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Unweighted regression models perform
better than weighted regression techniques
for respondent-driven sampling data:
results from a simulation study
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Abstract

Background: It is unclear whether weighted or unweighted regression is preferred in the analysis of data derived

from respondent driven sampling. Our objective was to evaluate the validity of various regression models, with and

without weights and with various controls for clustering in the estimation of the risk of group membership from

data collected using respondent-driven sampling (RDS).

Methods: Twelve networked populations, with varying levels of homophily and prevalence, based on a known

distribution of a continuous predictor were simulated using 1000 RDS samples from each population. Weighted

and unweighted binomial and Poisson general linear models, with and without various clustering controls and

standard error adjustments were modelled for each sample and evaluated with respect to validity, bias and

coverage rate. Population prevalence was also estimated.

Results: In the regression analysis, the unweighted log-link (Poisson) models maintained the nominal type-I error

rate across all populations. Bias was substantial and type-I error rates unacceptably high for weighted binomial

regression. Coverage rates for the estimation of prevalence were highest using RDS-weighted logistic regression,

except at low prevalence (10%) where unweighted models are recommended.

Conclusions: Caution is warranted when undertaking regression analysis of RDS data. Even when reported degree

is accurate, low reported degree can unduly influence regression estimates. Unweighted Poisson regression is

therefore recommended.

Background
Respondent-driven sampling (RDS) was developed by

Heckathorn [1] as an improvement on snowball-type

sampling for measuring disease prevalence in ‘hidden’

populations, that is, those that are difficult to reach

because they lack a sampling frame. Groups commonly

studied with RDS include men who have sex with men,

sex workers and drug users [2–4]. The intricacies of

RDS are described elsewhere [1, 5–7] so we provide only

a brief outline here. Researchers recruit an initial group

from the target population, called ‘seeds’. Each seed is

tasked with recruiting members from their personal

network who are also members of the target population;

these recruited participants then become recruiters

themselves and sampling continues until a pre-specified

condition is met, typically when the target sample size is

reached. Usually, participants are incentivized to partici-

pant in the recruitment chains by receiving payment

both for participating and for recruiting others into the

study. Recruitment is tracked using coupons so that

participants can be traced along the recruitment chains.

Participants are also asked about the size of their

personal networks with respect to the population of

interest. For example, in a study of HIV prevalence

among injection drug users in a city, participants may be

asked: “How many other people who inject drugs in [city]

do you spend time with?”. The resulting RDS data differs
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in two important aspects from data obtained through sim-

ple random samples. First, sampling is not random, some

participants are more likely to be selected than others and

this likelihood is a function of how well-connected they

are. Second, the observations are not independent as the

data may be clustered within recruiters or seeds.

Clustering occurs if there is homophily in the popula-

tion; if people are more likely to be connected to others

with a shared trait; although it can also refer to network

communities as outlined by Rocha et al. [8]. In this

paper, we consider clustering within a single community

and therefore driven by homophily. Heckathorn showed

that, if the recruitment chains are long enough, under

certain (reasonable) assumptions the RDS-derived data

can be analysed in such a way as to produce asymptotic-

ally unbiased population estimates of disease prevalence

[7]. The utility of RDS-specific prevalence estimates has

been studied using simulation by Spiller et al. [9] and

Baraff, McCormick and Raftery [10] who examined the

variability of RDS prevalence estimates and recom-

mended RDS-specific techniques instead of naive sample

prevalence estimates. However, McCreesh et al. [11]

cautioned that in estimates of prevalence, RDS-adjusted

techniques often produced confidence intervals that

excluded the population value. Until recently, the focus

of most studies using RDS has been to quantify disease

prevalence, but as RDS becomes more popular, regres-

sion analyses of these data are also becoming common.

Although regression analysis of RDS data is frequently

undertaken, the best method for accommodating correl-

ation between participants (clustering) and the non-

random sampling of recruits remains unknown. Carballo-

Diéguez et al. [12] noted in 2011 that “the pace of devel-

opment of statistical analysis methods for RDS-collected

data has been slower than the explosion of implementa-

tion of RDS as a recruitment tool”. Several authors have

recently observed that regression techniques in particular

for RDS samples are not well established [4, 13, 14]. Yet

their use continues to increase; a search of PubMed for

the terms ‘respondent driven sampling’ and ‘regression’

over the years 1997 to 2017 indicated that the first RDS

paper to use regression techniques was published in 2004,

by 2017 there were 59 papers. While many authors do not

specifically address the difficulties in performing regres-

sion on RDS data some acknowledge the limitations and

perform unadjusted analysis [4, 13]. Several authors used

weighted regression [14–18], which assumes that network

size is accurately reported and without further adjustment

still assumes independence between participants; or in-

cluded weights as covariates [17, 18]. At least one study

mitigated the influence of extreme responders to the net-

work question with the ‘pull-in’ feature of the RDSAT

software [19] which re-assigns extreme values to ones

more aligned with the sample [20]. Fewer authors have

attempted to control for clustering; Lima et al. attempted

to control for homophily (related to clustering) by incorp-

orating the outcome value of the recruiter as an independ-

ent variable [21] and Schwartz et al. used robust Poisson

regression ‘accounting for clustering’ of participants

within the same seed [13]. We found only one study

which used both weighted regression and controlled for

clustering; those authors used weighted regression and

modelled dependence among observations with two

methods and found similar results with both [22]. Treat-

ment of clustering is the thornier of the two statistical is-

sues with RDS regression, because clusters, if they exist,

may be difficult to identify. The main clustering unit may

be at the level of the seed, which would produce a few,

large clusters, or it may be approximated by an auto-

regressive structure in which participants are dependent

on their immediate recruiter, but largely independent of

those further up the recruitment chain. The covariance

structure proposed by Wilhelm [23] in which correlation

decreases with successive waves may provide a useful mid-

dle ground. Added to these conceptual questions are stat-

istical concerns with clustered data. Hubbard at al [24].

note that when generalised estimating equations (GEE)

are used, estimates can be inaccurate if the number of

clusters is small, so treating initial seeds as clustering units

can be problematic. Another study with mixed cluster

sizes found that failure to adjust for clustering would have

led to incorrect conclusions [25]. There are a multitude of

methods available to account for both unequal sampling

probabilities and clustering, but little work has been

undertaken to determine the most appropriate regression

methods for use with RDS data.

Motivating example

The Our Health Counts (OHC) Hamilton study was a

community-based participatory research project with the

aim of establishing a baseline health database for an urban

Indigenous population living in Ontario. Respondent-

driven sampling was appropriate for this population

because of the inter-connectedness of the population and

the lack of a suitable sampling frame. Based on census esti-

mates, the population is comprised of approximately 10,000

individuals, 500 of whom were sampled in the OHC study.

Commonly reported network sizes are 10, 20, 50 and 100,

the median network size was 20, with mean 46.5. The top

decile of participants reported network sizes in excess of

100 people. The distribution of reported network size for

the OHC Hamilton study is illustrated in the Add-

itional file 1: Figure S1.

The objective of this simulation study was to evaluate

the validity and accuracy of several regression models

for estimating the risk of a binary outcome from a con-

tinuous predictor from an RDS sample and specifically,
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to assess performance with varying levels of outcome

prevalence and homophily.

Methods
We conducted a simulation study in which networked

populations were created, 1000 samples were drawn

from these simulated populations using RDS and the

samples were analyzed to evaluate the performance of

various regression models. Our methods are explained

in detail below and a visual overview of the workflow is

shown in Fig. 1.

Data simulation

Population generation

Populations of 10,000 networked individuals were simu-

lated. Each individual was assigned four traits: a binary

trait indicating group membership (G1: Y=1 or G2: Y=0)

with probability of G1 = π, a continuous predictor

(Xpredict) such that Xpredict ∼N(2, 1) for G1 and Xpredict ∼

N(0, 1) for G2, a second continuous predictor, XNULL ∼

N(0, 1) for all individuals (to evaluate the type-I error

rate) and a network degree, di, specifying the number of

connections with other members of the population. The

proportion of the population in G1 (π), known as the

outcome prevalence henceforth, was varied at 10, 30 and

50%; this would normally refer to disease prevalence in

RDS studies. Relative activity (ω), the ratio of the average

reported network size in G2 relative to G1, was fixed at

1 for all populations. Population homophily (Hx), the

proportion of within group to between group links in

the population, was defined as follows:

Hx ¼ 2π 1−πð Þ
T ii

T ij

þ 1

� �

where Tii and Tij are the number of within group and

Fig. 1 Illustration of study workflow
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between group ties, respectively. Homophily was varied

at 1.0, 1.1, 1.25 and 1.5. Each level of homophily was

crossed with each level of population prevalence to

produce 12 simulated networked populations consistent

with the range of outcomes and homophily levels that

were observed in the OHC Hamilton study.

Network degree was drawn from the distributions

shown in the Additional file 2: Figure S2, which is

comprised of a series of binomial distributions designed

to mimic the modes reported in the OHC Hamilton

study. The generating distribution for this simulation

study had similar properties to the OHC Hamilton

sample, with overall median degree 20 and mean degree

47.5. However, in the OHC data degrees were often

reported as multiples of 5, 10 or 100, which did not

occur in our simulated samples due to the exact know-

ledge of degrees from the simulated populations.

Secondary populations

As a secondary analysis to determine if a correlation be-

tween network degree and outcome affected our results

we simulated eight additional populations. Outcome

prevalence was fixed at 10%, homophily was varied at

1.25 and 1.5. Four different levels of outcome-degree

correlation were modelled: 1. Extreme positive correl-

ation, where the members of G1 were assigned the high-

est network degrees. 2. Moderate positive correlation,

where, beginning with the top decile of network size

50% more individual were assigned to G1 than would be

expected, and this process was repeated with successive

deciles until 10% of the population had been assigned to

G1. 3. Moderate negative correlation, as with #2 but

assignment to G1 began with the lowest degree decile. 4.

Extreme negative correlation, as with #1, but assignment

to G1 was allocated to subjects with the lowest network

degree.

RDS sampling

From each population, 1000 RDS samples were drawn as

follows. Ten seeds were randomly drawn. Non-response

was set to 50% in each group, to mimic real world

conditions and to extend the recruitment chains. Three

coupons were ‘given’ to each respondent and sampling

continued, wave by wave, until the desired sample size

of 500 was reached. Although sampling with replace-

ment is an assumption of the random-walk model on

which RDS methods are based [5] repeat recruitment

was not allowed in this study, as is the case in real-world

applications. Figure 2 is a graph of a single RDS sample

from a population with π =10% and Hx = 1.5; members

of G1 are shown as blue dots, seeds are shown as red

dots.

Data simulation was performed by modifying the

RDS Release [23] code in the R statistical language

[26]; the networked populations and samples are avail-

able on github.

Data analysis

Population parameters

Odds ratio and relative risk of membership in G1, for

each unit increase in the random variable (Xpredict), were

calculated for each population using generalized linear

models with binary and logistic links respectively. For

calculation of the population parameters there is no

need to adjust for clustering or unequal sampling prob-

ability so unadjusted analyses were performed using the

glm function in R [26]. To ensure that the RDS sampling

did indeed sample participants proportional to their

network degree we counted the number of RDS samples

each participant appeared in (their sampling frequency)

and looked at the correlation between sampling fre-

quency and network degree across all populations.

Model fitting

Three main approaches were used to model the simu-

lated sample data. Standard logistic regression models

(GLM), in which the log-odds of belong in G1 (vs G2) is

modelled as a linear function of the continuous pre-

dictor (X), were fit using both the surveylogistic function

in SAS [27] and the glm function in R [26]. Generalized

linear mixed models (GLMM) are an extension of GLM

in which correlation in the sample, caused by clustering

within seeds and recruiters can be modelled with ran-

dom effects. These models were fit using the glimmix

procedure in SAS and the glmer [28] and glmmPQL

[29] functions in R. Finally, generalized estimating equa-

tions (GEE) were modelled, using the geeglm function in

R [30] and the glimmix function in SAS. These models

are often referred to as population-average models be-

cause the fixed-effects estimates represent population

average across all values of the random effects, which are

not separately estimated, but described by an estimated

covariance matrix. To compensate for mis-specification of

the covariance structure, GEE estimates can be corrected

with variance adjustments. A more thorough explanation

of these different models is provided by Rao et al. [25].

In addition to binomial regression with logit link, a

subset of models was also fit using Poisson regression

with loglinear link. In the interest of parsimony, not

every possible model combination was explored, but

instead we focused on models reported in the literature

and models we thought may be useful; thus a total of 31

models were tested. A complete summary of each of the

models is included in the results. Unless otherwise speci-

fied, program defaults were used; ie glimmix procedures

used the default pseudo-likelihood residual based ‘RSPL’

method. Seeds were excluded from the analyses. Every

model was evaluated twice for each sample, once using
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XNULL to evaluate validity and once using Xpredict to

evaluate the coverage rate for the predictive continuous

variable. An explanation of model specifications follows.

Weighting

Unequal sampling probability is one of the main differ-

ences between RDS samples and simple random sam-

ples. In this simulation study we had the advantage of

knowing precisely the degree to which each participant

was connected to others in the population. Standard

weighted regression was undertaken using the Volz-

Heckathorn (RDS-II) weights [31] from the RDS package

[32]. These are inverse probability weights, based on the

reported network degree (assumed to be a proxy for the

sampling probability) and defined as:

wi ¼
1

di

PN
i¼1

1

di

N

where di is the reported network size.

Clustering

In RDS data participants are clustered within their immedi-

ate recruiter and within the recruitment chains, defined by

the original seeds. Several different approaches were used to

account for this clustering. For glm models, the outcome

status of each participant’s recruiter was included as a model

covariate, as per Lima et al. [21] (models 3–4, 26–27). For

the surveylogistic models fit in SAS (models 9, 10) the strata

and class commands were used to define observations

within recruiters within seeds. Several methods were used

for the GLMM models: the glmer function was used to

model unstructured covariance within seeds (models 11–12,

28–29), glimmix was used to model first-order auto regres-

sive correlation along recruitment chains (models 13) and

immediate recruiters as the clustering unit, with exchange-

able correlation structure (model 14), glmmPQL in the

glmm package [33] was used to model a declining correl-

ation structure as described in Beckett et al. [22], in which

the correlation decreases with increased distance along the

recruitment trees (model 15). Finally, in the GEE models,

geeglm from the geepack package [30] was used to fit an

independent working covariance structure within recruiters

(models 16–17, 30–31), and glimmix was used to fit auto-

regression correlation along recruitment lines (model 18)

and exchangeable working correlation structures within

recruiter (models 19–23). In models with no clustering unit

specified in Table 2 the clustering within recruitment chains

was ignored (models 1–2, 5–8, 24–25).

Fig. 2 Simulated RDS Sample from a population with homophily of 1.5 and population prevalence of 0 10%. Red dots indicate the seeds and

blue dots are members of Group 1
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Variance adjustments

To reduce the impact of a mis-specified covariance

structure, various adjustments (known as bias-corrected

sandwich estimators) were used. The classical robust

sandwich estimator, FIRORES, FIROEEQ and the Morel,

Bokossa and Neerchal (MBN) were all tested; these esti-

mators are described in detail elsewhere [25, 34, 35].

The variance adjustments applied to each model are de-

tailed in Table 2, most models were unadjusted.

Evaluating fitted models

Observed type-I error rate, parameter coverage rate and

bias were assessed for each model. Parameter coverage

rate was defined as the proportion of simulations in

which the 95% confidence interval of the risk parameter

contained the true population value. This approach was

used in preference to a calculation of power to better

evaluate the ability of our regression models to discrimin-

ate between distinct groups in a confidence interval-based

framework. Type I error was assessed using the models in

which the independent variable was XNULL, and coverage

rate was assessed with an independent variable of Xpredict.

To compare models estimating odds ratios with those esti-

mating relative risk, the bias of the risk estimates was

considered, defined as bias ¼
meanðθ̂Þ−θ

θ
, where θ was the

odds ratio for logit link models and the relative risk for

Poisson models. Bias was calculated with respect to both

the mean and median. The type-I error rate was calculated

by fitting each model a second time, replacing the continu-

ous predictor X with the second predictor, XNULL and

calculating the proportion of simulations with a p-value ≤

0.05. Overall error, coverage rate and bias were calculated

across all 12 simulated populations. To evaluate the

predictive ability of the models, model accuracy was calcu-

lated for those models with observed error rate ≤0.05 and

observed coverage rate ≥0.95. Accuracy was defined as the

proportion of subjects whose disease status was accurately

predicted, specifically:

Accuracy ¼
1

N

X

N

i¼1

I pi≥0:5 and gi ¼ 1
� �

þ I pi < 0:5 and gi ¼ 0
� �

Because some models required knowledge of the out-

come status of a participant’s recruiter (models 3, 4, 26,

27) and this information is not available for seeds, seeds

were not included in the regression analysis.

For the secondary analysis on the correlated outcomes

the type I error rate was focused on four models: un-

weighted binomial and poisson generalized linear models

and weighted binomial and poisson generalized linear

models (models 1, 2, 24, 25 from Table 2).

Outcome prevalence

To confirm that RDS-II weights were the appropriate

observation weights, outcome prevalence was calculated

for each sample, within each population. Using R and

the RDS package [32] the naïve, RDS-I, RDS-II preva-

lence estimates were calculated. In SAS [27] the survey-

logistic procedure was used to calculate the unweighted

and observation-weighted prevalence, with and without

the Morel standard error adjustment.

Results
Population parameters

Table 1 describes the 12 simulated populations. All

populations have similar network and random variable

Table 1 Population and mean sample characteristics for each simulated population

Population Population characteristics Mean sample characteristics Sampling
correlationa

Prevalence Homophily Odds ratio Relative risk Degree Number of waves Recruits per seed

1 10% 1.00 7.59 2.86 44.4 8.4 57.5 0.899

2 10% 1.10 7.65 2.88 43.5 8.3 57.2 0.895

3 10% 1.25 7.22 2.84 44.2 8.4 57.0 0.900

4 10% 1.50 6.93 2.85 43.7 8.3 56.9 0.896

5 30% 1.00 7.47 2.05 43.8 8.1 55.9 0.896

6 30% 1.10 7.56 2.05 43.4 8.1 55.6 0.891

7 30% 1.25 7.47 2.05 44.4 8.2 55.9 0.894

8 30% 1.50 7.59 2.06 44.2 8.2 56.3 0.894

9 50% 1.00 7.47 1.68 43.6 8.2 55.6 0.890

10 50% 1.10 7.55 1.68 43.5 8.1 55.6 0.890

11 50% 1.25 7.50 1.69 44.2 8.2 55.3 0.892

12 50% 1.50 7.51 1.69 44.0 8.2 55.9 0.893

aCorrelation between network degree and sampling frequency
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Table 2 Summary of regression model performance across all populations

Model Weight Clusters Ψ SE Adj. Error Coverage Bias (mean %) Bias (median %) Accuracy (%)

Logistic Regression

Generalised Linear Models

glm(R) 1 – 0.04 0.954 2.07 −1.63 88.1

2 RDS-II 0.55 0.442 20.89 8.51

3 – R-y 0.04 0.955 3.35 −0.48 88.6

4 RDS-II R-y 0.55 0.443 25.56 11.57

surveylogistic (SAS) 5 – 0.05 0.952 2.07 −1.63 88.1

6 RDS-II 0.07 0.903 20.88 8.51

7 – Morel 0.05 0.953 2.07 −1.63 88.1

8 RDS-II Morel 0.07 0.904 20.88 8.51

9 RDS-II RwS 0.07 0.903 20.88 8.51

10 RDS-II RwS Morel 0.07 0.904 20.88 8.51

Generalised Linear Mixed Models

glmer(R) 11 – S U 0.05 0.954 3.48 −0.46 88.1

12 RDS-II S U 0.55 0.402 44.55 26.73

glimmix (SAS) 13 – S AR 0.04 0.955 3.45 −0.34 88.1

glimmix (SAS) 14 – R CS 0.04 0.957 2.4 −1.19 88.1

glmmPQL(R) 15 – S DC 0.04 0.865 −0.86 −6.34

Generalised Estimating Equations

geeglm(R) 16 – R I Classical 0.13 0.952 2.07 −1.63

17 RDS-II R I Classical 0.16 0.902 20.89 8.51

glimmix (SAS) 18 – S AR 0.04 0.939 1.85 −1.69

19 – R CS 0.04 0.937 2.52 −1.75

20 – R CS Classical 0.05 0.948 2.52 −1.75

21 – R CS FIRORES 0.05 0.950 2.52 −1.75 88.1

22 – R CS FIROEEQ 0.05 0.951 2.52 −1.75 88.1

23 – R CS MBN 0.05 0.950 2.52 −1.75

Poisson Regression

Generalised Linear Models

glm(R) 24 – 0.02 0.962 4.81 4.15 86

glm(R) 25 RDS-II 0.49 0.457 9.48 8.23

glm(R) 26 – R-y 0.02 0.964 3.06 2.44 86.3

glm(R) 27 RDS-II R-y 0.47 0.493 7.74 6.46

Generalised Linear Mixed Models

glmer(R) 28 – S U 0.02 0.963 4.92 4.27 86

29 RDS-II S U 0.47 0.431 11.71 10.42

Generalised Estimating Equations

geeglm(R) 30 – R I Classical 0.13 0.859 4.81 4.15

31 RDS-II R I Classical 0.17 0.781 9.48 8.23

R-y recruiter outcome as covariate, S Seeds, R recruiter, RwS recruiter within seed
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characteristics, and are in line with target values. Mean

network degree, number of waves, and number of recruits

per seed are consistent across populations. In these popula-

tions, with relatively high outcome proportion, the odds

ratio is a poor estimate of the relative risk.

Regression model performance

Model performance assessed across all populations is

presented in Table 2. Results for individual popula-

tions are presented in the Additional files 5, 6, 7, 8

and 9.

Type-I error rate

Of the 31 models tested, 13 had consistently inflated error

rates (> 0.05) across every populations: all 12 weighted

regression models as well as the two GEE models fit with

independent working correlation structure using the

geeglm function (models 16, 30). Of the 17 remaining

models, type-I error was generally close to the nominal

rate of 0.05, but notably lower for the Poisson GLM

models, which were the only models with observed error

rate ≤ 0.05 for each and every population. Error rate was

often inflated for the population with outcome prevalence

of 50% and the largest degree of homophily for binomial

models, but not for Poisson models which recorded lower

than expected error rates in this population. The observed

type-I error rate across 1000 RDS samples for each simu-

lated population is included in Additional file 5: Table S1.

Risk parameter coverage rates

Risk parameter coverage rates were calculated as the pro-

portion of samples in which the 95% confidence interval

of the risk estimate (the unit increase in risk attributable

to Xpredict) included the true population parameter.

Models using regression weights had poor coverage. The

GLMM model fit with the declining correlation structure

suggested by Beckett et al. [22] exhibited low parameter

coverage rate, despite an acceptable error rate, due to

underestimation of the parameter variance. This was also

the only model for which there were any problems with

convergence; 1–13% of the simulated RDS samples did

not result in sensible standard errors (reported as either

infinite or zero). In general, the GEE models had slightly

lower than expected coverage rates (models 16–23,30,21).

However, the FIRORES and FIROEEQ adjustments to the

standard error resulted in coverage rates in the expected

range. Additional file 6: Table S2 reports coverage rates

across 1000 RDS samples for each simulated population.

Bias

Additional file 7: Tables S3 and Additional file 8: Table

S4 describe the relative bias of the risk estimates for

each model. Bias with respect to the median was sub-

stantially lower than with respect to the mean, indicating

that some samples had very large risk estimates. The

Poisson regression models had similar bias whether

respect to the mean or the median and were of larger

magnitude than the corresponding Binomial model.

Accuracy

Predictive accuracy was largely independent of the level

of population homophily, but decreased with increased

outcome prevalence. The unweighted binomial model

with participants’ recruiter’s outcome variable included

as a model predictor had the best accuracy, closely followed

by the regular unweighted binomial model. Accuracy of the

Poisson regression models decreased more quickly than

that of the Binomial models for increased outcome preva-

lence, as shown in Fig. 3. Additional file 9: Table S5 details

the accuracy across all populations.

Disease prevalence

Table 3 reports the mean and standard deviation of the

observed sample prevalence estimates across popula-

tions, along with the coverage rate for the naïve, RDS-II

and surveylogistic procedure. All estimators tended to

underestimate the true prevalence, with similar mean

prevalence estimates across estimators. None of the esti-

mators had coverage at the nominal rate. The best

coverage was achieved using the weighted surveylogistic

procedure, except at low prevalence (10%), where the

unweighted procedure was superior. The Morel adjust-

ment to the estimation of variance produced results

identical to the default degrees of freedom adjustment

used by SAS, to two decimal places and is not reported.

Secondary analysis: correlated degree and outcome

Table 4 reports the type I error rate for the secondary

populations. Type I error was affected by the correlation

between the outcome and network degree for weighted,

but not unweighted analyses. In the populations with

extreme positive correlation, where those in G1 had the

highest network degrees (and therefore the lowest RDS-

II weights) the observed error rate was < 0.01, for the

other populations the error rate for the weighted regres-

sion is well in excess of the nominal rate of 0.05. Error

rates for the unweighted analyses are similar to those

reported in the uncorrelated samples and near the nom-

inal level.

Discussion
Using simulated data, with network degree modelled

after RDS data collected from an urban Indigenous

population, a dichotomous outcome variable analogous

to disease state, and normally distributed continuous

predictors, we explored the error rate, coverage rate, bias

and accuracy of various regression estimates. Our results

indicate that weighted regression using RDS-II weights
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can lead to inflated type-I error, poor parameter cover-

age and biased results. When the goal of research is to

estimate risk associated with exposure, we prefer Poisson

regression to standard logistic regression because it

directly estimates relative risk and at higher levels of

outcome prevalence the odds ratio is a poor estimate of

relative risk. Furthermore, our results show that at low

prevalence Poisson regression performs well in terms of

observed error rate, coverage and accuracy.

Several studies have reported using weighted regression

(WR) techniques, with RDS-II weights, to account for the

non-random nature of RDS samples [15, 36–40]. Results of

this study indicated that weighted regression, to account for

non-random sampling probability should not be under-

taken for RDS data without careful consideration to the

distribution of the weights used. The poor performance of

weighted regression in this study can be attributed to the

increased variability of the weighted regression estimates, as

illustrated in Additional file 3: Figure S3 The weighted re-

gression estimates are dependent on the reported network

degree and a participant reporting very few connections in

the community weighs heavily in the analysis and can act

as a leverage point. The two most extreme simulated data

sets from the population with prevalence of 10% and

homophily of 1 are shown in Additional file 4: Figure S4. In

this study, because population data were simulated and

therefore completely known, reported network degree was

equal to the actual network degree and participants were

sampled based on their true degree of connectedness in the

population. Despite perfect knowledge of network size, the

presence of participants within the samples who re-

ported very low degree (and hence had large weights)

nevertheless unduly influenced the weighted regres-

sion estimates. That weighted regression performed

poorly in these controlled circumstances should serve

as a caution to future researchers. At the very least,

unweighted estimates should always be reported. If

weighted regression is performed care must be taken

to investigate the influence of those assigned large

weights and to perform sensitivity analysis on the

degree information.

Our secondary analysis investigated populations where

the outcome and network degree were correlated and

largely replicated the findings of the primary investiga-

tion. When the outcome and degree are correlated,

weighted regression results in inflated type-I error, ex-

cept when those with the highest degree were in G1

(“diseased” group, outcome = 1). In this situation the

error rate was virtually zero because those in G1 have

the lowest RDS-II weights and so there are no leverage

points that drive the high error rate in the other popula-

tions. This too though is undesirable because those in

G2 (“healthy group”, outcome = 0) will tend to be lever-

age points and may nullify true relationships when they

Fig. 3 Prediction accuracy of the unweighted Binomial (model 1) and Poisson (model 24) for the populations with homophily of 1
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form a large majority of the population. Again, these

findings suggest extreme caution using weighted regres-

sion with RDS samples.

We examined several techniques for dealing with clus-

tering: GLM and GEE with data correlated within re-

cruiter, seed or, both and with different covariance

structures, as well as modelling the outcome value of the

immediate recruiter as a model covariate. These results

do not provide clear guidance on the best method of

handling dependence in the data. None of the methods

were consistently poor across models and populations.

Including the outcome of a participant’s recruiter as a

covariate may be a viable option; our results indicate

that the extra parameter did not reduce the coverage

rate and accuracy was actually minimally improved. We

also note that in general, the impact of clustering on the

Table 4 Type I error rate of unweighted and weighted regression models for populations with correlation between outcome and

network degree

Secondary analysis population Binomial regression Poisson regression

Correlation of degree and outcome Unweighted Weighted Unweighted Weighted

Population homophily = 1.25

1 extreme negative (ρ = −0.133) 0.043 0.548 0.037 0.455

2 extreme positive (ρ = 0.534) 0.048 0.003 0.037 0.003

3 moderate negative (ρ = −0.092) 0.062 0.498 0.049 0.445

4 moderate positive (ρ = 0.059) 0.046 0.241 0.032 0.229

Population homophily = 1.50

5 extreme negative (ρ = −0.132) 0.037 0.529 0.029 0.412

6 extreme positive (ρ = 0.534) 0.054 0.006 0.043 0.006

7 moderate negative (ρ = −0.093) 0.037 0.459 0.025 0.418

8 moderate positive (ρ = 0.060) 0.024 0.186 0.020 0.175

Table 3 Outcome prevalence estimates using various estimators across populations

Homophily: Outcome prevalence 10% Outcome prevalence 30% Outcome prevalence 50%

1.00 1.10 1.25 1.50 1.00 1.10 1.25 1.50 1.00 1.10 1.25 1.50

Mean outcome prevalence

naïve 0.09 0.09 0.09 0.09 0.27 0.27 0.27 0.27 0.47 0.47 0.47 0.46

RDS-I 0.08 0.08 0.08 0.08 0.27 0.26 0.26 0.26 0.47 0.47 0.46 0.46

RDS-II 0.08 0.08 0.08 0.08 0.27 0.26 0.26 0.26 0.47 0.47 0.46 0.46

surveylogistic models

unweighted 0.09 0.09 0.09 0.09 0.27 0.27 0.27 0.27 0.47 0.47 0.47 0.46

weighted (RDS-II) 0.08 0.08 0.08 0.08 0.27 0.26 0.26 0.26 0.47 0.46 0.46 0.45

Mean SD of outcome prevalence

naive 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.03

RDS-I 0.02 0.02 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05

RDS-II 0.02 0.02 0.02 0.03 0.04 0.04 0.04 0.05 0.04 0.05 0.05 0.05

surveylogistic models

unweighted 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.03

weighted (RDS-II) 0.02 0.02 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05

Estimator coverage rates

naive 0.845 0.827 0.802 0.708 0.646 0.740 0.620 0.642 0.742 0.687 0.634 0.551

RDS-I 0.545 0.554 0.548 0.578 0.572 0.512 0.524 0.501 0.627 0.610 0.569 0.511

RDS-II 0.772 0.776 0.766 0.749 0.799 0.761 0.744 0.723 0.839 0.831 0.791 0.741

surveylogistic models

unweighted 0.916 0.900 0.875 0.784 0.657 0.745 0.611 0.645 0.747 0.684 0.644 0.544

weighted (RDS-II) 0.828 0.819 0.799 0.769 0.825 0.779 0.778 0.753 0.862 0.835 0.819 0.756
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variance of regression models is generally less than in

the estimation of variance means or prevalence itself.

For example, in the context of cluster randomized trials,

Donner and Klar [41] discuss the decrease in variance in

a regression model relative to a single mean or propor-

tion. Nonetheless more work is necessary to determine

the utility of this approach in populations where the

relative activity depends on outcome group.

The performance of the unweighted GEE models was

related to the working covariance structure and standard

error adjustment used. Models fit with a compound-

symmetric working covariance structure and any of the

Classical, FIRORES, FIROEEQ or MBN adjustments to

the standard error have acceptable overall error and

coverage rates (models 19–23). However, slightly inflated

error rates were observed for the population with preva-

lence of 50% and homophily of 1.5 and the population

with prevalence 10% and no homophily. Coverage rates

were generally close to 95% for these models. When an

auto regressive term was used within seeds (models 27,

28), overall coverage dropped below 94%, this was also

the case with a compound symmetric structure and no

adjustment to the standard error (models 29, 30). The

independent correlation structure (with no covariance

between observations) performed poorly, with inflated

type-I errors.

The glimmix procedure in SAS was used to model

GEE with compound symmetric working covariance

structures and various sandwich estimates (models 19–

23). There were no appreciable differences in error rates,

coverage rates or relative bias among the various stand-

ard error adjustments for these models. As shown in

Additional file 6: Table S2 the glimmix models have

slightly lower coverage rates, and inflated error rates for

some populations, so we recommend simpler general-

ized linear models.

The accuracy of the models in terms of case prediction

is higher for logistic regression than Poisson regression,

although as can be seen in Fig. 3 the disparity is propor-

tional to outcome prevalence. At lower prevalence levels,

the Poisson model variance approaches the variance of

the Binomial distribution and so model mis-specification

decreases and accuracy increases.

Another method of simulating RDS data is through

the use of exponential random graph models (ERGM).

Spiller et al. [9] in their recent simulation study investi-

gating the variability of RDS prevalence estimators, used

ERGM to simulate multiple populations from distribu-

tions with specified homophily, prevalence, mean degree

and relative activity. This approach creates networks

that, when averaged over many simulations have the

desired network parameters, though in practice individual

populations will vary. In contrast, our approach randomly

selected network degree from a specified distribution, and

then randomly allocated group membership and ties in

such a way as to achieve precise levels of prevalence and

homophily. For each combination of desired network

traits, a single population was created and multiple RDS

samples were drawn, thereby allowing only a single source

of variability, the RDS sampling process. Given that our

research question of interest was how best to model data

sampled using respondent-driven sampling from a net-

worked population, we feel that fixing the population

constant is the appropriate strategy, but examining

the impact of the population simulation method is an

area of future interest.

Prevalence

Our findings are in line with other studies [9, 10, 42]

that have found coverage rates substantially less than

95% in the estimation of prevalence from RDS samples.

Our results also support using RDS-II over RDS-I. We

found that the robust variance estimators of the survey-

logistic procedure in SAS, using the RDS-II weights

performed well (Table 3). One interesting finding is that,

similar to the regression results, the weighted prevalence

estimates are also susceptible to leverage points, but only

at low prevalence (10%). When we more closely exam-

ined samples with large disparities in the outcome

prevalence estimates we found that the disparity among

estimators is caused entirely by individuals with low

degree. The smallest reported network size in these

samples was 2, in line with degree reported in the OHC

study and in this simulation study, a reported degree of

two is an accurate reflection of connectedness. The

weights assigned to each participant are related not only

to the participant’s reported degree but the distribution

of degrees across the sample. If a sample contains a few

reports of very large degree (as occurred in the OHC

sample) then the weights allocated to those with lower

reported degree will have greater impact. We found that

prevalence estimators that incorporate weights are generally

superior at moderate to high prevalence, but should be

used with caution in samples with low outcome prevalence.

The appropriate use of weights in regression analysis

is an area of active discussion. Our findings suggest that

the use of weights is appropriate for determining popu-

lation outcome prevalence, but not in the application of

regression models for RDS samples. These results are in

line with Lohr and Liu’s paper examining weighting in

the context of the National Crime Victimization Survey

[43]. In their survey of the literature they reported little

debate surrounding the use of weights in the calculation

of average population characteristics, but several com-

peting views on the incorporation of weights into more

complex analyses such as regression. More recent work

by Miratrix et al. [44] further suggests that initial,

exploratory analyses, as we are typically performing in
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RDS data should be performed without weights to

increase power and that generalization to the entire

population should be a secondary focus of subsequent

samples.

In a simulation study the limitations stem from our

own design. As an initial investigation into regression

techniques and RDS data we chose to use complete data

sets, so the effects of missing data are unknown. We also

used a correctly-reported network degree, whereas in

the OHC study we observed a tendency for people to re-

port degree in clusters (such as 5, 10, 20, 100). Future

work may focus more on log-link models, which seem

promising. It would also be interesting to investigate

what happens if the outcome responses are correlated

with degree size, and, if better-connected people are bet-

ter (or worse) off, a concern flagged by Reed et al. [45].

Conclusion
Our results indicate that weighted regression should be

used cautiously with RDS data. Unweighted estimates

should always be reported, because weighted estimates

may be biased and may not be valid in samples with a

broad range of reported degree, such as the case with our

motivating example of connectedness in an urban Indigen-

ous population. Researchers are likely to have prior know-

ledge regarding the prevalence of the outcome in their

target population (HIV prevalence, for instance), but much

less likely to have knowledge regarding the homophily of

the population. The greater the outcome prevalence, the

greater the discrepancy between the odds ratio estimated

from logistic regression and the relative risk. In light of this

we suggest that a simple, unweighted, Poisson regression

model is the most reliable method for modelling the likeli-

hood of group membership from an RDS sample.
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Additional file 1: Figure S1. Reported degree from the Our Health
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Additional file 3: Figure S3. Distribution of the odds ratio estimates

from unweighted and weighted logistic regression models fit with the

glm function in R (models 1 and 2). No adjustments were made for
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Additional file 4: Figure S4. RDS-II weights from two samples drawn

from population with 10% outcome prevalence (proportion in G1) and

homophily of 1 that produced the smallest and largest weighted odds
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models and simulated populations.

Additional file 8: Table S4. Bias with respect to the median for all
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