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Abstract—Operating systems use shared memory to improve
performance. However, as shown in recent studies, attackers can
exploit CPU cache side-channels associated with shared memory
to extract sensitive information. The attacks that were previously
attempted typically only detect the presence of a certain operation
and require significant manual analysis to identify and evaluate
their effectiveness. Moreover, very few of them target graphics
libraries which are commonly used, but difficult to attack. In this
paper, we consider the execution time of shared libraries as the
side-channel, and showcase a completely automated technique to
discover and select exploitable side-channels on shared graphics
libraries. In essence, we first collect the cache lines accessed by
a victim process during different key presses offline, and then
use machine learning to infer the best cache lines (e.g., easily
measurable, robust to noise, high information leakage) for a flush
and reload attack. We are able to discover effective strategies to
classify what keys have been pressed. Using this approach, we not
only preclude the need for manual analyses of code and traces —
the automated system discovered many previously unknown side-
channels of the type we are interested in, but also achieve high
precision in terms of inferring the sensitive information entered
on desktop and Android platforms. We show that our approach
infers the passwords with lowercase letters and numbers 10,000 -
1,000,000 times faster than random guessing. For a large fraction
of PINs consisting of 4 to 6 digits, we are able to infer them
within 20 and 80 guesses respectively. Finally, we suggest ways
to mitigate these attacks.

I. INTRODUCTION

Graphics are pervasively used in modern applications and
many applications implement a graphical user interface (GUI)
to improve user experience. Graphics rendering is complex
and involves multiple processes. For example, on the Linux
X architecture, graphics rendering involves many components
spanning the kernel, the X-server, the application client, and
the device driver. To shelter developers from this complexity,
many operating systems provide graphics libraries with simple
APIs for applications to render their GUIs.

In this paper, we scrutinize such graphics libraries as a
target of side-channel attacks. It is noteworthy that these graph-
ics libraries are provided by operating systems and loaded
dynamically by applications and shared across user processes,

i.e., different virtual pages are mapped to the same physical
pages. This creates an opportunity for a malicious process to
infer graphics-related activities of a victim process.

Our intuition of the attack is that the performance of
graphics rendering is critical for user experience across a
wide range of applications. Consequently, graphics libraries
often optimize their execution logic for high performance. For
example, when handling simpler graphical content, graphics
libraries usually execute a different set of procedures than
that for complex content. Even if the same set of subroutines
are executed, the execution time can still differ for different
inputs (e.g., different characters to render). This processing
logic creates a side-channel that can allow attackers to infer
a user’s input since the execution times of these sensitive
graphics operations are both input-dependent and measurable.

However, the practical realization of such side-channel
attacks is not trivial, especially since graphics rendering is
complex, large, and is characterized by interdependence across
multiple processes. On Linux, for example, we find that
graphics rendering could involve multiple shared libraries and
millions of lines of code. Thus, if attempted blindly, it would
take significant time and manual effort to determine where
side-channels exist during the rendering process. Moreover,
even upon finding such a side-channel, it is difficult to assess
whether the leakage is sufficient to reliably recover the target
information (e.g., in the presence of measurement noise). To
further complicate attacks, measuring the execution time of
the victim process regarding the shared graphics library is also
challenging. Previous attacks often rely on the attacker actively
triggering the sensitive procedure (e.g., encryption), and mea-
suring the execution time as many times as they want [16],
[30]. When attacking graphics-based applications such as the
ones we consider, the attack process can only passively observe
the execution, leaving fewer attack opportunities.

To this end, we propose a novel method to completely
automate the end-to-end realization of practical attacks on
graphics rendering. It not only automatically identifies the
vulnerable instructions/subroutines whose execution times are
input-dependent, but also yields an end-to-end exploit to infer
a user’s inputs with disturbingly high accuracies. The method
measures the information gains from a set of execution times of
the subroutines involved in rendering, and identifies those that
yield high information gain (i.e., allow effective discrimination
between subroutine executions [26]). We then apply a machine
learning model that uses these discriminatory subroutines’
executions to infer the user’s input with high accuracy. We

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23221
www.ndss-symposium.org



demonstrate that the method exposes a leaky CPU side-
channel that is practically exploitable and more effective than
previously known side-channels of similar types (e.g., [23]).
Unlike many previous studies (e.g., [13], [15], [25]), where
the researchers relied on manual inspection of source code or
instructions to identify vulnerabilities, we provide a systematic
methodology that can completely automate the identification
of such side-channels (all of which are previously unknown).

We upload the demo videos of our attack on an anonymous
website [2]. Moreover, to facilitate the reproduction of the
work and future research, we open source the complete source
code of the attack at [3].

Our contributions: In brief, we make the following key
contributions.

• Exposing input-dependent execution-time side-channels in
graphics libraries: We systematically investigate this unique
type of under-scrutinized side-channels in graphics libraries.
By developing a novel and automated methodology, we
discover previously unknown and exploitable graphics ren-
dering side-channels on both Ubuntu and Android platforms.

• Accurate subroutine execution time measurement: We design
and implement an end-to-end CPU cache side-channel attack
to measure the execution time reliably in graphics rendering
subroutines. We address the technical challenges associated
with noises and the implementation of such attacks on the
Android platform.

• Evaluations on real-world applications: We demonstrate
that the discovered side-channel on common graphics li-
braries can be exploited to infer the passwords with low-
ercase letters and numbers 10,000 - 1,000,000 times faster
than random guessing. For a large fraction of PINs consist-
ing of 4 to 6 digits, we are able to infer them in under 20
and 80 guesses, respectively.

II. BACKGROUND

This section presents the background necessary for under-
standing the details of the attack. Specifically, it overviews
CPU caches, shared libraries, and CPU side-channel attacks.

A. CPU Caches

Programs often have temporal and spatial locality, i.e.,
the most recently accessed memory addresses, as well as
nearby addresses, are often accessed in the near future. To
exploit locality, modern architectures use CPU caches to store
recently accessed memory. A CPU cache is often organized
into multiple levels with different sizes and access speeds.
For example, on Intel CPUs, there are commonly three levels
of caches: L1, L2 and L3, with L1 being the fastest and the
smallest and L3 being the largest and the slowest. On multi-
core CPUs, lower levels of caches (L2 and L3) are often shared
among multiple CPU cores.

Modern CPU caches are organized using a set-associative
policy. This policy divides the cache into multiple cache sets
and each cache set contains several cache lines. When the CPU
accesses memory, the memory address is indexed into a cache
set. The CPU checks all cache lines in this set to identify the
presence of the cache line holding the memory address.

Inclusiveness. Lower levels of the cache (L2, L3) can be
configured with different inclusion policies. The most common
policies are inclusive, exclusive, “non-inclusive non-exclusive”
(NINE). Lower levels of the cache are considered inclusive if
all the memory blocks present in the upper levels of the cache
are also present on the lower levels. The lower levels of the
cache are considered exclusive of the higher levels of cache
if all the memory blocks present on the higher level of cache
are not present on the lower level of cache. If the presence
of memory blocks is not strictly inclusive or exclusive with
regards to the lower levels of cache, then it is considered NINE.

Prefetching. Programs often access their memory in a
predictable order. For example, when a program executes
code, the code stored at a lower address is often executed
before code stored at a higher address. To further improve
performance, modern architectures often implement a cache
prefetcher that predicts future memory accesses and loads the
predicted contents into the CPU cache before they are actually
accessed. For example, Intel CPUs implements a streaming
prefetcher which could prefetch up to 20 cache lines ahead of
the cache line currently being accessed [5].

B. Shared Libraries

A program library is a collection of subroutines that are
available for immediate use by other programs. Since the
functionalities provided by these libraries are very commonly
required, they are designed to be shared across multiple user
programs. These libraries can be mapped to the address space
of a user program by the linker when the user program prepares
for execution. A library can also be loaded in the middle of
an execution of a user program when it explicitly requests that
the library be loaded. Regardless of the case, the contents in
the library are mapped into the user program’s address space.

Operating systems use shared memory to improve the
memory utilization efficiency with regards to these libraries.
For example, common libraries (.so on Linux, .dll on Win-
dows) are often shared across all processes linking them. This
means that these libraries are loaded into physical memory
only once and remain there for the entirety of the OS session.
For every process which loads a library, the library will be
mapped to a different virtual address in the memory space
of the process. However, when different processes access the
same library, the same physical memory pages will be ac-
cessed. Interestingly, de-duplication can also allow the sharing
of libraries across different virtual machines [41].

C. Flush+reload Side-channel Attack

When a process loads a memory block from the cache, the
access time is relatively short. If the accessed memory block
is not present in the CPU cache, the process will need to load
that block from memory (or a lower level of the cache), which
is slower. This creates a timing side-channel for attackers to
infer the current state of CPU cache, and thus perform attacks
on the victim process.

One of the most common forms of cache side-channel
attacks is “flush+reload” [47]. Flush+reload attack usually
targets shared libraries. The attacker first picks a memory block
in the shared libraries and flushes it out of the CPU cache. On
Intel CPUs, this can be done using the CLFLUSH instruction.
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Fig. 1: Attack workflow.

If the victim process executes code that resides in the same
memory block, it will load the memory block back into the
CPU cache. Subsequently, the attacker accesses (reloads) the
memory block, and checks whether it was loaded back into
the CPU cache and thereby infers the victim’s activity.

On some CPU architectures such as ARM, cache flush
instruction is not available to user programs. However, an
attacker can still “evict” a cache line by accessing a set of
memory blocks that are mapped to the same cache set. Gruss
et.al. [33] demonstrated that evict+reload attack can be as
effective as flush+reload.

III. ATTACK OVERVIEW

In this section, we provide an overview of the proposed
attack starting with the threat model and a high-level descrip-
tion of the underlying intuition. We then briefly describe the
individual components of the attack.

A. Threat Model

The attacker’s goal is to passively eavesdrop on the victim’s
CPU cache looking for sensitive information (e.g., PINs or
passwords) the victim entered in an application, which we
refer to as the victim application. The attacker is assumed to
be local, i.e., the attack process is co-located with a victim
process on the same physical device and operating system,
(e.g., a piece of malware is installed on the victim’s system).
We assume that the physical device is a multi-core system,
and the attack and victim process can run simultaneously on
different cores. The attack process can create a few threads that
run continuously in the background. No privileges or special
permissions are required.

The attacker should also be aware of when a target victim
application is launched and when it is in a sensitive state (e.g.,
login screen) so as to start the side-channel attack. Typically
the login screens are shown automatically when the app is first
launched. However, even if it is not, we can still infer their
presence through attacks similar to prior work [18].

Finally, we assume that an attacker has access to shared
graphics libraries used in desktop and mobile applications
(these libraries come with the operating system). The attacker
has the knowledge of the victim’s CPU specification and has
access to a device with the same CPU and operating system.

B. Intuition

By studying how graphics libraries work in general, we
observe that when a part of the GUI of an application is
updated, only the updated part will be rendered. For example,

on-screen keyboard applications will often highlight the key
being pressed. In this case, only the highlighted key will be
rendered on the screen while other parts of the GUI remain the
same. Another example is when a user types a character into an
input box, the application will only render the typed character.
This precise rendering is necessary for input inference.

Our second observation is that when performing text
rendering, the graphics library often renders only the pixels
representing the text while ignoring the background pixels.
Because of this, the rendering of characters with fewer pixels
such as “1” and “i”, is considerably faster than rendering more
complex characters such as “8” and “w”.

Given these observations, if an attacker can measure the
time it takes for a victim application to render its GUI,
she could potentially use this as a side-channel to infer the
user’s input to the application. In practice, we envision that
the attacker conducts offline profiling experiments to map
different user inputs to execution times of subroutines related
to rendering in shared graphics libraries. Later, she performs
online attacks by leveraging the prepared mapping to associate
measured execution times back to the user’s input.

Without any privilege, an attack process cannot directly
measure the program state of the victim. Fortunately, a
flush+reload cache side-channel attack can be utilized to
indirectly measure graphics rendering time through the shared
graphics libraries. Note that previously studied flush+reload
attacks [23], [33], [35], [36], [47], [48] were successful at
checking only the presence and absence of data in the cache.
In our attack, we take a step further to measure the execution
time of subroutines.

Measuring the execution time of a shared library subroutine
requires an attacker to locate at least a pair of instructions (and
their corresponding cache lines). However, this can be chal-
lenging and tedious. First of all, graphics libraries are complex
and graphics rendering often involves multiple libraries. For
example, a typical desktop application on Ubuntu Linux will
involve libraries including libgdk-3.so, libcairo.so
and libpixman.so which have millions of instructions.
Manually going through them is not scalable (especially con-
sidering that there are many platforms and library versions).
Secondly, even if the attacker finds a good target pair to
monitor, it is unclear whether it is reliable and effective in
practice due to features such as the cache prefetcher. As a
result, we need automated discovery and evaluation of good
target cache lines to monitor.

C. Attack Workflow

In this work, we overcome the above challenges and show
1) how we automate the discovery and selection of viable
instructions in graphics libraries and 2) how we automatically
generate the working exploits of the discovered side-channels.

Our attack is divided into two phases: side-channel dis-
covery (offline) and online attack. Figure 1 shows the general
workflow of our proposed methodology. During the side-
channel discovery phase the attacker selects a victim appli-
cation and one (or more) shared graphics libraries to target.
The goal of this phase is to (i) analyze the victim application’s
execution, (ii) discover execution-time side-channels inside the
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Fig. 2: Flow chart of side-channel discovery.

graphics libraries and, (iii) craft an attack program (malware)
that exploits the discovered side-channel iv) generate a pre-
diction model based on the side-channel for future attacks.
Detailed descriptions of the side-channel discovery phase will
be described in §IV.

To carry out the online attack on user’s device, the attacker
runs the malware program alongside the victim application,
and performs the flush+reload cache side-channel attack on the
vulnerable cache lines. The attacker then uses the prediction
model to compute the most likely input from the victim.
Finally, the attacker could combine the result with other
information (such as a password dictionary) to improve the
accuracy. We discuss the details of the design and implemen-
tation of the online attack in §V and §VI.

IV. SIDE-CHANNEL DISCOVERY

A. Overview

As discussed in §III-C, in the profiling phase, our goal is
to find a pair of cache lines (x, y) (derived from instruction
addresses) in the shared graphic libraries as targets for our
flush+reload attack. Here we use the term “cache line” as a
memory range in the shared library that occupies the same
cache line block in the CPU cache (e.g., 0x7f00-0x7f3f).
In order to make the attack effective, we need to find the
vulnerable cache lines (x, y) such that the time difference
between the first access of x to the first access of y (denoted
as dxy) “is dependent” on user input. If the attacker is able
to reliably measure dxy when users are inputting their PINs
or passwords using a cache side-channel attack, they can map
the measurements to the original input.

To increase the attack reliability, we need to reduce
measurement noise. Measurement noise can originate from
two different sources. First, the victim application’s behavior
combined with modern CPU cache features, (e.g. prefetcher)
could significantly decrease the effectiveness of a flush+reload
attack, which we refer to as application noise. Second, the
background processes sharing the same libraries could also
introduce noise to the flush+reload attack, which we refer as
system noise. In side-channel discovery phase, an attacker tries
to identify the cache lines least affected by these noises.

Algorithm 1 Feature Extraction and Selection
Input T : Set of traces that are related to user input event.

Output X =
[

(IGxy, Gx, Gy)
]

: Pairs of cache lines for flush+reload attack,

ordered by information gain

1: Result← ∅
2: G← groupGenerate(T)
3: for all Gx, Gy ∈ G do

4: Compute dxy , lx, ly
5: if dxy > dthreshold & lx < lthreshold & ly < lthreshold then

6: if standard deviation({dxy}) ≥ stdthreshold then

7: IGxy ← Compute information gain of (Gx, Gy)
8: Add (IGxy, Gx, Gy)) to Result

9: end if

10: end if

11: end for

Figure 2 captures the process we follow to find the vul-
nerable cache-line pairs that are suitable for attack. Below, we
describe the sequence of steps needed.

1. Vulnerable Cache Line Identification

• The attacker runs the victim application multiple times with
different user inputs and collects the program traces for
graphics libraries used by the application.

• The attacker uses a feature extraction algorithm to identify
potentially vulnerable cache lines from libraries that are least
affected by the application noise. See §IV-B for more details.

2. Attack Simulation

• For each pair of cache lines (x, y) identified, the attacker
runs a simulated offline attack and collects the measurement
times.

• The attacker builds a key-press prediction model using the
collected measurement times (see §IV-C).

• If the performance of the prediction model is not better than
a random guess (e.g., < 20% for numeric characters 0-9),
the attacker selects another pair {x, y} and starts over until
all the selected cache line pairs are tested. The attacker
then picks the cache line pairs with the best performance
results. This assures that the chosen cache line pairs are
least affected by system noise. See §IV-C for more details.

B. Vulnerable Cache Line Identification

We instrument the victim program and collect the program
execution traces with regard to its “cache line accesses” under
different user inputs. The cache line trace is a representation
of a sequence of instructions being accessed and loaded into
CPU instruction by the victim application. For example, on a
machine with 64-byte cache lines, if a program executes in-
structions sequentially from addresses from 0x8020 to 0x80b0,
the CPU will load cache lines 0x8000-0x803f, 0x8040-0x807f
and 0x8080-0x80bf into the instruction cache. Given a cache
line trace, we can easily compute dxy for every possible
combination of cache lines x and y.

Next, we design an algorithm to find a pair of cache lines
(x, y) such that the distance between the appearances of x
and y (denoted as dxy) in the trace varies deterministically
based on the user’s input, thereby providing a potential side-
channel. A graphics rendering operation might contain multiple
side-channels, meaning that we might be able to find multiple
pairs of (x, y). However, not all of these pairs can be used in a
practical flush+reload attack to collect accurate measurements
because of the following types of application noise.
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(a) Successful attack scenario.

𝒙
𝒚

Victim Execution

𝒍𝒙

𝒍𝒚
𝒅𝒙𝒚

Attacker Measurement

Cache Hit 𝒚
𝒕𝒙𝒚

𝒕𝒚

𝒕𝒙
𝒛 𝒙

𝒚

Victim Execution

𝒍𝒙

𝒍𝒚
𝒅𝒙𝒚

Attacker Measurement

Cache Hit 𝒙
𝒕𝒙𝒚

𝒕𝒚

𝒕𝒙

𝒛
𝒙′

Cache Hit 𝒚

Cache Hit 𝒙 𝒙

𝒚

Victim Execution

𝒍𝒙

𝒍𝒚

𝒅𝒙𝒚

Attacker Measurement

𝒕𝒙𝒚
𝒕𝒚

𝒕𝒙
𝒛

Cache Miss 𝒙
Cache Hit 𝒙

Cache Hit 𝒚

16

(b) Prefetcher noise due to cache line x
′

prefetching x. Attacker falsely thinks x is
being executed by the victim.
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(c) Measurement noise due to lx too large
while flush+reload miss a signal. Attacker’s
measurement tx is more likely to be inaccu-
rate.

Fig. 3: Attack scenario illustration. Victim executes x, z, y sequentially while execution time of z varies depend on user input.

• Prefetcher Noise (Figure 3(b)). The cache lines x and y
might be prefetched by the prefetcher, when other memory
blocks with slightly lower addresses are being fetched. As a
result, we might get false hits with the flush+reload attack.

• Measurement Noise (Figure 3(c). x and y may be accessed
by the victim application (or prefetched) multiple times
during the rendering operation. There are chances that we
might miss the first access of x or y (due to a cache line
being evicted by victim or background processes before the
attacker can reload it) and capture a later access. This will
result in an inaccurate measurement with regards to the time
interval between x and y.

• Prediction Noise. The flush+reload attack has a limited
resolution. Therefore, dxy must be large enough to be
captured by flush+reload attack. For good prediction, dxy
should significantly differ across different user inputs while
being consistent with the same input.

Figure 3(a) depicts an example of a victim application’s
execution trace and one possible attack scenario. In this
scenario, the victim application executes code fragments in
cache lines x, z, and y sequentially. The execution time of z
varies depending on user input, thus creating a side-channel.
The execution time of x and y are constant. Therefore, attacker
can monitor the time where x and y first appears in CPU cache
(flush+reload cache hit) as tx, ty respectively and measure
txy = ty − tx as a measurement of dxy to infer user input.

However, as depicted in Figure 3(b), if the victim accesses
cache line x′ before x and accessing x′ prefetches x into the
CPU cache, the attacker might get a cache hit on x while in fact
only the code in x′ are being executed. This creates prefetcher
noise that makes txy unable to measure dxy accurately.

Moreover, the “flush” operation of “flush+reload” attack
takes some time to complete. So there are chances (although
rare) that the victim or some other background process may
evict the cache line x or y before the attacker can “reload” the
cache line and capture the signal. As a result, the attacker could
possibly miss x where it is first loaded into the CPU cache
and successfully capture it later on, as depicted in Figure 3(c).
This creates a measurement noise whose level is determined

by the “lifespan” of x or y (denote as lx, ly). If lx and ly are
small, the attacker might miss the signals x or y completely
but when it does capture a signal, the signal is guaranteed to
be more accurate. On the other hand, if lx and ly are large,
the attacker has a better chance at capturing the signals and
measuring tx and ty , and yet the measured result could be very
inaccurate. We find that inaccurate measurements are more
detrimental to the attacker than missing measurements as the
attacker might unknowingly use them for both training and in
the actual attack. On the other hand, missing measurements can
be compensated by methods such as having the attack process
monitor multiple pairs of cache lines, as we will discuss in §V
and §VI. As a result, our feature extraction algorithm favors a
relatively small lx and ly .

In order to find a good pair (x, y) that achieves a good
accuracy given the above constraints, we design and implement
an algorithm to extract potential targets from program traces.
Algorithm 1 captures this logic which we discuss in the
subsequent paragraphs.

The first step in the algorithm is to find these cache line
accesses in the shared library that are least affected by the
CPU cache prefetcher (i.e. prefetcher noise). For this purpose,
we put the cache lines into a set of no-conflict groups G. We
ensure that accessing a cache line from one group will have no
prefetching effect on a different group. For example, according
to Intel’s optimization manual [5], the prefetcher can prefetch
up to 20 consecutive cache lines. Therefore, we ensure that
there is at least 20 ∗ cache line size byte gap between cache
lines of different groups.

With all groups G determined, we then compute dxy , lx
and ly for all pairs of groups Gx and Gy . We only select pairs
of groups (Gx, Gy) where the lifespans of both groups lx and
ly are below a threshold lthreshold. This ensures a minimum
measurement noise level as discussed earlier.

To reduce the prediction noise, we filter out group pairs
where dxy is no greater than threshold dthreshold, as these
are too small to be measurable given the limited resolution of
the flush+reload attack. We also need to ensure that the dxy
is sufficiently different for different inputs. For this, we first
use a coarse-grained filter by checking the standard deviation
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of dxy for different inputs. If it is less than a threshold, we
exclude the associated pair.

To further reduce the prediction noise and select the best
group pairs suitable for the flush+reload attack, we use “infor-
mation gain” as a metric for selection [26]. The information
gain captures the discriminatory value of a cache line pair
by quantifying “how much information the cache line pair
gives with respect to uniquely separating the users’ inputs”.
In particular, it is a computation of the reduction in entropy.
The cache line pairs that perfectly partition the user inputs
will have the highest information gain. Our approach ranks
the cache line pairs based on their information gain and selects
the top-ranked cache line pairs; those that do not add much
information will have a lower score and are removed.

Finally, the attacker will need to perform the flush+reload
attack on two specific cache lines viz., {x, y} instead of two
groups {Gx, Gy}. Therefore, we pick x and y to be the
first cache lines that appear in the trace, and belong to their
respective groups.

C. Attack Simulation

We now have a list of features (cache line pairs) that
are derived from the program trace. However, during the
real attack, there can still be unpredictable system noise.
Hence, the vulnerable cache lines identified in §IV-B might not
perform well during the real attack. Therefore, as mentioned
earlier in §IV-A, we need to run a simulated offline attack to
find the cache line pairs least affected by the system noise.

To perform the attack simulation on a cache line pair (x, y)
we create an attack process performing the flush+reload attack
on one of the CPU cores while running the victim application
on another core. Initially, the attack process continuously
monitors cache line x and awaits the victim’s activity. If the
attack process observes a cache hit on cache line x, it records
the time of the observation as tx and immediately switches to
monitoring cache line y. If the attacker successfully observes
a cache hit on cache line y within a timeout threshold, it
records the time of the observation as ty . If both tx and ty are
measured, it computes txy = ty−tx. Detailed implementations
of flush+reload will be described in §V-B and §VI-B.

Model Construction. We use the collected measurements to
build our key prediction model. We choose the Random Forest
[14] algorithm for our key prediction model as these classifiers
are robust to outliers, and resilient to irrelevant features [14].
We use sklearn [38] implementation of Random Forest with
100 estimators. The performance of the key prediction model
was evaluated with 10-fold cross validation [31]. We compute
the true positive rate TPR and the false positive rate FPR.
TPR refers to the ratio of the total number of correctly
identified instances to the total number of instances present in
the classification model; the FPR refers to the ratio of the total
number of negative instances incorrectly classified as a positive
instance to the total number of actual negative instances. A
model with a high TPR and a low FPR is considered good
for classification tasks. We measure the performance metrics
(of the machine learning model) using different cache-lines
pairs as features and select the cache-line pairs which result
in the highest TPR and a low FPR for the flush+reload attack.

Fig. 4: Partial graphical user interface of Onboard keyboard and the
highlighting effect during key-press.

TABLE I: Graphic library versions used in Onboard attack.

Library Version Description

libgtk-3 0.1800.9 Multi-platform toolkit for creating GUI.

libgdk-3 0.1800.9 A wrapper around the low-level functions provided

by the underlying windowing and graphics systems.

libcairo 2.11400.6 Provides primitives for two-dimensional drawing.

libpixman-1 0.33.6 A low-level software library for pixel manipulation.

libfreetype 6.16.0 Render text onto bitmaps, and provides support for

other font-related operation

In §V and §VI we describe the detailed implementations on
two different platforms (Linux and Android) and demonstrate
their effectiveness with real-world attacks.

V. ATTACK I: UBUNTU ON-SCREEN KEYBOARD

In this section, we demonstrate our attack on the default
on-screen keyboard (used in Ubuntu) to extract a user’s pass-
word. Such virtual keyboards are necessary in a touch screen
scenario. Even without the touch screen, it is recommended
that we use such virtual keyboards as a more secure alternative
for entering private credentials [11] because it is less prone
to various attacks such as keyloggers (e.g., [40], [51]). We
evaluate our attacks on a desktop machine with 3.40 GHz
Intel Core i7-4770 CPU, which has a 8MB L3 cache and
64 byte cache line size. The GPU on the machine is Nvidia
GeForce GT 635 and the main display has a resolution of
1920x1080 pixels. Table I lists the versions of several graphic-
related libraries. We study the “Onboard” input method editor
(IME) that comes with Ubuntu Desktop 16.04. Figure 4 shows
the graphical user interface of Onboard.

When a key is pressed by the user, a “highlight effect”
of the pressed key will be rendered on the keyboard. The
highlight effect includes (i) a color change of the border, (ii) a
fill of the key (iii) a color change with regards to the character
represented by the key. Since different characters are composed
of different numbers of pixels, we suspect that there are side-
channels within the highlight rendering process.

A. Side-Channel Discovery

For our offline trace collection, we use Intel PIN [9] to
perform binary instrumentation of the graphics libraries listed
in Table I (we identified them by checking the description of
the every library loaded in the Onboard keyboard process).
The instrumentation allows us to collect full-instruction traces
of the keyboard process during a user’s key press. We then
convert the instruction trace to the corresponding cache line
trace of the victim application. Such a trace is devoid of any
form of cache pollution. (e.g., from PIN, background process,
prefetcher, etc.). From the collected trace we find a very large
number of cache lines being accessed by multiple graphics
libraries. In libcairo.so alone we find 2591 cache lines,
which can create around 6.7 million cache line pairs.
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TABLE II: Top cache line pairs selected for Onboard IME attack

# Cache Line Library Function Name

1
0x75a40 libcairo.so cairo surface create scratch

0x69e40 libcairo.so cairo scaled font map lock

2
0x69e40 libcairo.so cairo scaled font map lock

0x41f40 libcairo.so cairo intern string

3
0x24440 libcairo.so cairo clip copy with translation

0xbe000 libcairo.so cairo ft unscaled font lock face

4
0x6b900 libcairo.so cairo path fixed approximate stroke extents

0x41700 libcairo.so intern string pluc

5
0x6a5c0 libcairo.so cairo scaled font thaw cache

0x41700 libcairo.so intern string pluc

We then run our feature selection algorithm on the collected
trace and attempt to discover side-channels. Using the proce-
dure discussed in §IV-A, we first put all cache lines into groups
to eliminate prefetcher noise. In the case of libcairo.so,
the cache lines form a total of 150 groups, which can create
22350 cache line pairs. The algorithm then filters pairs of
cache lines that are not suitable for our attack. The algo-
rithm left us 1488 cache line pairs, ranked by information
gain. Interestingly, we find that the majority of the identified
cache lines are located at the beginning of functions. This is
reasonable since the instructions of functions are organized
contiguously in the memory address space. Cache lines located
at the beginning of functions are much less likely to be affected
by the prefetcher and thus have a better chance of being
selected by our algorithm.

Interestingly, we find that out of the few graphics libraries
only libcairo.so produces good cache line pairs. Upon
closer inspection, it turns out that the measured execution
time between cache lines pairs from GDK and GTK libraries
are not consistent for the same key press. Cache lines cor-
responding to libfreetype.so are only accessed when a key is
first pressed during the lifespan of the Onboard process (we’ll
discuss exploitation of Freetype library in §VI). Cache lines
corresponding to libpixman.so are seldom accessed under the
default Linux X server graphics architecture and only play a
role under the Wayland architecture (an alternative to X server)
as will be discussed in §VIII).

From the cache lines identified in libcairo.so, we
further perform an offline simulation attack on the top 100
cache line pairs to filter out cache-line pairs that do not produce
good results. For each lower-case letter and number, we collect
50 measurements by having one attacker thread running in
the background monitoring the selected cache line pairs (as
discussed in §IV-C). Next, we build our prediction model with
Random Forest classifier on these measurements and evaluate
it with a 10-fold cross validation [31]. We select the cache-line
pairs and the prediction model with the highest true positive
rate. Table II shows the top 5 cache-line pairs that performs
best during attack simulation.

To understand the underlying cause of the input-dependent
execution time, we choose to inspect the source code of the
corresponding address pairs. According to Table II, cache
line pair #1 and #2 clearly corresponds to two separate side-
channels, one from 0x75a40 to 0x69e40 and another from
0x69e40 to 0x41f40. We find these two side-channels are both
part of function cairo_show_glyphs(). This function is
tasked with computing the rendering result of a given character
(glyph) and send the rendering command to Linux X server.

The function will first load the pre-computed font data (in
which the input character will be rendered) and compute a
scaled “pattern” matrix via a series of matrix transformations
and multiplications, amounting to the first discovered input-
dependent execution time (between 0x75a40 and 0x69e40).
This operation involves over 100,000 instructions and its
complexity depends on both the font used and the character to
be rendered. Next, before contacting X server to render text
on the screen, cairo_show_glyphs() will first render the
computed “pattern” matrix on its own cairo_surface_t

struct. This operation takes around 10,000 instructions to com-
plete and its complexity also depends on the input character,
thus creating the second side-channel (between 0x69e40 to
0x41f40). We find that cache line pair #4 and #5 also cover
the second side-channel while cache line pair #3 covers both
side-channels.

In theory, one cache-line pair is sufficient. In practice
though, due to measurement noises (and the possibility of
missing signals during flush+reload), we simultaneously mon-
itor two cache-line pairs for redundancy. We further use them
to train a new machine learning model for the actual attack.
Empirically, we observe that the addition of more features
(more cache line pairs) improves the prediction accuracy.
However, monitoring too many cache line pairs results in much
noisier measurements (as flush+reload itself as well as context
switches create noises). Ideally, for the best attack resolution,
an attacker thread should only monitor one cache line pair
on a CPU core. On our desktop machine, we find that the
measurement becomes noisy when we run the flush+reload
attack to monitor more than two cache-line pairs. We select
the top cache line pair #1 and #2 from Table II for our side-
channel attack. Luckily, we also find that when a user presses
a key on Onboard, there will be two rendering operations. The
first operation will render the highlighted key while the second
operation will reverse the highlight effect. Both operations will
generate a signal measurable using the selected cache line
pairs. Therefore, the attacker can capture 4 measurements for
a single key press.

B. Flush+reload Evaluation

We first evaluate the flush+reload attack in a controlled en-
vironment. We create a controlled victim process that accesses
a cache line x and collects the timestamp of the access as the
ground truth. Meanwhile, the attack process tries to capture the
time when x is accessed by the victim. To achieve this, the
attack process “loads” a memory address in the cache line x.
Then, the attacker thread executes the CLFLUSH instruction
on the address just read. We find that we need to introduce a
short delay after the CLFLUSH instruction and before the next
load operation in order to capture the signal reliably. Similar to
previous works [23], we use sched_yield() to introduce
this delay.

The more delay we introduce, the better the chance that the
flush+reload attack will be able to capture the signal. However,
a larger delay also means a longer time for each round of
flush+reload; this reduces our measurement resolution. Figure
5 demonstrates the effect of sched_yield(). In our attack,
we set the number of sched_yield() calls to 3, which is
the setup that can reliably capture the signal and maintain a
reasonable measurement resolution at the same time.
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Figure 6 presents the cumulative distribution function
(CDF) of the measurement error. We see that in 90% of the
experiments, the attacker is able to measure the execution time
of the target operation with an absolute error of less than 700
ns. Given that a single round of flush+reload takes around
500 ns, we conclude that our cross-process execution time
measurement is accurate.

C. Password Inference Attack

We then run our attack to infer a user password inputted
using the Onboard keyboard. We have two attacker threads
each monitoring the selected cache line pairs (in Table II)
respectively, while a user is inputting passwords. After the
attacker thread collects the measurement data during the user’s
input, we use the trained prediction model generated via the
offline simulation to predict the user passwords based on the
measurements.

For demonstration, we only consider lower-case letters and
numbers for the password field inputted using the Onboard
keyboard. We choose the list of most common passwords
as our dictionary [6]. This dataset contains 10,000 unique
passwords, with 9984 of them composed of lower-case letters
and numbers. Note that for all our attacks except for one
augmented with dictionary, we assume the attacker has no
knowledge of the passwords in the dataset.

1) Single Character Prediction Accuracy:
Single Login Attempt. First, we test our password prediction
capability when we capture a single login attempt from the
user (we might be able to observe multiple attempts over time).
For each character, we perform the attack multiple times and
test whether the attacker can correctly predict the character
within a certain number of guesses. Figure 7 demonstrates the
single-character prediction accuracy for numeric characters.
We observe that we can reach 90% accuracy in 10 guesses
for all numeric characters. Some characters (e.g., “2”) can be
predicted more accurately than characters like “0” and “4”;

this can be helpful in inferring PINs. However, predicting
lower-case letters are much more difficult. With 10 guesses we
can only reach 70% accuracy. Some characters such as “u”,
“v”, and “w” requires more than 30 guesses while characters
like “i”, “o”, and “y” can be predicted pretty accurately in
fewer guesses. When it comes to lower-case letters some of
them look similar and the measured time difference is often
overwhelmed by the noise. As we will show next, the limited
measurement resolution and noise are the main reasons why
the accuracy of observing a single login is not as high.

Repeated Login Attempts. A password is often reused or
repeatedly inputted by the user. As a result, an attacker
has the opportunity to obtain measurements of the user’s
repeated login attempts using the same password. This gives
the attack more potency i.e., by combining multiple mea-
surements together the attacker can make better predictions
(e.g., because the noise can be corrected). Suppose the user
inputs password p = b1b2...bn N times. At the jth instance,
suppose our prediction model generates confidence vectors
Cj,1, ..., Cj,2, Cj,n. We can then combine these guesses by
simply adding the prediction confidence values together. In
other words, we let Ccomb,k = ΣN

x=1Cx,k, k = 1, ..., n to be
the aggregated confidence vector of these measurements.

We study the per-character prediction accuracy when we
have 10 and 20 measurements of the same character, as shown
in Figure 8. We can see that more measurements leads to
higher prediction accuracy. With 10 measurements, all numeric
characters and most lower-case letters can be predicted with
100% accuracy within 4 guesses. Characters like “a”, “d” and
“v” are a little harder to predict than other characters, yet
the attacker can still predict them with 100% accuracy within
8 guesses. With 20 measurements, the prediction accuracy
is slightly improved over 10 measurements. 17 out of 36
characters can be predicted perfectly in the first guess.

2) Multi-Character Prediction Accuracy: To guess the en-
tire password correctly, we need every character to be guessed
correctly. This means that the total number of guesses is bound
by the prediction accuracy of the worst character. Specifically,
if the worst character takes k guesses to achieve a 100%
accuracy, then the total number of required guesses will be kn

where n is the number of characters in the password. This is
because we cannot know a priori which character is the worst
during guessing and will have to exhaust all possibilities.

In the best case when the attacker can observe 20 login
attempts, the number of needed guesses is then 5n, which
is a drastic improvement from the original 36n. Figure 9(a)
further illustrates our results. We observe that having multiple
measurements of the same password significantly improved our
password-guessing effectiveness. On average we need 1000
times fewer guesses to infer a password compared to the case
where we used a single input, and 1,000,000 times faster over
a random guess. Finally, 40% of the passwords are guessed
within 100 attempts.

Augmentation with Dictionary Attack. Password characters
are often non-independent events. To better utilize this de-
pendency between password characters, attackers often use
dictionary attacks to reduce the search space. Being able to
guess the password in fewer attempts is useful as an account
may be locked after a few failed login attempts. Our attack can
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TABLE III: Example dictionary-assisted password guessing attack for
password “hello”.

Input
Confidence Vector (Partial)

e h i j l o s y

h 0.0 0.39 0.0 0.23 0.0 0.0 0.0 0.03

e 0.21 0.0 0.0 0.0 0.0 0.0 0.0 0.03

l 0.0 0.0 0.05 0.0 0.37 0.0 0.07 0.0

l 0.0 0.0 0.05 0.0 0.37 0.0 0.07 0.06

o 0.0 0.0 0.0 0.0 0.0 0.15 0.0 0.0

Rank Dictionary Words Confidence Value

1 hello 0.39 + 0.21 + 0.37 + 0.37 + 0.15 = 1.49
2 jelly 0.23 + 0.21 + 0.37 + 0.37 + 0.0 = 1.18
3 hills 0.39 + 0.0 + 0.37 + 0.37 + 0.0 = 1.13
4 holly 0.39 + 0.0 + 0.37 + 0.37 + 0.0 = 1.13

work very well in conjunction with dictionary attacks to boost
its effectiveness. Let p = b1b2...bn be the target password
and C1, ..., Cn be the prediction confidence vectors (single-
input or combined). Let conf(a, C) be the confidence value
of character a in confidence vector C.

For each n-character password w = w1...wn from the
dictionary, we can compute the confidence cw of w being the
correct password, to be cw = Σn

i=1conf(wi, Ci). We then rank
all possible n-character passwords based on the confidence
values cws, and try them in order. If the correct guess has the
kth-highest confidence score, we will need k guesses.

Table III shows an example of dictionary attack. When
user inputs password “hello”, the attacker would be able to
obtain five different measurements each corresponding to one
character in the password. The attacker will then use the
prediction model to generate five confidence vectors C1, ..., C5,
where each character in the password alphabet is given a
confidence value. Next, the attacker look up all the passwords
in the dictionary with a length of 5 and compute its confidence
value. The attacker finally ranks all the 5-character passwords
based on their confidence values and proceeds to use them
as guesses in order. In this example, “hello” has the highest
confidence compared to the other 5-length passwords in the
dictionary. As a result, the attacker can guess “hello” in
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password dictionary.

Fig. 9: Onboard IME: The cumulative distribution function for the
number of guesses needed to infer passwords.

the first attempt. Our algorithm ranks the guesses based on
confidence relating to each character. Note that we use the
sum of individual confidences instead of product as we do not
want to penalize a guess for one poorly predicted character. For
example, in Table III, suppose the correct password is “jelly”.
Multiplying the confidences will result in a low rank of the
word “jelly” for merely a poorly predicted “y”.

We compare our password guessing approach with ran-
dom brute-force guessing with dictionary. With the random
approach, the attacker needs to look up all the passwords in
the dictionary and guess them in random order. Therefore, the
number of guesses required with the random approach is a
random number between 1 and the total number of passwords
in the dictionary (10,000 in our case).

Figure 9(b) demonstrates the result. With one input of
the password, our approach can guess 50% of the passwords
correctly in the first attempt and 80% the passwords within 10
guesses. On the other hand random guesses can hardly crack
anything within 10 guesses. If attacker can measure 10 login
attempts, 95% of the passwords can be cracked in the first
guesses. We do acknowledge that this result is dependent on
the size of dictionary we are considering.
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TABLE IV: Cache line pairs selected for CapitalOne attack

# Cache Line Library Function Name

1
0x176a80 libskia.so SkScalerContext FreeType Base

::generateGlyphImage

0xef440 libskia.so SkMask::getAddr

2
0x109e40 libskia.so SkGlyph::computeImageSize

0xca8c0 libskia.so SkAAClipBlitter:: SkAAClipBlitter

VI. ATTACK II: ANDROID APPLICATION

In this section, we demonstrate our attack on two Android
applications to extract a user’s password and PIN, respectively.
For this demonstration, we use a Nexus 6P running Android
8.0, as the victim’s device. The victim apps are the CapitalOne
banking and the Reliance Global Call [7] (an app similar to the
Skype) app. With both apps, every time the app opens, it will
require a user to input his/her username and password/pin. For
security reasons, the exact password and pin are not normally
rendered on the screen and often replaced with stars or dots.
However, to prevent input errors, Android, by default, makes
any input character visible for one second before masking it.

A. Side-Channel Discovery

For offline trace collection, we instrument the graphics
libraries (e.g. libskia.so, libfreetype.so, etc.) from
Android AOSP source code, recompiled these libraries and
loaded them on to the victim device. The instrumentation
targets various functions and records the timestamp each time
an instrumented function is called. The instrumentation will
introduce a small overhead but it does not thwart the feature
selection algorithm.

We run our feature selection algorithm on the collected
traces and identify top function pairs suitable for attack. We
then translate the function names to cache line addresses and
perform the offline simulation attack to filter out cache-line
pairs that do not produce good results. Normally, the shared
library is stripped and thus, not all function names to cache
line translations will be straightforward. However, we find
that graphics libraries such as libskia.so contain enough
symbols for us to translate most of the selected functions.
Similar to Onboard attack, we then select the top two cache-
line pairs for our attack. Table IV shows the two cache-line
pairs and the corresponding functions.

Upon analyzing the function calls made between the iden-
tified cache lines, as well as the source code of related graphics
libraries, we find that the cache lines actually measure an
exploitable side-channel in the font translation process from
the standard Android Freetype library. Font translation is long
in duration and happens whenever an application attempts to
render any text (e.g., characters) for the first time. It works by
translating the character representation into the graphical rep-
resentation (glyphs). In Freetype library this is accomplished
via FT_Outline_Decompose(). Depending on the font
and the input character, FT_Outline_Decompose() will
invoke a series of functions (such as gray_set_cell(),
gray_hline()) to compute the translation result [4]. Each
Android process keeps the translation result in its memory
space. Thus, the next time the same character with the same
font type and size is to be rendered, there is no need to execute
font translation again. As a result, the attacker can only capture

the first appearance of each character using the this side-
channel. However, many sensitive applications, CapitalOne
and Reliance Global Call included, require the user’s login
information upon start. At this point, the font translation has
not been performed for most characters (especially the font
type and size in the password box), leaving a window for
attacker to extract sensitive information.

It is worth mentioning that the software keyboard app
similar to those on Linux, is also an excellent target for this
attack. However, the software keyboard is maintained in a
dedicated long-running process and the font translation results
are cached throughout the lifetime of the process. This means
that most of the characters should have been translated by the
time the attack is launched.

Note that there are also side-channels discovered on An-
droid that get exercised every time when a key is pressed
(regardless of whether it is a pressed for the first time).
Unfortunately due to the limited measurement resolution on
ARM, those are not practically exploitable.

B. Evict+reload Implementation

The ARM architecture poses several technical challenges.
First of all, the ARM architecture does not include a
CLFLUSH instruction. As a result, we cannot perform a
flush+reload attack. Fortunately, we can still perform the
evict+reload attack by creating a set of memory blocks (evic-
tion set) that can evict the target cache line. Our implementa-
tion is similar to Gruss et.al.’s implementation [33].

Eviction is slower than the CLFLUSH instruction. On the
LG Nexus 5X, each round of evict+reload takes 10µs to 13µs,
while on our x86 desktop machine each round of flush+reload
takes only around 0.5µs. As a result, the attack resolution of
evict+reload is lower than that of flush+reload. This means that
our attack will be less effective for faster graphic operations
such as text rendering. The font translation process takes a
long time to compute and thus, the evict+reload attack is able
to exploit the timing side-channel associated with it.

The evict+reload attack is easier to implement when the
attack process can read its page table and know the physical
address of each memory block in the eviction set. However,
later Android versions no longer grant user process read
access to its page table. Still, Oren et.al., [35] demonstrated
that evict+reload can still be performed without an attacker
knowing the virtual-to-physical address mapping.

Another challenge in realizing the evict+reload attack on
ARM is that many ARM CPUs do not have an instruction-
inclusive shared L2 cache. In addition, Green et.al. [20]
have shown that there are other features in the ARM CPU
implementation that make an attack more difficult. Fortunately,
most ARM CPUs are cache coherent. When a process accesses
a cache line not currently cached in its own core, the CPU
will try to fetch it from other cores in case other processes
are accessing it. If successful, the resulting access will be
much faster than access from memory. This feature has been
exploited in recent works [33], [48] and we also rely on it.

However, the phones we tested (Nexus 5X and 6P) have an
additional challenge in that the attacker and victim cannot have
a shared L2 cache. Nexus 5X adopts big.LITTLE technology
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[8]. It has 2 Coretex-A57 “big” cores sharing a single unified
L2 cache and 4 Coretex-A53 “LITTLE” cores sharing 2 unified
L2 caches. It appears that only the cores among big and
LITTLE have the proper cache coherency protocol that can
be exploited, which requires the attacker and victim to be on
different classes of cores. Further, we find it interesting that the
eviction takes significantly more time on the big cores (likely
due to their cache replacement policy). As a result, we pin the
attack threads on the “LITTLE” cores while leaving the victim
on the “big” cores.

The net effect of this setup is that we are unable to evict
the victim’s L1 and L2 cache. As a result, when checking
for the victim accesses relating to the cache line targeted by
the evict+reload attack, the attacker will keep getting cache
hits for a short while even when the victim is not accessing it
anymore. Fortunately, our attack only focuses on capturing the
target cache line’s first appearance. As a result, the attack is not
affected by the lack of victim-core eviction. Since L1 and L2
have limited sizes, shortly after the victim finishes executing
the target function, the cache will be evicted by other functions
of the victim automatically.

C. Password and Pin Inference

Password Inference. We attack a user who is launching a
new CapitalOne application process and inputting a password
from the common password list [6] (the same 10,000 password
dataset as used in §V). During this process we have the attack
threads running in the background and collecting measure-
ments. Next, we use the trained prediction model to predict
the user’s key press based on the measurements collected.

In this attack, we measure the font translation time when
rendering a character on the screen. This process only happens
when the character is inputted for the first time (i.e., even if
a character is inputted multiple times, the attacker can only
perform its timing measurements when it is first inputted).
In addition, the CapitalOne app renders “Username” and
“Password” in respective input boxes on startup. Therefore, the
attacker will not be able to measure the font translation time for
characters “U”, “P”, “a”, “d”, “e”, “m”, “n”, “o”, “r”, “s” and
“w” (as they share the same font type and size with the actual
password). Interestingly, the attack can still be performed with
these restrictions. The attacker can easily use evict+reload
attack to monitor when a key-press is happening and combine
the result with the font translation timing measurement. If
the attacker observes a key press but does not get a timing
measurement, the attacker can infer that the inputted character
is either in the list of pre-rendered characters or something that
the user had previously inputted.

Table V shows an example attack scenario when “hello” is
inputted. The steps are as follows:

• User inputs “h”. “h” is not pre-rendered by the CapitalOne
app and the attacker will be able to get a measurement.
Suppose our prediction model guesses it as “0”.

• User inputs “e”, which is pre-rendered. The attacker will
detect a key press but will have no measurement of the font
translation time. The attacker will simply guess it as one of
the rendered characters (including the pre-rendered characters
and the inference made with regards to the first character i.e.,
“0”). Suppose we guess it as “e”.

TABLE V: Example password guessing attack for password “hello”.

Input Potential Guesses Guess Description

h 0,p,h 0 Predicted by model.

e a,d,e,m,n,o,r,s,w,0 e Pre-rendered or same as 1st character.

l l,1,7 l Predicted by model

l a,d,e,m,n,o,r,s,w,0,l 0 Pre-rendered or same as 1st/3rd char-

acter.

o 0,o o Cannot be “0” since its guessed as 1st

character.

• User inputs “l”, which is not pre-rendered. The attacker
will be able to get a measurement. Suppose we guess it as “l”.

• User inputs “l”, which is already rendered during the
previous keypress. The attacker will simply guess it as one of
the rendered characters (including all pre-rendered characters
and the guesses of the 1st and 3rd characters viz., “0” and “l”).
Suppose we guess it as “0”.

• User inputs “o”, which is not pre-rendered. Attacker will
be able to get a measurement and guess it to be either “0” or
“o”. However, since the belief is that “0” is already rendered,
it is inferred that this character can only be “o”.

Figure 10(a) shows the number of guesses required to
predict individual characters. We omit the pre-rendered char-
acters from this figure as the process of guessing them is
simply a random selection from a list of known pre-rendered
characters. We assume that the attacker can measure 10 login
attempts from the user. As we discussed in §V, having more
measurements improves the attacker’s accuracy drastically.
According to Figure 10(a), in general, the result is worse than
the Linux Onbard keyboard attack primarily due to the limited
measurement resolution of evict+reload. Still, most characters
can be predicted with 90% accuracy within 10 guesses. Some
characters such as “4”, “7”, “h”, “u”, “v” are harder to guess
accurately as they are often confused with other characters.
For example, “b” and “q” have a similar shape, thus their font
translation times are close to each other. It’s very difficult to
distinguish them. On the other hand, characters such as “1”,
“8”, “l” and “z” can be predicted very effectively due to their
rather unique shape and font translation time.

We compute the number of guesses needed to infer a
complete password using our attack model on the Capi-
talOne application, similar to the previously discussed Ubuntu
Onboard keyboard attack §V-C. We compare our password
inference capability with a random brute-force guessing in
Figure 11(a). We see that using our attack model, the number
of guesses needed to infer the password is 10,000 times less
than the number of guesses needed with random guessing.

We also compare our password guessing capability in
conjunction with a dictionary. As discussed in §V-C2, attackers
often use dictionary attacks to reduce the search space. We
present our results in Figure 11(b). When an attacker is able
to capture one login attempt of the password, our approach
can infer 30% of the passwords in the first guess and 70% the
passwords within 10 guesses. With 10 login attempts captured,
our approach can guess 60% of the passwords in the first guess
and 90% the passwords within 10 guesses.

PIN Inference. In this section, we exploit the login process
of the Reliance Global Call application [10] (a very popular
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Fig. 10: Android: Number of guesses need to infer each character correctly.
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Fig. 11: Android: The cumulative distribution function for the number
of guesses needed to infer passwords.

VoIP app), with a similar PIN input box and graphics libraries.
Reliance asks users to enter a PIN every time the app opens.
We generate random PINs of length 4 and 6 for us to infer.

Similar to the password inference attack, we measure the
font translation time when rendering a digit on the screen using
the same cache line pairs listed in Table IV. We assume that the
attacker is able to capture the user inputting the PINs multiple
times. These measurements are then fed to the prediction
model generated in the offline simulation.

Figure 10(b) shows the number of guesses required to guess
an individual digit with 100% accuracy. We observe that with
20 user logins, 4 of the digits can be inferred in one attempt
and 8 of the digits can be inferred within 2 attempts with
100% accuracy. We next use our prediction model to guess the
entire PIN of 4-digit and 6-digit lengths. From Figure 12(a)
we see about 20% of the 4-digit PINs can be cracked in a
single attempt, and 55% of the 4-digit PINs can be cracked in
20 attempts or less. From Figure 12(b) we notice that more
than 50% of the 6-digit PINs can be inferred in less than 80
attempts. The overall attack success rates in both cases are
five to six orders of magnitude better than the random brute-
force attack. Consistent with previous results, we observe that
the prediction rate improves as the number of observed login
attempts increases.

D. Attacking Built-in Keyboards

To improve security, some banking apps have built-in
keyboards for entering passwords/PINs. The goal of this design
is to prevent malicious keyboard applications from recording
user’s input. Ironically, these keyboards are more vulnerable
to our font-translation attack for the following reasons: 1) The
banking app is not a long-running processes like a regular
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Fig. 12: Android: The cumulative distribution function for the number
of guesses needed to infer the PINs of different lengths.

keyboard app. This means every time it launches anew, font
translation need to be redone. 2) The keyboard often have a
unique font type and size. There is no pre-rendered characters.

We perform our attack on CITIC mobile banking app [1],
a popular banking app that has over 8 million downloads. The
app uses its built-in keyboard for password entering. When-
ever a key is pressed, a pop-up echo containing a enlarged
version of the pressed key will be rendered. The password
input box, however, will not render inputted character. The
rendering procedure is different from CapitalOne and Reliance.
Therefore, we perform side-channel discovery as previously
discussed and selected the following pairs of functions: 1)
SkScalerContext_FreeType_Base::generateGl-

yphImage (libskia.so) and GpuPixelBuffer::map

(libhwui.so); 2) gray_set_cell (libft2.so) and
FontRenderer::cacheBitmap (libhwui.so).

Similar to our CapitalOne attack, we assume that the
attacker can measure 10 login attempts from the user. The
measurements we obtain from CITIC however, are noisier than
the CapitalOne. So we evaluated our key prediction model
with Random Forest and Boosting [19] algorithms. Boosting
outperforms Random Forest for CITIC app and we selected it
to build a key-prediction model. Boosting is a machine learning
ensemble algorithm that convert weak learners (high bias, low
variance) to strong ones and is resistant to overfitting [19].

Figure 13 shows the character guessing accuracy for our at-
tack on CITIC app. Comparing with Figure 10(a), we first find
our attack on CITIC can capture all 26 lower-case characters.
There’s no pre-rendered characters like CapitalOne because
the CITIC keyboard uses a unique font. Additionally, We find
that the prediction accuracy for CITIC attack is better than
CapitalOne attack, where the majority of the characters can be
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Fig. 13: CITIC mobile banking: Number of guesses needed to infer an input character correctly.

predicted with 90% accuracy within 4 guesses. This because
the rendered echo in CITIC keyboard is much larger than the
text echo displayed in CapitalOne password input box, making
evict+reload more effective in capturing the stronger signal.

VII. RELATED WORK

There has been an abundance of existing work on CPU
cache side-channel attacks, most of which target encryption
keys. For example, Tromer et al. [42] and Osvik et al. [36]
demonstrate how the prime+probe attack could be used to
break AES by locating memory accesses in the AES lookup
table. Zhang et al., [50] [49] show that prime+probe attacks can
even cross VM boundaries and perform cross-tenant attacks
on PaaS (Platform as a service) clouds. In our work, we
use the flush+reload attack, which was first introduced by
Yuval et al. [47]. In their work, the authors demonstrate
that the flush+reload attack can be used to attack encryption
applications such as GnuPG. Gulmezoglu et al., [25] design
and showcase an improved flush+reload attack on AES.

A closely related work by Gruss et al. [23] proposes a
cache template attack which aims to discover input-dependent
cache line accesses automatically in shared libraries. This
methodology does not leverage unique characteristics of graph-
ics libraries and therefore misses the opportunity to measure
input-dependent execution time. Interestingly, we attempt to
repeat the same experiment against the GDK library (also a
graphics library) and are longer able to find input-dependent
cache line accesses. Our attack differs in that we do not focus
on unique memory accesses; instead, we rely on the difference
in execution times to infer user inputs. Furthermore, we
demonstrate that given a conducive application, we can achieve
much better accuracy. On average we reduce the entropy per
character for a random password from log2(36) = 5.16 to
(log2(10) = 3.32 – log23 = 1.58), while Gruss et al. only
reduce the entropy from log2(26) = 4.7 to log2(16) = 4.

We perform our attack on ARM CPUs with an instruction
non-inclusive last-level cache. This has been shown to be a
minor hurdle for cache side-channel attacks. There have been
solutions for both ARM and x86 that primarily leverage the
cache coherency protocol among different last-level caches.
For example, it was recently shown that the latest non-
inclusive last-level cache employed by x86 CPUs can also be
attacked [46]. Several researchers demonstrate the possibility
of performing cache side-channel attacks on ARM. Zhang et
al., [48] design and implement a return-oriented flush+reload
attack on ARM. Both works utilize the cache coherency
policy to monitor victim applications’ instruction cache access
and we adopted a similar methodology. Gruss et al., [33]
perform a systematic study on cache side-channel attacks on

the ARM architecture, discussing both the prime+probe and
the flush+reload attacks. Our work builds on similar ideas. We
had to also deal with the fact that there is no shared L2 cache
between the attacker and victim.

In addition to the prime+probe and the flush+reload attacks,
researchers also explore other potential side-channel attacks
related to the CPU cache. Gruss et al., [22] propose the
flush+flush attack, which utilizes the timing side-channel of
CLFLUSH instruction under different cache states. Unfortu-
nately, on our machine this attack did not work as reliably as
the flush+reload attack. In addition, they also discover a timing
side-channel on prefetch instructions [21] and utilize this
side-channel to perform address translation towards breaking
ASLR. Lee et al., [32] and Wang et al., [45] show that branch
predictors also contain side-channels that can be used to attack
secure systems such as SGX.

There are studies on the automated discovery of cache
side-channels. For example, Gorka et al., [28] utilize dynamic
taint analysis to locate cache side-channels in crypto libraries.
Wang et al., [44] model the cache behavior and use symbolic
execution in conjunction with their model to discover crypto-
related vulnerabilities. These approaches discover only the
presence and absence of a unique cache line access to decide
if any side-channel is present. Here, we investigate a unique
execution-time-based side-channel in shared libraries. Further,
we not only automatically discover such side-channels but also
generate and evaluate the exploit automatically.

There are other orthogonal research studies exploiting
different types of side-channels (e.g., keystroke sounds [12],
[27], [51]; electromagnetic waves [43]; vibrations [34] etc.).
All these side-channel attacks need physical proximity to the
target device. Researchers have also introduced new types of
attacks to guess sensitive user input using motion sensors [17],
[37] on smartphones or inter-keystroke timings [40]. However,
the success of such attacks is dependent on individual users’
typing habits. Unlike these attacks, our attack does not need
access to a physical device nor is dependent on user behav-
ior. Additionally, defenses mitigating inter-keystroke timing
attacks [39] cannot prevent our attack.

VIII. DISCUSSION AND FUTURE WORK

Measurement challenges: Our attack is sensitive to measure-
ment resolution and noise. For example, we found that with
the Linux Wayland architecture, there is a side-channel in
libpixman.so when it renders text for applications such as
Gedit, the Gnome Terminal. We also find that libskia.so
can perform text rendering pixel-by-pixel for Android appli-
cations (in addition to the font translation that is triggered
only for the first time a key is rendered within the same
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process). However, out measurement resolution is too low to
perform a reliable attack on these operations. One interesting
observation we had is that the larger the font size, the more
time it takes for rendering. We will explore other opportunities
where the measurement resolution is sufficient (e.g., larger
fonts are used). Another direction is to integrate this attack
with scheduler-based attacks [24], [29], [50] to slow down the
victim process which in turn allows the measurement to be
more precise. Finally, is is worth noting that most previous
attacks against crypto libraries assume a large number of
observations [50] (as the encryption can be triggered by the
attacker) which makes their attack much easier compared to
ours (from the measurement challenge perspective).

Capital letters and special characters: In reality, many
passwords must include capital letters and special characters.
Adding these characters directly to our prediction model
would no doubt introduce confusion and reduce accuracy.
Fortunately, often times these characters can only be entered
by pressing special keys (e.g. shift, ?123) or perform special
actions (e.g. long-presses). These operations will change the
keyboard status (e.g. switch to special characters keyboard)
and generate unique signals (e.g. redraw the keyboard) that can
potentially be detected by the attacker. Therefore, attacker can
train different prediction models for capital letters and special
characters. Upon detecting a keyboard status change, attacker
can then switch to the corresponding prediction model.

Mitigations: There are several steps one could take to help
mitigate the side-channel attack that we discover. Since the
attack relies on the flush+reload attack, disabling user access to
the CLFLUSH instruction and high resolution timers will make
the attack much more difficult. Although the attacker could
still evict a cache line by accessing a set of memory blocks,
it will be much slower and result in an attack with much
lower resolution. Since performance is critical to our attack,
this is likely to reduce the accuracy significantly. Disabling
the high-resolution timer will also affect our attack. However,
the attacker could choose to implement its own timer [33] and
perform the attack as described.

A general solution to timing side-channels is to make the
rendering constant time irrespective of the input at the cost
of rendering performance. Nevertheless, even if one decides
to implement this mitigation, one will need to overcome the
challenge of locating the input-dependent subroutines. Here,
our profiling model can significantly help in identifying these
locations and thus can be useful for defense as well.

Finally, to prevent attacks on applications such as Capi-
talOne, a user can turn off the “Make password visible” option
(which is on by-default) under the Android settings. This
makes password inputting less convenient but prevents any
text rendering operation for passwords. In addition, application
developers can choose to forcibly pre-render all characters
with the same font as the password, thus eliminating the font
translation process during user’s password input.

Extensions: In this paper, we focus on using our attack to
discover side-channels in graphic libraries. In principle, our
attack on input-dependent execution times could find previ-
ously unknown side-channels in all kinds of shared libraries.
As a future work, we will consider extending our attack beyond

graphic libraries such as crypto and audio processing libraries,
hardware drivers, etc. In addition, currently we are mainly
studying applications on Linux and Android. We can also port
our attack to other platforms such as Windows and MacOS.

Additionally, its worth noting our attack implicitly obtains
the inter-keystroke timing for free via flush+reload. This allows
us to combine our attack with existing inter-keystroke timing
attacks [40] to further improve its effectiveness, which we will
consider in future studies.

Finally, we currently only use our intuition to exploit a
general type of feature - measuring the execution time between
two addresses. There might exist other type of features (e.g.
execution order, time series of multiple addresses, etc.) in the
program execution trace that could potentially be identified
using more sophisticated techniques such as deep learning.
This is another interesting direction for future studies.

IX. CONCLUSIONS

In this paper, we discover a previously unknown type of po-
tent side-channel that allows an attacker to use the flush+reload
attack to perform cross-process timing measurements on sen-
sitive functionalities inside shared graphic libraries. The attack
facilitates the inference of a user’s keystrokes when the typed
keys are rendered on the screen. The attack hinges on utilizing
machine learning techniques to discover execution-time based
side-channels inside graphic libraries. We have completely
automated the discovery of such side-channels and even the
generation of exploits. We validate that our attack is viable on
real-world applications on multiple platforms and demonstrate
its high accuracy in predicting user input in practice, which
affects a large user population of the considered applications.
Finally, we suggest ways to mitigate this exploit.
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