
the plasmonic sphere.

However, the Padé approximants of a fractional function,
such as the Mie coefficients, are not equal with the fraction
of two Taylor expanded functions, especially for low order
approximations. This is mostly attributed to the inherent ability
of the Padé series to converge quickly, especially close to
singular points, such as the poles of a system [14]. In this
way the expanded terms are simple and compact, allowing
at the same time a much easier physical interpretation of the
scattering mechanisms enabled.

Let us begin with a magnetically transparent sphere
(μc = 1). The lowest available approximants read

a
[3/2]
1 = −i

2

3

εc − 1

εc + 2

x3(
1 − 3

5
εc−2
εc+2x2

) , (5)

b
[5/2]
1 = −i

εc − 1

45

x5

1 + 1
21 (5 − 2εc)x2

, (6)

where the bP
1 term is a [5/2] and aP

1 a [3/2] Padé expression,
respectively. The key findings of this work can be extracted by
carefully analyzing their pole behavior.

Starting with the electric coefficient [Eq. (5)], the Taylor
expanded pole condition reads

ε[3/2]
a1

= −2 − 12

5
x2 + O[x]4, (7)

where O[x]4 denotes the truncated terms. Notice that the
superscript denotes the used [L/M] Padé approximant, while
the subscript denotes the corresponding Mie term.

For vanishingly small size parameter values, Eq. (7) yields
to εc → −2. This can be recognized as the electrostatic
polarization enhancement condition [10] (or Fröhlich fre-
quency [8]), obtained also by the Taylor series expansion in
Eq. (3). However, by inspecting Eq. (5), one notices that this
is not a sufficient condition for the system to resonate: The
resonant behavior is dependent on how this limit is approached.

For instance, when x → 0, the a1 coefficient goes to zero;
the limiting case where a small sphere approaches εc → −2
gives a finite value for expression (5), i.e., i 5

6x. Therefore,
the condition εc = −2 is not a system pole, but rather an
asymptotic limit derived from the electrostatic case [21].

The above expressions verify already known results that
can be found in textbooks, i.e., see Ref. [8] (Chap. 12, p.
329), where a rough Taylor approximation of the quasistatic
polarizability has been used. A similar but less accurate
condition is extracted in Ref. [22], while a generalization for
higher electric multipoles is given in Ref. [23]. Notice that a
comparison between the condition in Eq. (7) and the obtained
values by Eq. (1) (for n = 1) reveals that the relative error is
less than 0.1% for size parameters up to x = 0.4.

The next step is to expand our study for the case of magnetic
resonances. The Padé expansion of the first magnetic Mie term
[Eq. (6)] exhibits a pole with the following condition,

ε
[5/2]
b1

= 5

2
+ 10.5

x2
+ O[x]2. (8)

This resonance follows an inverse square size dependence,
explaining that for very small size parameters the first magnetic
resonance is hidden in the far positive permittivity axis. Many
qualitative differences are derived by comparing the electric
[Eq. (7), εc < 0 [1]] and magnetic [Eq. (8), εc > 0 [5]]
pole conditions; plasmonic resonances [Eq. (7)] are less
sensitive to the size parameter and appear in materials with
a smaller permittivity contrast. Although Eq. (8) gives a poor
approximation, having a less than 10% error only for sizes
up to x < 0.3 (Fig. 1), it can still predict the general resonant
trend of the magnetic b1 coefficient.

Up to this point some simple rules regarding the first electric
and magnetic dipole resonances have been derived. Arguably,
expressions (5) and (6) are purely imaginary quantities for
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FIG. 1. Approximation error (%) between conditions of Eq. (8)
(blue solid), second term of Eq. (15) (red dashed), the first two terms
of Eq. (15) (yellow dotted), Eq. (13) (purple dotted-dashed), and
Eq. (15) (green solid) with respect to the values obtained from the
Mie coefficients of Eq. (2) for the first magnetic dipole. Equation (15)
gives less than 1% error for values up to x = 0.8.
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the lossless case, thus energy conservation is violated—see
Ref. [12] (Chap. 8, p. 6). This can be immediately restored by
introducing higher Padé approximants, e.g., [3/3] for a1 and
[5/5] for b1, viz.,

a
[3/3]
1 = −i

2

3

εc − 1

εc + 2

x3(
1 − 3

5
εc−2
εc+2x2 − i 2

3
εc−1
εc+2x3

) , (9)

b
[5/5]
1 = −i

εc − 1

45

× x5[
1 + 1

21 (5 − 2εc)x2 + [x]4 − i 1
45 (εc − 1)x5

] ,

(10)

where [x]4 = − ε2
c+100εc−125

2205 x4.

Terms found in the denominators of Eqs. (9) and (10) can be
categorized into two types: real terms describing the dynamic
depolarization effects [11], and imaginary terms representing
the radiative damping effects [24], respectively. Notice that
for a1 and b1 the [3/3] and [5/5] Padé approximants are
the lowest order approximants with an imaginary term in
their denominator; these terms appear also in the Taylor
expansion—see Eqs. (3) and (4). In a sense, the form and
order of the radiative damping term is known once the first
Taylor term is calculated.

Following the previous analysis, Eq. (9) gives the following
pole condition,

ε[3/3]
a1

= −2 − 12

5
x2 − 2ix3 + · · · , (11)

where the imaginary term appearing reveals that a complex
pole is expected, even for the lossless case due to radiative
damping effects [25]. This expression elucidates the fact that
Mie coefficients exhibit resonances at complex frequencies,
known also as natural frequencies [9], offering an equivalent
definition for these frequencies and a clear interpretation from
a material point of view.

Let us continue by assuming material losses, i.e., εc(ω) =
ε′(ω) + iε′′(ω). The estimated imaginary part of Eq. (11)
reveals another interesting fact: The amount of dissipative
losses required for maximum absorption efficiency is dic-
tated by the amount of the radiative damping losses. This
can be understood as a matching process between the two
mechanisms involved, i.e., radiative damping and material
dissipative losses [22,23]. This interchange raises a series
of interesting and peculiar phenomena affecting the overall
absorptive behavior of a sphere [26]. Therefore, the required
material losses for maximum absorption for the first plasmonic
resonance can be approximately estimated to be

ε′′(ω) ≈ 2x3. (12)

Similarly, the pole of Eq. (10), rounded to the fourth decimal
digit, reads

ε
[5/5]
b1

= −2.0743 +
(

3.1614

x

)2

− 1.4263x2 + · · ·

− i2x
(
1.0673 − 0.7721x2 + 0.4604x4) + · · · , (13)
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FIG. 2. Calculated ε′′(ω) values as a function of size parameter
for maximum absorption for the first magnetic term (b1). Blue solid
line: Linear trend of Eq. (14). Red dashed line: Estimation given by
Eq. (13). Yellow dotted line: Estimation given by Eq. (15); the t1 value
can be found in Table I. The purple dotted-dashed line illustrates the
absorption trend extracted from the exact Mie coefficient [Eq. (2)].
The corresponding absorption maximum for the first electric Mie
term [Eq. (1), green solid] exhibiting a monotonous, 2x3 distribution.
The absorption plateau is visible for 0.4 < x < 0.8.

where up to x2 dynamic depolarization (real part) and x5 radia-
tive damping terms (imaginary part) are included, respectively.
A first rough approximation for maximum absorption reads
(see Ref. [25])

ε′′(ω) ≈ 2x, (14)

easily derived by neglecting the higher order imaginary terms
of Eq. (13).

Consider now the estimated radiative damping terms of
Eq. (13). These nontrivial terms predict a nonlinear trend
for the maximum absorption curve. Indeed, as can be seen
in Fig. 2, a maximum absorption plateau is observed around
x = 0.6. We characterize this predicted plateau as a manifes-
tation of a self-regulating radiative damping process. This is
justified from the point that radiative damping is an intrinsic
mechanism, affected only by the size characteristics in the
small size limit, with immediate effects on the scattering and
absorption processes. Hence, this nonlinear trend extracted in
Eq. (13) reflects the ability of a sphere to exhibit different
qualitative radiative damping behavior for these two types of
resonances. Note that similar effects are not observed for the
electric plasmonic resonances, where the absorption maximum
curve is strictly monotonous for size parameters up to x < 1,
as can be observed in Fig. 2 (green curve).

So far the proposed approximation has offered simple and
compact expansions for both Mie coefficients. These features
are mostly derived using the lowest Padé approximants. In
order to increase the accuracy of the extracted conditions of the
magnetic resonances, higher order approximants are needed.
For instance, a [27/2] expansion of b1 yields to the following

140301-3
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pole condition,

ε
[27/2]
b1

= −2 +
(π

x

)2
+ 1.696x2 − 1.1232x4 + · · ·

− i2x(1 − 0.696x2 + 0.4447x4) + · · · . (15)

A comparison between the estimated approximations (Fig. 1)
reveals that Eq. (15) gives highly accurate results, while
accuracy is still high by including only the first two terms
of Eq. (15). Note that in coefficient expansions such as (13) or
higher, more than one pole is predicted. For a given physical
system some of the predicted poles may not be observed di-
rectly, making their physical interpretation a difficult task [17].
Additionally, some of the poles may coincide with system
zeros, hence their effects are canceled. Our study is restricted
only for physically observable poles, verified through the
analytical Mie solution.

We conclude our discussion by generalizing the extracted
results for the case of higher order magnetic resonances.
A simple pattern regarding their resonant condition can
be extracted by carefully analyzing the higher order Padé
approximants and their poles, viz.,

εbn = − 2

2n − 1
+

(cn

x

)2
− i

2

[(2n − 1)!!]2 x2n−1
(
1 − tnx

2
)
,

(16)

where n = 1,2,3, . . . is the order of each mode; cn and tn
values are given in Table I.

TABLE I. Coefficients of Eq. (16).

n 1 2 3 4 5

cn π 4.4934 5.7634 6.9879 8.1825
tn 0.6960 0.2507 0.1578 0.1165 0.0928

The real part of Eq. (16) is a rule for the resonant position;
the absorption maximum for each mode can be approximately
described by the imaginary part. Notice that cn coefficients
follow the order of the first zero of the spherical Bessel function
(jn−1(cn) = 0).

An alternative Padé approximant-based system ansatz has
been introduced for the Mie coefficients, describing the
scattering and absorptive mechanisms in a homogeneous
sphere. Interesting aspects and accurate trends for the magnetic
multipoles resonant locations were revealed, while simple
and compact coefficient expansions were introduced. This
perspective can be further generalized for dispersive material
models [27], inhomogeneities [28], anisotropies [29], or other
geometries [30], revealing potentially interesting and unknown
radiation/light scattering phenomena. Consequently, design
guidelines will emerge regarding the scattering and absorptive
functionalities of single, canonical shaped scatterers.

This work is supported by the Aalto Energy Efficiency
Program (EXPECTS project) and the Aalto ELEC Doctoral
School scholarship.
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