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1 The amplituhedron

Recent years have revealed a fascinating and unexpected connection between the basic

physics of particle scattering amplitudes and new mathematical structures in “positive

geometry” [1–4]. In the context of N = 4 super-Yang-Mills theory in the planar limit, the

Amplituhedron [5] provides an autonomous definition of scattering amplitudes in purely

geometric terms, with no reference to quantum-mechanical evolution in space-time. The
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principles of locality and unitarity are moved from their primary position in the usual

formulation of quantum field theory, to derivative notions emerging hand-in-hand from

the positive geometry. This physics and mathematics has been explored from a variety

of perspectives in the past few years (see e.g. [6–16]), and a systematic mathematical

exploration of the notion of “positive geometries” has recently been initiated in [17].

The amplituhedron is a simple generalization of the notion of plane polygons into the

Grassmannian. Thinking projectively, the vertices of a convex n-polygon can be represented

as 3-vectors ZIa for a = 1, · · · , n and I = 1, · · · , 3. The convexity is reflected by positivity

of minors [ZaZbZc] > 0 for a < b < c. Then the interior of the polygon can be thought of as

all the points Y I which are in the convex hull of the ZIa , i.e. all Y I of the form Y I = caZIa
with ca > 0. The (tree) amplituhedron Am,k,n lives in the space of k-planes Y in (k +m)

dimensions. We have external data ZIa , for I = 1, · · · , (k + m). We think of Y as being

the span of k vectors Y I
α for α = 1, · · · k. We then consider all the Y I

α of the form

Y I
α = CαaZIa (1.1)

where the fixed external data Za is “positive” in the sense of the “positive Grassmannian”,

and we vary over Cαa that are also positive in the same sense:

[Za1 · · · Zak+m ] > 0 for a1 < · · · < ak+m, [Ca1 · · ·Cak ] > 0 for a1 < · · · < ak (1.2)

and the simple idea of “hiding particles” gives a natural extension of this geometry to

the “all-loop” amplituhedron. This definition needs an ordering (1, 2, · · · , n) for the ex-

ternal data, but the notion of positivity allows for a “twisted” cyclic symmetry. If the

minors of Cαa are positive, so are the minors of a new matrix where Cα1 → Cα2, Cα2 →
Cα3, · · · , Cαn → (−1)k−1Cα1. The same is true for the Za. Note that ifm is even, (−1)k−1×
(−1)k+m−1 = 1 and so the amplituhedron itself is invariant under an untwisted cyclic sym-

metry, while for m odd the ordering is reflected in the amplituhedron geometry as well.

(We break slightly with earlier notation in the literature where the external data is

referred to as non-caligraphic ZIa since we are reserving ZIa for something else we will intro-

duce shortly, and which will make a more ubiquitous appearance in this paper: the data

we get after projecting the Za through Y . Also, strong emphasis on positivity associated

with the positivity of the Cαa matrix, which played a starring role in the story of on-shell

diagrams, and was already “demoted” to playing an equal role with the positivity of ex-

ternal Za data in the first description of the amplituhedron, is essentially entirely absent

in our new picture. Therefore, no familiarity with the non-trivial aspects of the positive

Grassmannian is assumed in what follows. The few “positive properties” we will use will

be introduced in a self-contained way as needed).

Note that this description of the amplituhedron is highly redundant. This is clear

already for the polygon, since the space of the coefficients ca is (projectively) (n − 1)

dimensional, while the space of Y ’s in the polygon is obviously only 2-dimensional. More

generally the space of the Cαa is k(n− k) dimensional which (since n ≥ (k+m)) is always

larger than k × m which is the dimensionality of the tree amplituhedron. Concretely,

this means that if we are given some Y , we can’t easily check whether or not it is in the
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amplituhedron. We would like a different description of the amplituhedron, one which can

be used to directly check whether or not a given Y is in the amplituhedron.

This is what we will do in this paper. We will give a radically different, more invari-

ant and intrinsic definition of the amplituhedron, which is essentially entirely combinato-

rial/topological in nature. While we do not yet have a complete proof of the equivalence

of this new definition with the usual one, we have checked the equivalence numerically in a

large number of examples, and will also provide proofs in a number of special cases. This

new picture opens up new avenues of investigation into the structure of the amplituhedron,

and also suggests a striking new picture of scattering super-amplitudes in N = 4 SYM,

directly as certain differential forms on the (momentum-twistor) space of external kine-

matical data. We will briefly touch on a number of these points, deferring more detailed

investigations to future work.

2 Projecting through Y

We have posed a concrete question which motivates the search for a new definition of the

amplituhedron: given some Y , how can we check whether it is inside the amplituhedron?

Now for general convex polytopes, there is a standard answer to this question. Indeed,

polytopes can be defined in two different ways. The first is “vertex-centered”: given a

collection of points ZIa , the polytope is defined as the convex hull of these points. This is

the “Y = caZ ′′a description, which we directly generalize with the conventional definition of

the amplituhedron. But there is also a second, “face-centered” description of the polytope.

Here we cut out the polytope by a collection of inequalities associated with the facets WI,i

of the polytope, i.e. by imposing the inequalities [ YWi] ≥ 0.

Can we extend this simple picture to the amplituhedron? We certainly know all the co-

dimension one boundaries of the amplituhedron. For instance for m = 2, this corresponds

to [Y ii + 1] → 0; for m = 4, [Y ii + 1jj + 1] → 0 etc. (Note that here, and sometimes in

what follows, when it will not cause confusion, we write i for Zi.) So it is natural to ask,

for instance for m = 2: is the amplituhedron characterized by [ Y ii+ 1] ≥ 0?

The answer is easily seen to be “no”. The obstruction is a familiar one from the

usual story of the positive Grassmannian, and can be seen in the first non-trivial case

of k = 2,m = 2, n = 4 where the amplituhedron corresponds to the simplest positive

Grassmannian G+(2, 4). The inequalities associated with the codimension one boundaries

are [Y 12] , [Y 23] , [Y 34] , [Y 14] all > 0. But then the Plucker relations tell us that

[Y 13] [Y 24] = [Y 12] [Y 34] + [Y 23] [Y 14] (2.1)

The right hand side is positive when the boundary inequalities are satisfied, but this doesn’t

fix the signs of [Y 13] , [Y 24] , which can be either both positive or both negative. The

amplituhedron demands the choice where [ Y 13] , [Y 24] < 0, so we see that, unlike for

polygons, the boundary inequalities are insufficient to define the space.

Let us start by defining the elementary notion of “projection”, which we will use repeat-

edly in the rest of this paper. Given an N -dimensional vector space V , there is an obvious

notion of projection through some fixed vector V∗ to get an (N−1) dimensional vector space.
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The vectors in the new space are just the equivalence classes [V] = {V+αV∗ | V ∈ V}. Alge-

braically, we can always do a GL(N) transformation to put V∗ in the form V∗ = (0, · · · , 0, 1).

A vector V is then of the form V = (V1, · · ·VN−1, ξ), and we can associate the projected

(N −1) dimensional vector [V] with V = (V1, · · · , VN−1). Note that those GL(N) transfor-

mations that leave V∗ invariant simply act as GL(N − 1) transformations on the projected

vectors V . The vector V∗ itself is projected to the origin in the new space. The projection

also has an obvious geometric description. We choose some (N − 1) dimensional plane

passing through the origin and not containing V∗; then given any vector V, we translate

it in the direction parallel to the vector V∗ till it intersects that plane, giving the point V .

Different choices of the (N − 1) plane act as GL(N − 1) transformations on V . We can

similarly start from an N dimensional space and project through a K-plane to get to an

(N −K) dimensional space.

V1

V2

V3

V⇤

V1

V2

V3

V2

V⇤

V1

V3

We will be interested in taking the configuration of (k + m) dimensional vectors Za,
and projecting them through the k-plane Y to get a configuration of m-dimensional vectors

Za. To repeat the general construction, we can always do a GL(k +m) transformation to

put the k × (k +m) matrix Y in the form Y = (0k×m|1k×k). Then the Za = (Za|ξa). The

GL(k+m) transformations that leave Y invariant act as GL(m) transformation on the Za.

There is also an obvious relationship between the antisymmetric brackets in (k + m) and

m dimensions. Representing Y as the span of k vectors Yα=1,··· ,k,

〈Za1 · · ·Zam〉 = [ (Y1 · · ·Yk)Za1 · · · Zam ] ≡ [Y Za1 · · · Zam ] (2.2)

We will spend the rest of this section examining what these projections look like for the

cases of m = 2 and m = 1, and see how the amplituhedron is specified by the elementary

notions of “winding” and “crossings” in these two cases; this will motivate the analogous

definitions for general even and odd m we give in subsequent sections.
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To start with the case m = 2, we will project the external (k+ 2)-dimensional Za data

through a k-plane Y and draw the resulting configuration of Za vectors in 2 dimensions.

We begin with the case k = 2, n = 4, where the configurations come in two shapes:

Y

Y
1

1

2

2

3

3
4

4

Since we are projecting through Y , all of Y is mapped to the origin in this picture.

Note that in both pictures we have 〈ii + 1〉 = [Y ii + 1] > 0, so that all the segments

12, 23, 34, 14 “wind around Y ” with the same orientation. (Note that we have [Y 14] > 0,

and not [Y 41] > 0. This is a reflection of the twisted cyclic symmetry for even k. For

odd k we would have [Y n1] > 0.) In the first picture, though, the line segments 13, 24

wind oppositely and we have 〈13〉, 〈24〉 < 0, while in the second configuration they wind

in the same direction and 〈13〉, 〈24〉 > 0. We can see that to characterize the Y ’s in

the amplituhedron, we must require not only the correct orientation of the segments (i.e.

〈ii+ 1〉 = [Y ii+ 1] > 0), but also that the closed path (12), (23), (34), (41) has a winding

number of 1 around Y .

We can easily repeat this exercise for general k. For the minimal value of n = k + 2,

the signs of all of the [Y ab] are fixed, and we show the pictures for k = 1, · · · , 4 below:

Y Y
Y Y

k =1 , w =1 k =2 , w =1 k =3 , w =2 k =4 , w =2
hY n1i>0 hY n1i<0 hY n1i>0 hY n1i<0

Using the fact that we are in the n = k+ 2 case, where the signs of all [Y ab] are fixed,

we see that Y being in the amplituhedron is characterized by the winding number of the

path (12), (23), · · · , (n1). The necessary winding is w = (k + 1)/2 when k is odd, and

w = (k/2) when k is even. Note that these two cases are simply distinguished by (−1)k−1

factors associated with the twisted cyclic symmetry, which tells us that 〈n1〉 = [Y n1] > 0
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for k odd and 〈n1〉 = [Y n1] < 0 for k even. As we will argue, this picture works for all n:

Y is in the amplituhedron if and only if 〈ii+ 1〉 > 0, and the path (12), (23), · · · , (n1) has

winding number w = bk+1
2 c.

What happens for m = 1? Here the only obvious co-dimension one boundary inequal-

ities correspond to (−1)k[Y 1] > 0, [Y n] > 0, which can’t cut out the amplituhedron (for

one thing they can’t even distinguish between different k’s!). But let us follow the same

logic as for m = 2, and ask what the picture looks like after we project through Y . Here

the final space is even simpler—it is only 1-dimensional! Clearly we can’t be talking about

the notion of “winding number” as we did for m = 2, but we can do something even more

primitive: we can look at the number of times the path (12), (23), · · · , (n− 1n) jumps over

Y (again mapped to the origin), or, equivalently, we can count the number of sign flips in

the sequence {〈1〉, · · · , 〈n〉}. Looking again at the case of minimal n = (k + 1) reveals the

pattern we are looking for:

1 1 12 2 23 3 4Y Y Y

k=1, 1 flip k=2, 2 flips k=3, 3 flips

Again this extends for general n: Y is in the m = 1 amplituhedron if the sequence

{〈1〉, · · · , 〈n〉} = {[Y 1] , · · · , [Y n] } has exactly k sign flips.

It is interesting to note that a natural relationship between the “winding” and “flip”

pictures. Consider an m = 2 configuration. Then, if we project through e.g. the point Z1,

to go down to one dimension, the resulting configuration of the projected Z2, · · · , Zn has

the sign flip pattern compatible with the m = 1 amplituhedron, i.e. it has precisely k sign

flips.

Y

Y
1

1

2

2

3

3
4

4

Y 34 2 2 3 4 Y

k=2 flips 0 flips
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Indeed, projecting down to one dimension from two dimensions gives us a way to

characterize the points in the amplituhedron without explicitly assuming that we are on

the right side of the boundaries! We can instead simply demand that we get the correct sign

flip pattern upon projecting through each of the vertices Za, (and as always appropriately

including the factors of (−1)k−1 for the twisted cyclic symmetry). In the righthand figure

below, Y is in the amplituhedron, which can be verified either because it is on the right

side of the boundaries and has the correct winding, or because in each of the projected

one-dimensional pictures, the number of flips equals k. In the lefthand figure, Y is not in

the amplituhedron, which can be verified either by observing that it is on the wrong side

of the (34) boundary, or that the number of sign-flips in the projected one-dimensional

pictures is not always equal to k.

2

1

3

4

�2

�1

�3
�4Y

Y

Y

Y

Y

4 2 3

�1 3 4

�2 4 �1

�1 �2 �3

2

2

1

1

2

1
3

4

�2

�1
�3

�4Y

Y

Y

Y

Y

4 2 3

�1 3 4

�2 4 �1

�1 �2�3

2

2

2

2

3 Winding

Having motivated our approach to characterizing the amplituhedron with simple examples,

we now give a more systematic account starting with the case of even m, where we will use

a generalized notion of “winding number”. Let us first precisely define what we mean by

winding number (again for even m); since this is a general topological notion we will do

this for a completely generic configuration of Za.
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Start with m = 2. We can count the winding number by asking whether or not a

vector pointed in some direction Z∗ will intersect the interior of a given boundary (ii+ 1).

This means that some positive multiple of Z∗ should be expressible as a positive linear

combination of Zi and Zi+1, i.e. that we should be able to express

x∗Z∗ = xiZi + xi+1Zi+1 with x∗, xi, xi+1 > 0 (3.1)

This tells us that a vector in the direction Z∗ intersects the boundary (ii + 1) if and

only if 〈Z∗Zi〉
〈ZiZi+1〉 < 0, 〈Z∗Zi+1〉

〈ZiZi+1〉 > 0. This leads us to define

wi(Z∗) =

{
+1 if sgn{〈ZiZi+1〉, 〈Z∗Zi〉, 〈Z∗Zi+1〉} = {+,−,+} or {−,+,−}
0 otherwise

(3.2)

Y
Z⇤ +Zi�1

+Zi

i

i�1

i+1

+Zi�Zi+1

Then we define the total winding number to sum all the boundaries that are hit in this

way, with a factor of +1 when they are oriented as 〈ii+1〉 > 0, and (−1) when 〈ii+1〉 < 0:

wm=2 =
∑

i

sgn(〈ZiZi+1〉)× wi(Z∗) (3.3)

Note that in our applications, where we demand that 〈ii + 1〉 > 0 with the twisted cyclic

symmetry, we only pick up a minus sign for the boundaries (n1), and only when k is even.

The total winding number does not depend on Z∗. This is both intuitively obvious

and easy to prove. As we change Z∗ smoothly, the wi will not change till the line pointing

in the direction of Z∗ is hitting the boundary of some interval (ii + 1). Let’s follow what

happens as we start with some boundary (ii + 1) that is hit — where we can expand

x∗Z∗ = xiZi + xi+1Zi+1 with x∗, xi, xi+1 > 0, and move xi+1 to be very slightly positive,

then zero, then slightly negative. Right on the boundary where xi+1 → 0, Z∗ is obviously

also on the boundary of the different interval (i− 1i), so it is natural to ask about whether

or this interval is also hit. For small xi+1,

〈∗i− 1〉
〈i− 1i〉 =

−xi
x∗

,
〈∗i〉
〈i− 1i〉 =

−xi+1〈ii+ 1〉
x∗〈i− 1i〉 . (3.4)

Thus if the signs of 〈ii+1〉 and 〈i−1i〉 are the same, then when xi+1 is slightly positive

we intersect (ii + 1) but not (i − 1i), and when we pass through to xi+1 slightly negative

– 8 –
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we no longer intersect (ii+ 1) but do intersect (i− 1i). Thus wi +wi−1 = 1 for both signs

of xi+1 and the total winding number doesn’t change. On the other hand when the signs

of 〈i − 1i〉 and 〈ii + 1〉 are opposite, then when xi+1 is slightly positive both intervals are

hit, while when xi+1 crosses to be slightly negative neither of the intervals is hit. Thus the

sum of the contributions to the winding from (i − 1i) and (ii + 1) are zero for both signs

of xi+1 and again the total winding number doesn’t change.

�1

+1 +1

+1

+1

+1
+1

+1

1

2

3

4

5 6

7

8 w=2

We can immediately extend to m = 4. Now, projecting through Y produces points

Za in a four-dimensional vector space. In four dimensions, it is not meaningful to talk

about the winding of a curve around the origin. The obvious generalization is to ask

about the winding of some topological 3-sphere around the origin instead. There is a 3-

sphere naturally present in the story: the piecewise linear sphere formed from the simplices

(ii+ 1jj + 1). To understand this winding very concretely, we ask whether a vector in the

direction Z∗ intersects a given boundary (ii+ 1jj + 1), which demands that

x∗Z∗ = xiZi + xi+1Zi+1 + xjZj + xj+1Zj+1 withx∗, xi, xi+1, xj , xj+1 > 0 (3.5)

This tells us that a vector in the direction Z∗ intersects the boundary (ii+ 1jj + 1) if and

only if
〈Z∗ZiZi+1Zj〉
〈ZiZi+1ZjZj+1〉 < 0,

〈Z∗ZiZi+1Zj+1〉
〈ZiZi+1ZjZj+1〉 > 0,

〈Z∗ZiZjZj+1〉
〈ZiZi+1ZjZj+1〉 < 0,

〈Z∗Zi+1ZjZj+1〉
〈ZiZi+1ZjZj+1〉 > 0. Again

this leads us to define

wi,j(Z∗) =





+1, if sgn{〈ZiZi+1ZjZj+1〉,
〈Z∗ZiZi+1Zj〉, 〈Z∗ZiZi+1Zj+1〉, 〈Z∗ZiZjZj+1〉, 〈Z∗Zi+1ZjZj+1〉}

= {+,−,+,−,+} or {−,+,−,+,−}
0 otherwise

(3.6)

and we define the total winding number to sum over all the boundaries hit in this way,

sign-weighted by the orientation of the boundary in the same way as above:

wm=4 =
∑

i,j

sgn(〈ZiZi+1ZjZj+1〉)× wi,j(Z∗) (3.7)
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Once again this total winding number is independent of Z∗; the argument is exactly the

same as we saw above for m = 2. As we smoothly change Z∗, we only have to worry about

the situations where a point in the direction of Z∗ lies in some two-dimensional boundary

of the three-dimensional cell (ii + 1jj + 1); i.e. when x∗Z∗ = xiZi + xi+1Zi+1 + xjZj+1.

This boundary is also shared by one other cell (ii+ 1j−1j), and depending on the relative

signs of 〈ii+ 1jj + 1〉 and 〈ii+ 1j − 1j〉, either we pass from hitting one boundary to the

other as Z∗ is smoothly changed with the net contribution to the winding equalling one,

or we go from hitting both to missing both with the net contribution being zero.

This definition of winding generalizes in the obvious way for any even m, by counting

the number of times a line in the direction Z∗ hits the boundaries (i1i1+1 · · · im/2im/2+1).

What winding numbers define the amplituhedron? For m = 2, the winding numbers

for k = 1, 2, 3, 4, 5, 6 are 1, 1, 2, 2, 3, 3, and in general are given by wm=2,k = b (k+1)
2 c. For

m = 4, we have windings 1, 1, 3, 3, 6, 6, in general

wm=4,k =

(
bk+3

2 c
2

)
(3.8)

For general even m, the winding number is given by

w(m, k) =

(
bk+m−12 c

m
2

)
(3.9)

We have a simple proof of this fact for the positive Grassmannian case of n = (k+m),

and it is empirically correct in all other examples we have checked. It is also interesting

to note that wm,k is the maximum winding possible, so the amplituhedron maximizes

winding; we will not prove these statements here, instead giving a simple proof of analogous

statements about sign flip patterns in section 5.

4 Crossings

We have seen that for even m, the correct topological notion characterizing the amplituhe-

dron is that of “winding”. Already for m = 1, we have seen that the correct notion was

that of counting “crossings”, the number of times the origin Y was crossed in traversals

from 1 → 2 → · · · → n; this is determined by looking at the number of sign flips in the

sequence {[Y 1] , · · · , [Y n] }. How can we generalize this to general odd m?

In fact the topological notions for odd m and even (m+ 1) are closely related to each

other. Let’s consider m = 1,m = 2. In both cases, we look at the collection of simplices

(ii + 1). Looking at the number of sign flips simply counts how many of these intervals

contain the origin (the image of Y ). In other words, for any interval (ii + 1), we define

ci = +1 if sgn{〈i〉, 〈i + 1〉} = {−+} or {+−} and ci = 0 otherwise; if ci = 1 the interval

(ii+ 1) contains (or “crosses”) the origin.

We can extend this idea to any odd m. For m = 3, we look at the exactly the same

collection of simplices (ii+ 1jj+ 1) we consider for defining winding for m = 4. Now these
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3-dimensional simplices are space-filling in m = 3 dimensions, and we can ask how many

of them contain the origin. We are then led to define

ci,j =





+1, if sgn{〈Zi+1ZjZj+1〉, 〈ZiZjZj+1〉, 〈ZiZi+1Zj+1〉, 〈ZiZi+1Zj〉}
= {+,−,+,−} or {−,+,−,+}

0 otherwise

(4.1)

The objects ci, ci,j are analogous to the wi, wi,j defined to compute winding numbers.

In the winding case, we had to sum over all the boundaries in order to get an object

independent of Z∗. For odd m, however, the story is a little different. Already for m = 1

we saw that it was natural to sum over all the boundaries except the boundary (n1); this

already gave us the characterization of the amplituhedron in terms of k sign flips. Of course

there would have been no harm in including the (n1) boundary — we would simply add

one to the “crossing” for odd k — but it is more natural not to include the (n1) boundary.

We will follow this pattern for general odd m; we define the crossings to be

cm=1 =
∑

i 6=n
ci, cm=3 =

∑

i<j,j 6=n
ci,j , etc. (4.2)

It is straightforward to compute the number of crossings for m = 3 by looking at

the case of the positive Grassmannian; we find for k = 1, 2, 3, 4, 5, 6, · · · the crossings

1, 2, 4, 6, 9, 12. In general for even k we have ck = k(k + 2)/4, while for odd k we have

ck = ((k + 1)/2)2, which can be unified in the expression ck = b((k + 1)/2)2c.
There is a simple picture relating “crossing” and “winding” number that gives us an

expression for ck,m for odd m and odd k. First, most naively the crossing number for some

k,m should naively be double the winding number for k,m + 1. The reason is that if we

start from m + 1 dimensions and project through some direction Z∗, all the boundaries

containing the origin will be the ones that were intersected either in the direction +Z∗
or −Z∗. We can be more precise by thinking about passing from m + 1 to m dimensions

by quotienting through Z1 + εZn. Again each winding “hit” contributes 2 to the crossing

number, however, we have to correct for the fact that we ignore the “1n′′ facets when

counting the crossing number. But these facets are exactly telling us about what we get

for the winding number if we go down into the (m− 1) amplituhedron after quotienting by

Z1 and Zn. Thus for odd k, we expect

ck,m = 2wk,m+1 − wk,m−1 =
2k +m− 1

m+ 1

(
k+m−2

2
m−1
2

)
(odd k) (4.3)

On the other hand, for even k we don’t get any correction from the (n1) boundaries, and

we find

ck,m = 2wk,m+1 = 2

(
k+m−1

2
m+1
2

)
(even k) (4.4)

We have numerically checked the validity of these expression up to m = 7 for large values

of k. And again, analogous to the statement of maximal winding for even m, we have

observed that this crossing number is maximized by the amplituhedron.
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5 The amplituhedron as binary code

The “winding/crossing” description we have given captures a “global”, topological property

of the Za data characterizing the amplituhedron. We will now see that this information

can even more efficiently be captured in a different way. The key idea is to further project

through some of the external data points, in the only natural way possible, to get down to

1 dimension. It is very easy to see that if we start with some point in a higher m amplituhe-

dron, projecting down to m = 1 keeps us in the amplituhedron. But remarkably the oppo-

site is also true: the higher m amplituhedron is fully determined by the requirement that all

possible “positive projections” down to one dimension land us in the m = 1 amplituhedron!

Let’s begin with the m = 1 amplituhedron. The claim is that we are in the m = 1

amplituhedron if and only if the sequence

{〈1〉, 〈2〉, · · · , 〈n〉} has precisely k sign flips (5.1)

This is equivalent to the characterization of the m = 1 amplituhedron recently given in [15].

Let’s now look at m = 2. Note that if we project the external Z data through Z1,

the rest of the projected Z’s are also positive; this is because 〈Z1Za1 · · · Zak+m−1
〉 > 0

for a1 < · · · < ak+m−1. Then it is natural to ask that the projected Y should be in the

m = 1 amplituhedron with external data (Z2;1, · · · ,Zn;1) obtained by projecting through

Z1. We can phrase this purely as a statement about the m = 2 dimensional data Za,

since projecting through Z1 followed by a projection through Y is simply the same as

starting from m = 2 dimensions and projecting through Z1 to get to a one-dimensional

space; thus it is natural to ask for the m = 2 dimensional configuration of the vectors to

have the property that when projected through Z1 we land a configuration in the m = 1

amplituhedron. Now by the twisted cyclic symmetry, we can cycle any one of the Z’s to

the “Z ′′1 . Thus, we should demand that no matter which Za we project through, we end

up in m = 1 amplituhedron. Now, we claim that these give us necessary and sufficient

conditions for Y to be in the m = 2 amplituhedron! Said more explicitly, we claim that Y is

the m = 2 amplituhedron if and only if all the following sequences (where Ẑi ≡ (−1)k−1Zi
accounts for the twisted cyclic symmetry):





〈12〉, · · · 〈1n〉
〈23〉 · · · 〈2n〉〈21̂〉

...

〈n1̂〉 · · · 〈n ̂(n− 1)〉





have precisely k sign flips (5.2)

Note as usual that in terms of the underlying (k + 2) dimensional data, this is putting

constraints on Y since 〈ab〉 = [Y ZaZb] .

This statement is primary, but we can quickly derive some consequences of it that

will lead to a much more efficient check of whether Y is in the m = 2 amplituhedron.

We first observe that the sign-flip conditions trivially reproduce the correct signs of the

obvious co-dimension one boundaries of the amplituhedron. For m = 1, the obvious bound-

aries are (−1)k〈1〉 > 0, 〈n〉 > 0. But this is automatically a consequence of the sequence
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{〈1〉, · · · , 〈n〉} having k sign flips. Now let’s look at m = 2; we will show that the sign flip

pattern forces

〈ii+ 1〉 > 0 (5.3)

Let’s start with the sequence

{〈12〉, · · · , 〈1n〉} (5.4)

Without loss of generality we can set 〈12〉 > 0. Suppose that k is even; this tells us that

〈12〉 and 〈1n〉 are both positive. But now look at the next sequence

{〈23〉, · · · , (−1)−(k−1)〈21〉} (5.5)

For k even this says that 〈23〉 has the same sign as −〈21〉 = 〈12〉 and is hence positive.

Continuing in this way we find that all of 〈12〉, 〈23〉, 〈(n − 1)n〉 and 〈1n〉 are all positive.

The same argument works for k odd. Thus, we see that the sign flip constraint forces the

boundaries 〈ii+ 1〉 > 0 (where as always Zn+1 = (−1)k−1Z1).

Having established this, we now show that so long as 〈ii+1〉 > 0, it suffices to check the

sign flip pattern for only one of projections down to m = 1! In other words, we claim that

Y is in the m = 2 amplituhedron iff

[Y ii+ 1] > 0, and the sequence {[Y 12], · · · [Y 1n]} has precisely k sign flips.
(5.6)

We now show that all the sign flip patterns follow from just the one beginning with

〈12〉 as long as we have 〈ii + 1〉 > 0. Let’s start by showing that if {〈12〉, · · · 〈1n〉} has k

sign flips, so does {〈23〉, · · · , (−1)(k−1)〈21〉}.
Let us draw these two sequences one on top of the other, shifted in the natural way:

〈12〉 〈13〉 · · · 〈1n〉
〈23〉 · · · 〈2n〉 〈21̂〉 (5.7)

and let’s put in what we already know about the signs:

+ 〈13〉 · · · (−1)k−1

+ · · · 〈2n〉 (−1)k−1
(5.8)

which is clearly compatible with the bottom sequence having k sign flips. Now, since we

know what the ends of the sequences look like, let’s examine a block of signs in the middle,
{
〈1i〉 〈1i+ 1〉
〈2i〉 〈2i+ 1〉

}
(5.9)

The pattern of these signs cannot be arbitrary. Indeed by the Plucker relation

〈1i〉〈2i+ 1〉 − 〈1i+ 1〉〈2i〉 = 〈ii+ 1〉〈12〉 > 0 (5.10)

where we have used that 〈12〉, 〈ii+1〉 > 0. Thus while in principle we have 24 = 16 possible

sign patterns in the block, the 4 combinations where 〈1i〉〈2i+ 1〉 < 0 and 〈1i+ 1〉〈2i〉 > 0

cannot occur. The allowed patterns can then be classified as
{
a a

b b

}
“don’t change”,

{
a −a
b −b

}
“flip both”

– 13 –



J
H
E
P
0
1
(
2
0
1
8
)
0
1
6

and
{
a −a
a a

}
“flip top when same as bottom ”,

{
a a

−a a

}
“flip bottom when opposite to top”

It is now trivial to see that the number of sign flips in the two sequences must be the

same. Obviously the “don’t change” and “flip both” change the number of flips equally.

The crucial point is related to the second set of allowed possibilities. These tell us that if

somewhere we have a flip in the top row but not the bottom one, then while we can have

any number of flips of both rows thereafter, the next time there is a flip in one row but not

another, it must be that the flip occurs in the second row and not the first! This is because

the first row can only flip when it has the same parity as the second, while the second can

flip only when it has the opposite parity to the first.

We can extend this analysis to any higher m. Let us illustrate with the case m = 4.

First, if we project the external Z data through any (ZbZb+1), the remaining data will still

be positive. So, we claim that Y is the m = 4 amplituhedron if and only if, for all such

projections, the projected Y is in the m = 2 amplituhedron; and as we have seen this in

turn can be checked by projecting through any Za and demanding we end up in the m = 1

amplituhedron. Thus, more explicitly the claim is that Y is in the m = 4 amplituhedron

iff the sequences (for all i 6= a, b, b+ 1),

{[Y abb+ 1i] } have precisely k sign flips (5.11)

for all a, b. As for m = 2, we can see that this immediately implies that Y is on the right

side of the boundaries, i.e.

[Y ii+ 1jj + 1] > 0 (5.12)

so that the physics of locality follows from the pattern of sign flips! This follows trivially

since we already saw that 〈ii+ 1〉 > 0 follows from the sign flip pattern for m = 2, so if we

projected through some (ZjZj+1) we have 〈ii+1jj+1〉 > 0; since we assume the flip pattern

must work for all j the result follows. And just as for m = 2, we will now show that this

further implies that we only have to check the sign flip pattern for a single sequence, that is

Y is in the m = 4 amplituhedron iff (5.13)

[Y ii+ 1jj + 1] > 0, and the sequence {[Y 1234] , · · · [Y 123n] } has precisely k sign flips

The proof is easy. First, the number of sign flips for the sequences {〈1jj+1i〉}, {〈2jj+1i〉},
{〈3jj+1i〉}, · · · are the obviously the same, since projecting through (ZjZj+1) we just land

on the m = 2 problem for which we’ve already established this result. Very slightly more

non-trivially we need to show that the number of sign flips for the sequences {〈1j − 1ji〉}
and {〈1jj + 1i〉} are the same. But we can easily do this in two steps. First, let’s look at

the sequences {〈123i〉} and {〈234i〉}. Since these have (23) in common, projecting through

(Z2Z3) lands us on m = 2 where again we know the number of flips are equal. But then

from the fact that the number of flips of {〈1jj+ 1i〉} and {〈2jj+ 1i〉} are the same, we see

that the number of flips of {〈123i〉} and 〈134i〉} are the same. Continuing in this way we
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see that the number of flips of {〈abb+1i〉} is independent of a, b so long as 〈ii+1jj+1〉 > 0,

thus it suffices to only check the sequence {〈123i〉}.
For general m, k, n, the flip definition of the amplituhedron is then simply the space

of Y ’s for which

(−1)k〈1(i1i1 + 1) · · · (im−1
2
im−1

2
+ 1)〉, 〈(i1i1 + 1) · · · (im−1

2
im−1

2
+ 1)n〉 > 0 for m odd

〈(i1i1 + 1) · · · (im
2
im

2
+ 1)〉 > 0 for m even

{〈12 · · · (m− 1)m〉, · · · , 〈12 · · · (m− 1)n〉} has k sign flips (5.14)

5.1 General positive projections and relations between amplituhedra

Our “binary code” characterization of the amplituhedron generalizes to a deeper statement

that relates amplituhedra with different values of m. To begin with, let us define a “positive

projection” Pm→m′ to be some (m−m′) plane, such that projecting the Za data through

Pm→m′ leaves the data positive, that is

[Pm→m′Za1 · · · Zak+m′ ] > 0 for a1 < · · · < ak+m′ (5.15)

Now, it is rather trivial to see, directly from the Y = C · Z picture, that if Y is in the

amplituhedron for (m, k), then projecting everything through P, the projected Y is the

(k,m′) amplituhedron associated with the projected Za data. But much more non-trivially,

we have an only if statement: Y is in the amplituhedron if, and only if, for all positive

projections Pm→m′ , the projected Y is the (k,m′) amplituhedron in the projected space.

The “binary code” characterization specializes this fact for m = 1. We also make a

somewhat degenerate choice for the positive projections, making use of the fact that if we

project through any Zb,Zb+1, the remaining data is clearly positive. (This is a slightly

degenerate choice since Zb,Zb+1 are projected to the origin). Doing this successively lets

us project down to either m = 2 or m = 1; further projecting through Z1 also preserves

positivity and lets us get from m = 2 to m = 1.

5.2 The positive Grassmannian from flips

The case k = 0 is interesting. Here the Z data is simply in the positive Grassmannian of

G+(m,n), and we don’t have any Y so that the Za = Za. It is then interesting to see that

our sign flip constraints give a different characterization of the positivity of the Z’s. This

is trivial for m = 1; here we say that the sequence {〈1〉, 〈2〉, · · · , 〈n〉} has k = 0 sign flips,

which just says that all the entries of the 1 × n Z matrix are positive. We see in general

that for k = 0 we are declaring that certain minors have k = 0 sign flips, and thus must all

have the same sign. Let’s now look at m = 2. Here our criterion is simply that 〈ii+1〉 > 0,

and that {〈12〉, · · · 〈1n〉} have zero sign flips; since 〈12〉 > 0 this just tells us that the rest

of the 〈1i〉 are positive; so for m = 2 our conditions say that we should have

〈ii+ 1〉 > 0, and 〈13〉, · · · 〈1(n− 1)〉 > 0 (5.16)

While this doesn’t manifestly force all the ordered minors of Z to be positive, this subset

of minors is very well-known to the a “cluster” of G+(2, n); that is, forcing these minors to
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be positive automatically forces all the rest of the ordered minors to also be positive (on

the support of the Plucker relations).

(We note paranthetically that here we are taking the “twisted” cyclic symmetry for

granted, but if we back up a step we can actually see its necessity from the sign flip point

of view. Suppose we didn’t have the twisted cyclic symmetry, but we ask that all the

sequences {〈12〉, · · · 〈1n〉}, {〈23〉, · · · , 〈21〉} etc. all have k = 0 sign flips. Then we quickly

run into a contradiction already for m = 2, n = 4: from {〈12〉, 〈13〉, 〈14〉} we would have

to say that all these minors are (say) positive, then from {〈23〉, 〈24〉, 〈21〉}, since the last

sign is negative we would have to say that 〈23〉, 〈24〉 are negative, but then finally from

{〈34〉, 〈31〉, 〈32〉} we have a contradiction since 〈32〉 is forced to be positive while 〈31〉 is

forced to be negative. So the twisted cyclic symmetry is necessary to get the same number

of sign flips through any projections).

The story works the same way for any m. Our constraint of k = 0 sign flips forces a

certain set of minors to be positive. For m odd we have that

〈1(i1i1 + 1) · · · (im−1
2
im−1

2
+ 1)〉, 〈(i1i1 + 1) · · · (im−1

2
im−1

2
+ 1)n〉,

and{〈12 · · · (m− 1)m〉, · · · 〈12 · · · (m− 1)n〉} are all > 0
(5.17)

While for m even these are

〈(i1i1 + 1) · · · (im
2
im

2
+ 1)〉 > 0 and {〈12 · · · (m− 1)m〉, · · · 〈12 · · · (m− 1)n〉} are all > 0

(5.18)

Quite beautifully, the positivity of these minors suffice to force the positivity of all the

other minors of G(m,n). Thus our sign flip criterion successfully (and non-trivially) works

for the most trivial case of k = 0.

The case where n = (k+m) works in exactly the same way. The external Z data can be

set to the identity matrix ZIa = δIa. Let’s denote the minors of the k×(k+m) dimensional Y

matrix as (a1 · · · ak). Consider any object of the type [ Y b1 · · · bm] ; it is obviously given (up

to sign) by the minor (a1 · · · ak), (a1 · · · an−m=k) = (b1, · · · , bm) are the conjugate indices to

the (b1, · · · , bm). Now, since the sequence {[Y 12 · · · (m−1)m] , · · · , [Y 12 · · · (m−1)n] } has

length n−(m−1) = k+1, for this sequence to have k sign flips it must switch signs in every

slot, and thus we have sign constraints on the minors of Y ; of course the boundary con-

straints also fix signs of the Y minors. For instamce, for m = 2, k = 2, n = 4 we have that

[Y 12] , [Y 23] , [Y 34] , [Y 14] > 0 → (34), (14), (12), (23) > 0

sgn {[Y 12] , [Y 13] , [Y 14] } = {+,−,+} → (24) > 0 (5.19)

and of course the positivity of (12), (23), (34), (14) together with (24) > 0 also implies

(13) > 0 and so Y is in the positive Grassmannian G+(2, 4). Conversely, obviously if Y is

in G+(2, 4) it will have the correct sign flips. For general k,m with n = (k +m), we force

positivity on the ordered minors that are the “conjugates” to the ones we described above

for k = 0, and again there are enough minors to guarantee all the minors are positive.
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5.3 The amplituhedron maximizes flips

We pause to note that, so long as the external Z data is positive, the maximum number

of flips for our sequences is also given by k, in other words, the sequence

{[Y 12 · · · (m− 1)m] , · · · , [Y 12 · · · (m− 1)n] } has at most k sign flips (5.20)

The proof uses the same simple observations exploited in the previous subsection. Suppose

that there are at least (k + 1) sign flips in the sequence, and that they occur at the slots

j1, j2, · · · , jk, jk+1, i.e. that we have sgn([ Y 123 · · · (m− 1)jα + 1] ) = −sgn([Y 123 · · · (m−
1)jα] ). Then, Z1, · · · ,Z(m−1),Zj1 , · · · ,Zjk+1

are (m− 1) + (k + 1) = (k +m) vectors that

give a basis for the space, so we can expand Zjk+1+1 as a linear combination of them; the

positivity of the Z’s fixes the signs in the expansion as described in section 6:

Zjk+1+1 = +Zjk+1
−Zjk + · · ·+ (−1)k(Zj1 −Zm−1 + · · · (−1)m−1Z1) (5.21)

But then we can compute that [ Y 12 · · · (m − 1)Zjk+1
] = +[Y 12 · · · (m − 1)Zjk ] −

[Y 12 · · · (m−1)Zjk−1
] + · · · (−1)k[Y 12 · · · (m−1)j1] ; every term on the right-hand side has

the same sign as the first term, and so [ Y 12 · · · (m−1)jk+1+1] can’t have the opposite sign

as [Y 12 · · · (m − 1)jk+1] , contradicting a sign flip at jk+1! Thus, a completely equivalent

way of characterizing the amplituhedron is simply to say that Y is in the amplituhedron

if and only if under any projection to m = 1 dimensions we have the maximum possible

number of k sign flips.

5.4 Y = C · Z → correct flips

We’d like to now show that for Y = C · Z with C in the positive Grassmannian, we have

the correct sign-flip pattern. First we show that if we’ve already shown some C gives

Y = C · Z with the correct flips, then we can always add zero columns to C without

changing the conclusions. The argument is trivial for even m, since we can always use the

cyclic symmetry to put the zero column at the very end. But then we are merely adding

a last [Y 1 · · · (m − 1)(n + 1)] to our sequence, and since we already have the maximum

number k of flips we can’t have any more. In this way, by adding a zero column at the end

and then cyclically shifting, we can add zeroes in any columns we like without changing the

total number of sign flips. Since we’ve already proven than Y = C · Z for the n = (k+m)

case, for n > (k+m), we have also established the right flip pattern for the image of those

k × n dimensional cells of G+(k, n) which correspond to positive matrices in a (k + m)

subset of the n columns. But we would like to show that for any positive matrix Cαa, the

projection through Y = C · Z gives the right sign flip pattern.

Here we make use of a simple but non-trivial fact about positive matrices, which tells

us how to systematically build more complicated positive matrices from simpler ones. Any

K×N matrix in the positive Grassmannian, including generic points in the interior (or the

“top cell”), can be constructed starting from some zero-dimensional cell (corresponding to

the (K×N) matrix being set to the identity in some (K×K) block and vanishing elsewhere),

and recursively shifting the columns of the matrix by positive multiples of its immediately

neighboring (non-vanishing) columns.
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Thus, we can make any positive matrix C, by beginning with zero dimensional cells

where the C matrix is the identity in some k × k block, and then repeatedly shifting a

given column of C by positive multiples of its neighbors. But note that under Cαa →
Cαa + xa+1Cαa+1, the effect on Y is the same as if we shifted Za → Za + xa+1Za+1; since

this preserves the positivity of the Z, again the (maximized) number of flips can not be

altered. In this way we can work our way up from C’s corresponding to zero-dimesional

cells of G+(k, n) to any point in G+(k, n).

The only subtlety in this argument is that at the starting point, where C is a zero-

dimensional cell fixed to the identity matrix in columns (i1, · · · , ik), Y = (Zi1 · · · Zik)

is also on a zero-dimensional boundary of the amplituhedron, and many of the brackets

[Y 12 · · · (m− 1)i] vanish and so there is ambiguity in how to assign the signs and decide

whether the starting flip pattern in correct. But there is a very easy fix to this problem.

We simply choose C to be in the positive Grassmannian associated only with columns

(i1, · · · , ik) and any m other columns, with tiny values for positive co-ordinates chosen so

that C is very close to the zero-dimensional cell which is the identity in (i1, · · · , ik). Since

we have already established that we get the correct sign-flip pattern for this case, we have

done what was needed — find a slight deformation that has the correct sign flip pattern.

Starting from this point, we do exactly the shifts of columns of C by adjacent columns that

takes C to a generic point in G+(k, n) and the argument follows as before; the number of

flips is preserved in every step and we etablish the claimed result.

6 Factorization

One of the central features of amplituhedron geometry is the way in which the co-dimension

one boundaries of the amplituhedron are closely related to amplituhedra with lower k and

n. This is expected to be a feature of amplituhedra for all m. In the particular case of

m = 4 we expect to see the amplituhedron with some k, n “factorize” into two lower-point

amplituhedra (kL, nL) and (kR, nR) with nL+nR = n+2 and kL+kR = k−1. We can see

an avatar of factorization in “C · Z” description of the amplituhedron, in the form of the

C-matrices on co-dimension one boundaries of the space. For instance when m = 4, on the

co-dimension-one boundaries where [Y ii+ 1jj + 1]→ 0, we can write Y = yfy where yf is

a point in the span of (Zi,Zi+1,Zj ,Zj+1) and y is a (k − 1) plane. This implies that the

C matrix should have a representation where the top row is non-zero only in the entries

(ii+ 1jj + 1). But then, remarkably, positivity forces C to “factorize” in the form

0
BB@

1
CCA

CL

CR

⇤ ⇤ ⇤ ⇤
i ji+1 j+1

CR
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where the blocks CL and CR are individually positive. This is strongly suggestive of

factorization for the amplituhedron geometry itself. Let us examine this geometry more

precisely. Given the point yf in Y which is in the span of (Zi,Zi+1,Zj ,Zj+1), we can

expand yf = (αiZi +αi+1Zi+1) + (αjZj +αj+1Zj+1) ≡ Ii + Ij . Then if we project through

yf , the geometry should consist of “left” and “right” amplituhedron, where the external

data of the “left” are (the projections through yf of) Ii,Zj+1, · · · ,Zi and the “right”

amplituhedron has external data Zi+1, · · · ,Zj , Ij . (It is easy to see that this projected

data is positive). While this fact is strongly suggested by the “factorization” of the C-

matrix, it is not easy to prove from the C ·Z picture; for instance it is not obvious that the

different (kL, nL); (kR, nR) splits are all non-overlapping in Y space. As we will now see, the

factorization structure of the amplituhedron boundary follows simply and provably from

our point of view, as an elementary consequence of the “binary code” of sign-flip patterns.

Let’s start with m = 2. The factorization picture we expect is the following. The

boundaries are at [ Y ii+ 1] → 0; without loss of generality we will consider the boundary

where [Y 12] → 0. We can set Y = yfy where yf = (Z1+xZ2) with x > 0, and y is a (k−1)

plane. If we project through yf , the resulting projected data (Z2,f · · · ,Zn,f ) is still positive.

The “factorization” statement is then that y is in the k−1 amplituhedron. Said in terms of

sign flips, this means that as we take [ Y 12] → 0, the sequence {[Y 23] , [Y 24] , · · · , [Y 2n] }
has (k − 1) flips.

The heart of the matter will be to show that if [ Y 12] → 0, then necessarily [ Y 13] < 0.

Let us assume this for the moment and show how our desired result follows from it. Let’s

write again Y = (Z1 + xZ2)y, then if [Y 13] < 0 we have that x[ 2y13] < 0, but we also

know that [Y 23] > 0 which means that [ 1y23] > 0; thus we must have x > 0. Now we are

interested in the sign pattern of the sequence {sgn([Y 2i] )} = {sgn([ 1y2i] )}. But this can

clearly be related to the sign pattern of the sequence {sgn([Y 1i] )} = {sgn(x[ 2y1i] )} =

−{sgn([Y 2i] }. Thus, the number of sign flips of the sequence {[Y 23] , · · · , [Y 2n] } is the

same as counting the number of sign flips of {[Y 13] , · · · [Y 1n}.
Now we know that the sequence {[Y 12] , [Y 13] , · · · , [Y 1n] } has k sign flips; even

though on the boundary we have [ Y 12] → 0, it was approached from [ Y 12] > 0. Further-

more since [Y 13] < 0, we started this sequence with a single flip. Therefore, the rest of

the sequence {[Y 13] , · · · [Y 1n] } must have (k − 1) flips, as desired.

So we now simply have to prove that as [ Y 12] → 0, we must have [Y 13] < 0. The

proof will importantly use both the fact that the sequence {[Y 1i] } has k sign flips, as well

as sign patterns associated with the positivity of the Z data.

Suppose to the contrary that [ Y 13] > 0. Then we must have k places to the right of 3

where the sign flips occurred, let’s call then b1, · · · , bk; in other words we must have the signs

{
[Y 12] [Y 13] [Y 1b1] [Y 1b2] · · · [Y 1bk]

0+ + − + · · · (−1)k

}
(6.1)

We will now expand Zb1 in terms of the basis of Z1,Z2,Z3,Zb2 , · · · ,Zbk , and here the

positivity of the Z data will be important, since it implies a fixed pattern of signs in this

expansion.
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Indeed let us consider more generally n vectors Za inK dimensions, with all ordered mi-

nors positive. Let us consider (K+1) of these vectors. Then we can expand any one of them

in a basis of the other K; the positivity of the ordered minors implies certain sign patterns

on the coefficients of this expansion. For instance consider K = 4 and any five Za1 , · · · ,Za5
for a1 < a2 < · · · < a5. Then, we can for instance expand Za1 in a basis of the rest:

Za1 =
[a1a3a4a5]Za2 − [a1a2a4a5]Za3 + [a1a2a3a5]Za4 − [a1a2a3a4]Za5

[a2a3a4a5]

= +Za2 −Za3 + Za4 −Za5 (6.2)

where in the second expression we are only keeping track of the signs of the coefficients.

More generally, for positive Z and any ordered a1 < · · · < aK+1, any given Zal can be

expanded in terms of the others, starting with + signs for its immediate neighbors to the

left and right and alternating signs both to the left and to the right:

Zal =
+Zal+1

−Zal+2
+ · · ·

+Zal−1
−Zal−2

+ · · · (6.3)

Applying this general fact to our case of interest we have simply

Zb1 =
+Z3 −Z2 + Z1

+Zb2 −Zb3 + · · ·+ (−1)kZbk
(6.4)

But using this expansion we can compute

[Y 1b1] = [Y 13] − [Y 12] + [Y 1b2] − [Y 1b3] + · · ·+ (−1)k[Y 1bk]

= (+) + (0) + (+) + (+) + · · ·+ (+) > 0
(6.5)

which contradicts [ Y 1b1] < 0. Thus we can’t have [ Y 13] > 0, and must have [Y 13] < 0.

Let us now move on to the more interesting case m = 4. Suppose we are sitting on

the boundary where [ Y 12jj+ 1] → 0. By projecting through either (12) or (jj+ 1) to get

to m = 2, we can conclude that Y = (Z1 + xZ2 + xjZj + xj+1Zj+1)y where y is a (k − 1)

plane and x > 0, with xj , xj+1 having the same sign. Also, from what we’ve just learned

about m = 2, projecting through (jj + 1) we can conclude that the sequence

{[Y 23jj+1] , [Y 24jj+1] , · · · , [Y 2(j−1)jj+1] ; [Y 2(j+2)jj+1] , · · · , [Y 2njj+1] } (6.6)

has (k−1) sign flips. But from the facts that [ Y 12j−1j] > 0, [Y 12jj+1] > 0, we conclude

that xj+1[ y12j−1jj+1] > 0 and xj [ y12jj+1j+2] > 0; since xj , xj+1 have the same sign we

conclude that [ y12j−1jj+1] and [ y12jj+1j+2] have the same sign. But this means that

[Y 2(j−1)jj+1] = (−1)k−1[ y12(j−1)jj+1] and [Y 2(j+2)jj+1] = (−1)k−1[ y12jj+1j+2]

have the same sign. Given the above sequence has (k− 1) sign flips and since we have seen

that [Y 2(j − 1)jj + 1] ; [Y 2(j + 2)jj + 1] have the same sign, there is no sign flip at those

slots, so we conclude that

{[Y 23jj + 1] , · · · , [Y 2(j − 1)jj + 1] } has kR sign flips

{[Y 2(j + 2)jj + 1] , · · · , [Y 2njj + 1] } has kL sign flips
,with kL + kR = k − 1 (6.7)
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Now note that since (jj + 1) = (jIj), the first sign sequence above is precisely what

we would look at to check membership in the kL amplituhedron with external data

Z2, · · · ,Zj ,ZIj . Note also that [Y 12(j + 1)i] = xj [ jy12j + 1i] = −xj [Y 2ijj + 1] .

Thus the number of sign flips of the second sequence is exactly the same as the sequence

{[Y 12(j + 1)(j + 2), · · · , [Y 12(j + 1)n] }; since 12 = 1I1, this precisely checks membership

in the kL amplituhedron with external data (Z1,ZI1 ,Z(j+1), · · · ,Zn).

Strictly speaking, this argument tells us that every point on the boundary of the am-

plituhedron belongs to the factorized product of the lower amplituhedra, but the possibility

is left open that the amplituhedron boundary is only a subset of the sum of the product

of lower amplituhedra and does not fully cover it. However, since we have shown that all

Y = C ·Z do have the right flip count, we know that all the image of all the C matrices of the

factorized form will have the correct flip counts on both the left and right, and we are done.

7 Triangulations from sign flips

For m = 1 and m = 2, keeping track of the sign flip pattern give us a natural triangulation

of the amplituhedron. Let’s consider first m = 1, where Y is a k-plane in (k+1) dimensions.

Start with the easiest case k = 1. Since we know {[Y 1] , · · · , [Y n] } has one sign flip, let’s

focus on the place this flip takes place; there is some j for which [Y j] < 0 but [Y (j+1) > 0.

The full m = 1, k = 1 amplituhedron is then covered for the collection of these regions for all

m. Now, with k = 1 we can always expand Y in some basis ZA,ZB as Y as Y = ZA+xBZB;

in order to describe the m = 1 “cell” where the sign flip occurs in the j’th slot, it is clearly

convenient to choose ZA = Zj and ZB = Zj+1. Then we see that [ Y j] = −x[ jj +

1] , [Y j + 1] = [ jj + 1] . Thus to match the sign pattern in this cell we must have x > 0;

and conversely, every Y of this form with x > 0 will belong to this cell. We can proceed in

the same way to k = 2. Here we can characterize the sign flips completely by specifying the

two slots in the flips took place; so there is some j1 and j2 for which [Y j1] > 0, [Y (j1+1)] <

0, [Y j2] < 0, [Y (j2+1)] > 0. Again we can conveniently expand Y = (Zj1+x1Zj1+1)(Zj2+

x2Zj2+1). Now [Y (j1 + 1)] < 0 tells us that [Zj1Zj1+1(Zj2 + x2Zj+2)] > 0, so then the

positivity of [ Y j1] = x1[Zj1Zj1+1(Zj2 +x2Zj2+1)] tells us we must have x1 > 0. Similarly

x2 > 0. And again conversely, every Y of the form with x1, x2 > 0 will belong to this “cell”

of the m = 1, k = 2 amplituhedron. In general then, we find that

The region in the m = 1 amplituhedron where {[Y 1] · · · [Y n] } flips in slots j1, · · · jk
is covered by

Y = (Zj1 + x1Zj1+1)(Zj2 + x2Zj2+1) · · · (Zjk + xkZjk+1) with xk ≥ 0 (7.1)

We can trivially relate this to the “Y = C.Z ′′ description of the amplituhedron; we can

think of Y as the span of the k points of Yα with Yα = Zjα + xαZjα+1. Then we can also

recognize this as Yα = CαaZa, where

C{i1,··· ,ik}αa =





1 a = iα
xα a = iα + 1

0 otherwise





(7.2)
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with the positive variables Zα ≥ 0. Note that the ordered minors of this C-matrix are all

positive.

The k form associated with this cell is

Ω{i1,··· ,ik} =
k∏

α=1

dlog xα =
k∏

α=1

dlog

(
[Y Ziα+1]

[Y Ziα ]

)
(7.3)

and the full form is

Ω =
∑

1≤i1<···ik≤(n−1)

Ω{i1,··· ,ik} (7.4)

The m = 2 amplituhedron can be triangulated in precisely the same way. The

only difference is that we have to mark the slots (j1, · · · , jk) where the sequence

{[Y 12] , · · · , [Y 1n] } has its sign flips. Now Y is a k-plane in (k + 2) dimensions,

and we can parametrize any k-plane as Y = (+Z1 + x1Zj1 + y1Zj1+1)(−Z1 + x2Zj2 +

y2Zj2+1)(+Z1 + x3Zj3 + y3Zj3+1) · · · ((−1)kZ1 + xkZjk + ykZjk+1); here the alternating

signs in front of Z1 are chosen for convenience. Then just as for m = 1, the pattern of

signs forced by flips at j1, · · · , jk forces all the xα, yα ≥ 0, and conversely any Y of this

form has flips in these slots. We can think of these “cells” in the Y = C · Z language as

Yα = (−1)(α−1)Z1 + xαZjα + yαZjα+1, giving us a C matrix of the form

C{j1,··· ,jk}αa =





(−1)α−1 a = 1

xα a = jα
yα a = jα + 1

0 otherwise





(7.5)

with manifestly positive minors.

We can also see this triangulation very naturally from the winding picture. Let us char-

acterize the winding pattern by looking at the boundaries that are hit when we choose Z∗ to

point in the two directions Z∗ = −Z1, and Z∗ = +Z1; equivalently we are looking at which

boundaries are intersected by the full line joining Z1 and the origin. For k = 1, since we have

winding number 1 the line in the direction −Z1 must intersect a single boundary (i1i1 +1).

The direction +Z1 is degenerate since both (n1) are (12) are hit; a small variation means

only one of the two is hit. So it is useful to characterize a cell just by the (i1i1+1) boundary

hit in the direction −Z1. Next let’s look at k = 2. The winding number here is again 1, and

the direction −Z1 again hits some (i1i1 + 1). But now in the direction +Z1, we find that

a small variation will either cause the line to hit both of (n1), (12) or miss both of them.

Thus winding number 1 means that in the direction +Z1 some other boundary (i2i2 + 1) is

hit. Then for k = 3 with winding number 2, in direction −Z1 we must hit two boundaries

(i1i1 + 1), (i2i2 + 1), while in (a small deformation of) the direction +Z1 we hit one of

(n1), (12), and thus one more boundary (i3i3 + 1) is hit. This pattern obviously continues

for all k: the line joining Z1 to the origin intersects k boundaries (i1i1 + 1), · · · , (ikik + 1).

This picture corresponds precisely to what we would see by projecting through Z1, and
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the cells correspond to exactly the same one we arrived at from the flip picture.

1

Y

i3

i3+1

i2+1

i1+1

i1

i2

i4

i4+1

i5

i5+1

The 2k form associated with this cell is

Ω{i1,··· ,ik} =
∏

α

dlog xα dlog yα (7.6)

=
∏

α

dlog

(
[Y Z1Ziα ]

[Y ZiαZiα+1]

)
dlog

(
[Y Z1Ziα+1]

[Y ZiαZiα+1]

)

=
dk(k+2)Y

Vol(GL(k))

×
[
[
(
Y k−1)α1 Z1Zi1Zi1+1] [

(
Y k−1)α2 Z1Zi2Zi2+1] · · · [

(
(Y k−1)αk Z1ZikZik+1] εα1···αk

]k
∏
α[Y Z1Ziα ] [Y Z1Ziα+1] [Y ZiαZiα+1]

As usual the full form arise from summing over the form for each piece of the triangulation

Ω =
∑

1≤i1<···ik≤(n−1)

Ω{i1,··· ,ik} (7.7)

This form also has spurious poles that cancel between the terms.

This most direct connection between sign patterns and triangulations of the ampli-

tuhedron is restricted to the simplest m = 1, 2 amplituhedra. Starting with m = 3, 4, there

isn’t a simple relation between the image of a particular cell of G+(k, n), and any one sign

pattern.

8 Loops

We now move on to loops, beginning with a quick review of the usual definition of the

loop-level amplituhedron. We fix m = 4; at L loops, we have (k + 2)-planes (Y AB)i for

i = 1, · · · , L, all of which intersect on a common k-plane Y . We can describe any of the
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planes (Y AB)i as the span of Y together with a 2-plane (AB); together with a redundancy

that allows us to translate (AB) in any direction of Y . If we denote (AB)i by (A1A2)i, the

L-loop amplituhedron is defined to be all the Y I
α and AIσ;i of the form

Y I
α = CαaZIa , Aσ,i = D(i)

σaZIa (8.1)

where we have new (2× n) matrices D
(i)
σ,a which are defined up to translations by the Cαa.

Together with Cαa, these satisfy an extended positivity constraint of the “loop-positive

Grassmannian”, which say that, for any collection of 0 ≤ l ≤ L of the D’s, D(i1), · · · , D(il),

the ordered minors of the matrix 


D(i1)

...

D(il)

C




(8.2)

are all positive.

Let us turn to extending our topological characterization of the amplituhedron to loop

level. When we project through Y , Y AB projects down to a 2-plane we can call (AB). It

is then natural to conjecture the following: projecting through (Y AB) the 2-dimensional

data should correspond to the m = 2, (k + 2) amplituhedron, while projecting through Y

we should end up in the m = 4, k amplituhedron as usual. As before, we can phrase this

in terms of projections down to the m = 1 amplituhedron, which tells us that for fixed a,b,

{[(Y AB)ai]} has (k+2) sign flips for all a, {[Y abb+1i]} has k sign flips for all a, b (8.3)

Again as before, this has the effect of requiring that [(Y AB)ii+ 1] > 0, [Y ii+ 1jj+ 1] > 0,

and if we assume these conditions, then it suffices to check the sign flip pattern only

through one set of projections. This leads to the most efficient characterization of the

1-loop amplituhedron as those (Y AB), Y for which

[(Y AB)ii+ 1] > 0, [Y ii+ 1jj + 1] > 0 (8.4)

{[(Y AB)12], · · · , [(Y AB)1n]} has (k + 2) sign flips (8.5)

{[Y 1234], · · · , [Y 123n]} has k sign flips (8.6)

When there is more than one loop, we have several (k+2)-planes (Y AB)γ , with the k-plane

Y common to all of them. The conditions are exactly the same as the above for each loop

separately. But it is also natural to demand after projecting through any of the (AB)γ to

get to a 2-dimensional space, that further projecting through (AB)ρ should land us in the

“m = 0 amplituhedron”, which is just the condition that [Y (AB)γ(AB)ρ] > 0.

Note that this definition gives us an extremely simple picture for the loop ampli-

tuhedron. At one loop, we simply have that the amplituhedron is the intersection of the

m = 2, (k + 2) and the m = 4, k “tree” amplituhedra! That is, (Y AB, Y ) is in the 1-loop

amplituhedron, if the (k+2) plane (Y AB) is in the m = 2 amplituhedron, with the k-plane

Y inside (Y AB) is in the m = 4 amplituhedron. And for any number of loops we have

the further intersection with the “m = 0” amplituhedron. None of this is obvious from
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the “(C,D)′′ picture of the loop amplituhedron, and this even suggests new approaches to

triangulating the amplituhedron.

Consider for example the case of k = 1, L = 1, n = 5. In the new picture, we simply

have (Y AB) in the m = 2, n = 5, k = 3 amplituhedron where it is just the G+(3, 5) positive

Grassmannian. Now this plane slices through the tree amplituhedron (just the polytope

given by the convex hull of the external data for k = 1). Projectively (Y AB) is a plane

and the intersection with this polytope is just a pentagon on this plane. And the point Y

on (Y AB) is forced to lie inside this pentagon! Note this also suggests a different way of

expressing the loop integrand/amplituhedron form than the usual one coming from BCFW

triangulation. Traditionally for this case we would write the form as “4-form × 4-form”: one

4-form (for the Y dependence corresponding to the “R-invariant”), multiplied by another

4-form for the loop (AB). In the new picture, it is more naturally expressed as “6 form ×
2 form”, where the 6-form is the canonical form for (Y AB) in the m = 2 amplituhedron,

and the “2-form” is the one for Y on (Y AB) inside the aforementioned pentagon.

As another example, let us look at the case of k = 0, n = 5, L = 2. In the old

definition, we look at two (2 × 5) “D” matrices D1,2. We first have to demand that

both D1,2 are positive (which means that AB1 and AB2 are in the usual 1-loop (same as

m = 2 tree) amplituhedron), together with the requirement that all the ordered (4 × 4)

minors of the (4 × 5) matrix stacking (D1, D2), are positive. This certainly implies that

〈(AB)1(AB)2〉 > 0, but seems to demand even more. However, our new claim is that,

once (AB)1, (AB)2 are in the 1-loop amplituhedron, then demanding (AB)1(AB)2 > 0 is

enough to enforce being in the 2-loop amplituhedron.

It is straightforward to check this picture by computing the full 2-loop amplitude,

but in order to illustrate the methods in a simpler non-trivial example, let us compute a

“cut” of the 2-loop n = 5 amplitude where 〈AB12〉 → 0, and 〈CD34〉 = 0, 〈CD45〉 = 0.

For simplicity we use positive data where Z5 = Z4 − Z3 + Z2 − Z1 and also normalize

〈Z1Z2Z3Z4〉 = 1. Given the 3-term triangulation of the 1-loop amplituhedron, it is easy to

see that on this cut CD only belongs to a single cell, and can be put in the form C = Z3 +

uZ4, D = Z4 + vZ5 with u, v > 0. There are two one-loop cells which cover 〈AB12〉 = 0; so

just demanding that (CD), (AB) are in the 1-loop amplituhedra tells us we can parametrize

C=Z3+uZ4,D=Z4+vZ5,A=Z1+xZ2,B=

{
Z3+yZ2+zZ4

−Z1+αZ4+βZ5

}
;u,v,x,y,z,α,β>0 (8.7)

Now in each of these cells, we have the additional condition that 〈ABCD〉 > 0. For

instance in the first cell, we have

〈ABCD〉 = (1 + v)y + uv(1 + x+ y)− v(1 + x)z > 0 (8.8)

and thus we have the inequalities

x, y, u, v > 0, 0 < z <
(1 + v)y + uv(1 + x+ y)

v(1 + x)
(8.9)
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and the corresponding form is

Ω(1) =
dx

x

dy

y

du

u

dv

v
dz


1

z
− 1

z − (1+v)y+uv(1+x+y)
v(1+x)


 (8.10)

Exactly the same exercise for the second cell gives us the inequalities

x, β, u, v > 0, 0 < α <
x(1 + v + v) + β(1 + x)

v(1 + x)
(8.11)

and the form

Ω(2) =
dx

x

dβ

β

du

u

dv

v
dα


 1

α
− 1

α− x(1+v+v)+β(1+x)
v(1+x)


 (8.12)

Now we simply add the two forms. Of course since we have used different variables to

parametrize B in the two cells, we have to make the co-ordinate change between them. We

can always expand B as either B = Z3+yZ2+zZ4 or as B = −Z1+αZ4+βZ5 (of course in

general with no sign restriction on y, z, α, β). Matching (AB) in these two co-ordinates gives

us the relationship between the parameters as α = −x/(1+x+y), β = x(1+z)/(1+x+y).

Inserting this into the expression for Ω(2) and adding Ω(1) gives an expression for

Ω = Ω(1) + Ω(2):

Ω=dxdydzdudv
uv(1+x+y)(1+x+y+z+xz)+y(1+x+y+v(1+x+y)+z(1+x)

uvxy(1+x+y)z(1+z)((1+v)y+uv(1+x+y)−v(1+x)z)
(8.13)

This expression precisely (and highly non-trivially) matches the corresponding cut of the

2-loop amplitude.

Our new description of the full amplituhedron for both trees and loops now has a

satisfyingly strong resonance with three central aspects of scattering amplitude physics.

The “m = 0” part of the geometry is about understanding the geometry of mutual positivity

between loops 〈(AB)γ(AB)ρ〉 > 0; this is present even for the simplest case of k = 0, n = 4,

and is associated with the physics of the universal IR divergences and the cusp-anomalous

dimension. The “m = 4” part of course has to do with the physics of tree amplitudes.

Finally the “m = 2” part is the physics of the leading quantum corrections.

9 The amplituhedron in twistor space

As we have remarked, it is striking that our new picture of the amplituhedron makes

reference only to what the configuration of Z’s looks like after projecting the (k + m)-

dimensional Z data through Y . For the case of relevance to scattering amplitudes with

m = 4, this means that everything can be described as a property of the configuration

of bosonic momentum-twistor data! This is pleasing, since from a physical point of

view, while the m = 4-dimensional momentum-twistors have a manifest importance as

specifying the external kinematical data, the introduction of the extra k components

of the Z’s, and the k-plane Y , is more mysterious, related to a “bosonization” of the

supersymmetry. This structure is needed since the canonical amplituhedron form lives
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in Y space, and the super-amplitude is extracted from it [5]. But given that our new

definition of the amplitude seems to make reference only to the m-dimensional space, it

would be very pleasing if the geometry of the amplituhedron as well as the superamplitude

could be directly associated with the m-dimensional space, without ever referring to Y or

the underlying (m+ k) dimensional Z data.

This is very easy to do. We are working with the configuration space M(m,n) of n

vectors Za in m dimensions. Let us define the subspace ofM(m,n) where the configuration

has the correct “winding” or “flip” pattern we have discussed earlier appropriate to some k

as W(k,m, n) ⊂M(m,n). Now, the space M(m,n) is m× n dimensional, and the subset

W(k,m, n) is clearly a top-dimensional subspace and is also m × n dimensional. On the

other hand, the amplituhedron is k ×m dimensional and has lower dimension. We would

thus like to identify subspaces in M(m,n) that can be obtained from some fixed (m + k)

dimensional data Za by projecting though some k-plane Y .

But this is both natural and trivial. Suppose we begin with some fixed set of vectors

Z∗a that give us a point in M(m,n). We can think of this as giving a fixed m-plane Z∗ in

n dimensions. Now, let us consider the affine subspaces which are linear translates of this

m-plane, by translating in directions lying in some fixed k-plane ∆ in n dimensions.

�
k-plane

Z⇤
m-plane

k⇥m dimensional
Translate Subspace

Y


Z⇤
�

�A�ne Subspace

In equations, we look at the space of all Zia that can be obtained starting from Zi∗a
and translating in the direction of ∆α

a , i.e. all Zia of the form

Zia = Zi∗a + yiα∆α
a (9.1)

(Here i = 1, · · · ,m is the vector index on the m−dimensional space).

Note that such a subspace is specified by giving a (k +m)× n matrix of data,

ZIa =

(
Zi∗a
∆α
a

)
(9.2)

which is what we think of as “fixed external data” in the usual amplituhedron story. Here

the index I runs from I = 1, · · · , (k + m); we can think of the first m components as
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corresponding to the i indices and the last k components as corresponding to the α indices.

Furthermore, the Za above are precisely what we get by projecting the (k+m)-dimensional

Za data through the k-plane Y I
α in (k +m) dimensions, where

Y I=i
α = −yiα, Y I=β

α = δβα (9.3)

Thus from the m-dimensional point of view, specifying (k + m)-dimensional data is

actually picking out a particular translation of the subspace ofM(m,n) from a k×m space

of possible translations. We can refer to this translation of M(m,n) as the affine subspace

Y[Z].

For any of these affine subspaces, we can look at the part of the subspace which is

compatible with the correct winding/flip pattern, and gives us the m-dimensional charac-

terization of the amplituhedron Am,k,n[Z]:

Am,k,n[Z] = Y[Z] ∩W [m, k, n] (9.4)

In this picture, there is one last vestige of the (k+m) dimensional picture — we must

demand that this affine subspace be “positive” in the sense that all the ordered minors

of the Z matrix are positive. It is interesting to ask the extent to which we can remove

even this restriction. To begin with we can ask the following obvious question. Suppose we

have some m-dimensional configuration of Z’s satisfying the right winding condition. Is it

guaranteed that we can think of having obtained this data by projecting positive (k +m)-

dimensional data Z through some k-plane Y ? Said more prosaically: given some (m× n)

matrix of Za’s that satisfies the winding/flip criteria, can we always add k more rows so

that the resulting (k +m)× n matrix is positive?

While we do not have a general proof of this statement, we suspect that the answer is

likely “yes”. A sketch of an approach to a proof might be the following, setting m = 2 for

simplicity. We’d like to show that whatever m = 2 dimensional data we have with correct

winding, we can uplift it to positive (k+2) dimensional data. Now, if we have two different

collections of Zi with the same orientation for the windings for both curves, then we should

be able to smoothly deform one configuration into the other. If the orientations of each seg-

ment (ii+1) are also the same, then it seems plausible that such a deformation can be gen-

erated by a combination of elementary moves on the vertices Zi: rescaling Zi by a positive

constant, or moving Zi in the direction of either of its neighbors; i.e. a series of operations of

the form Zi → xiZi+xi−1Zi−1+xi+1Zi+1. But these moves on the projected Zi follows un-

der projection from exactly the same operation on the Z’s in the (k+2)-dimensional space

Zi → xiZi+xi−1Zi−1+xi+1Zi+1, and this operation preserves the positivity of the Z data.

Finally this picture clearly extends to all loop orders. For the case m = 4 of relevance

to scattering amplitudes, aside from the Za we also have L planes (AB)α which are 2-planes

in 4-dimensions. We can defineW(m = 4, k, n;L) ⊂M(m = 4, k, n)×(AB)L as that subset

that has the correct winding properties at loop level. Then, the loop-level amplituhedron is

Am=4,k,n[Z] =
(
Y[Z]× (AB)L

)
∩W [m = 4, k, n;L] (9.5)
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10 (Super)-amplitudes as differential forms on twistor space

Having seen the m-dimensional image of the amplituhedron without any reference to Y , let

us go further and discuss how to think about the canonical form and the scattering (super)-

amplitude in an intrinsically m-dimensional way — as we will see the super-amplitude is

literally a degree m × k differential form on the configuration space M(m,n) of the m-

dimensional Za’s. Before showing how this works in generality, let’s start with a simple

example familiar from the simplest scattering amplitudes with m = 4, k = 1, which are

built out of the well-known “R-invariants”. Let’s first describe the R-invariant in standard

terms, as a super-amplitude, which we can write as

(12345) =
δ4 (〈1234〉η5 + cyclic)

〈1234〉 · · · 〈5123〉 (10.1)

Now in the language of the amplituhedron, we instead talk about a 4-form with logarithmic

singularities on Y space, that is

Ω(Y,Za) = dY log
[Y 1234]

[Y 5123]
· · · dY log

[Y 4512]

[Y 5123]
=

[Y d4Y ] [ 12345] 4

[Y 1234] · · · [Y 5123]
(10.2)

Here the subscript on dY is to remind us that we are to take the external data as fixed,

with the differentials acting on Y . Starting from this form there is a simple prescription for

extracting the superamplitude, but we will present a more direct and striking connection.

Note that of course all the brackets occurring as arguments of the dlog’s above contain Y ;

thus we can interpret them all as 4-brackets on the space of momentum-twistors obtained

when projecting through Y . It is then very natural to look at a 4-form, not on Y space,

but on momentum-twistor space, as

Ω(Za) = dZ log
〈1234〉
〈5123〉 · · · dZ log

〈4512〉
〈5123〉 (10.3)

Now, one can directly verify that this form can be re-written as

Ω(Za) =
δ4 (〈1234〉dZ5 + cyclic)

〈1234〉 · · · 〈5123〉 (10.4)

Note that remarkably, this is precisely the R-invariant, if the (anti-commuting) super-

variables ηIa are replaced by the differentials ηIa → dZIa ! We will shortly understand why

this happens on general grounds, but let us first make some general comments.

Suppose we have some m× k form on the Grassmannian, and let us consider the pull-

back of this form to some m × k dimensional subspace of G(k + m,n). We can describe

this by some Cαa(x1, · · · , xm×k). Now, consider those k-planes that are constrained by

being orthogonal to some m-plane, Z; this will generically intersect the subspace in points;

concretely we are just saying that the equations

Cαa(xi)Z
I
a = 0, has solutions xi = xi(Za) (10.5)
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We would like to push forward any form from the Grassmannian onto Za space, in other

words we would like to re-write the measure dx1 · · · dxm×k in terms of the wedge products

of m× k of the dZa’s. The result is simple; we will show that

dx1 · · · dxm×k =

∫
dy1 · · · dym×k δm×k [Cαa(y)Za] δ

m×k [CαadZa]

=

∫
dy1 · · · dym×k δm×k|m×k [Cαa(y)Za] with ηIa → dZIa (10.6)

The proof is easy. Let’s start with taking the differential of CαaZ
I
a = 0, to find

∂Cαa
∂xi

ZIadxi = −Cαa(x)dZIa (10.7)

Taking the m× k power of both sides we find

det{αI,i}

(
∂Cαa(x)

∂xi
ZIa

)
dx1 · · · dxm×k = δm×k (CαadZa) (10.8)

so that

dx1 · · · dxm×k =

[
det{αI,i}

(
∂Cαa(x)

∂xi
ZIa

)]−1
× δm×k (Cαa(x)dZa)

=

∫
dy1 · · · dym×k δm×k [Cαa(y)Za] δ

m×k [CαadZa] (10.9)

as desired.

Thinking of the canonical amplituhedron forms instead as m × k forms on the m-

dimensional space of Za data exposes some remarkable relationships between forms that

are not evident from the conventional Y -space picture. Let us return to the m = 2 ampli-

tuhedron for which we gave a triangulation and determined the form in section 7. We can

re-interpret these as forms on the space of 2-dimensional vectors Za. For k = 1, from the

triangulation
∑

i(1ii+ 1) of the polygon we have

Ωk=1,m=2 =
∑

i

(〈Z1Zi〉dZi+1 − 〈Z1Zi+1〉dZi + 〈ZiZi+1〉dZ1)
2

〈Z1Zi〉〈Z1Zi+1〉〈ZiZi+1〉
(10.10)

But there is now a beautifully simple expression for the 2 × k form for any k, we have

Ωk,m=2 =
Ωk
k=1,m=2

k!
(10.11)

This understanding of the scattering amplitude as a differential form obviously extends

to loop level as well. In addition to the external twistor data Za, we also have L 2-planes

(AB)α, and we have a 4 × (k + L) form on {Za, (AB)α} space. Note that in this setting

“the loop integrand” is just one component of the 4(k + L) form. For instance, even the

simplest n = 4 1-loop amplitude corresponds to the 4-form

dlog
〈AB12〉
〈AB13〉 · · · dlog

〈AB14〉
〈AB13〉 = (10.12)

=
〈ABd2A〉〈ABd2B〉〈1234〉2
〈AB12〉 · · · 〈AB14〉 + · · ·+ 〈AB12〉2〈ABdZ3dZ3〉〈ABdZ4dZ4〉+ · · ·

〈AB12〉 · · · 〈AB14〉 (10.13)
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The first terms, where all 4 d’s hit (AB), is the familiar 1-loop integrand; then we have

terms with a mixture of d’s hitting the (AB) and the Za, and the last term, where the d’s

hit only the Za.

Our new picture of scattering amplitudes as differential forms is very satisfying. The

“super”-part of superamplitudes has always presented an obstruction between linking prop-

erties of the integrand on the one hand, and the final integrated amplitudes on the other.

In particular, recent years has seen a fascinating emergence of cluster algebra structure in

the polylogarithms found in N = 4 SYM amplitudes — the arguments of the polylogs are

expressed as cross-ratios of momentum twistor data [18] naturally associated with cluster

algebras [19, 20] for the external kinematical data inM(4, n). This has long cried out for a

link with the positive Grassmannian/amplituhedron structure at the level of the integrand,

but the “η′′’s in superamplitudes obscure this connection. The bosonization of the inte-

grand afforded by the amplituhedron improves the situation, but leaves us with external

data that is (4 + k) dimensional while obviously the cluster structure in integrated results

only knows about 4-dimensional momentum twistor data. But finally with the new picture

of amplitudes as forms, integrand and amplitudes are on a fully equal footing, depending

on the same variables. As we have seen, however, the “positive geometry” associated with

external data in the 4-dimensional space is not merely “positivity”, but involves further

combinatorial/topological “winding/flip” criteria. It will be fascinating to understand how

these may be reflected in the transcendental functions appearing after loop integration.

11 Parity

Parity is a fundamental symmetry of scattering amplitudes which is conventionally com-

pletely obscured in momentum-twistor space. The bosonic action of the symmetry is easy

to see: given momentum twistors ZIa , we have the parity conjugates WaI which are the

planes (Za−1ZaZa+1); with an additional factor of (−1) for a = 1 and a = n. Now, for

the full scattering amplitudes labeled by (n, k̂), parity interchanges k̂ ↔ ̂(n− k); but in

terms of k this is the rather more peculiar looking interchange of k ↔ (n − k − 4), which

presumably reflects a symmetry k ↔ (n − k −m) for general m. As we will now see, our

“winding” picture gives a beautifully simple understanding of these symmetries.

The are in fact two different Z2 symmetries that in concert give us the physical parity.

The first one is extremely simple but already shows strikingly why a k ↔ (n − m − k)

symmetry should be expected. Suppose we simply change Za → (−1)aZa i.e. we flip the

sign of ever other Z. Now consider (e.g. for m = 2) the sequence {〈12〉, 〈13〉, · · · 〈1n〉}. Note

that the number of possible positions of sign-flips of this sequence is (n−2), and is (n−m)

for general m. Now, obviously if two consecutive signs agree before this transformation,

they will disagree afterwards, and vice-versa. So this changes the number of sign flips from

k → (n−m− k)!

This is a rather trivial Z2 which knows nothing about the Wa. There is a more non-

trivial fact featuring the Wa: if the Z’s are in the amplituhedron, i.e. that 〈ii+ 1jj + 1〉 >
0 and the sequence {〈1234〉, · · · , 〈123n〉} has k sign flips, then the W ’s are also in the

amplituhedron with the same value of k!
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First note that as long as 〈ZiZi+1ZjZj+1〉 > 0, then also 〈WiWi+1WjWj+1〉 > 0, since

〈WiWi+1WjWj+1〉 = 〈ZiZi+1ZjZj+1〉〈Zi−1ZiZi+1Zi+2〉〈Zj−1ZjZj+1Zj+2〉 (11.1)

Note that for this conclusion we don’t have to assume that all the minors of these Z’s are

positive (which they aren’t!), only that the minors of the form 〈aa+ 1bb+ 1〉 > 0.

Now, we only have to show that the sequence {〈W1W2W3W4〉, 〈W1W2W3W5〉, · · ·
〈W1W2W3Wn〉} has k sign flips. A short computation of these four brackets turns this

into the pretty statement that the sequence

{〈1(234)〉, 〈1(345)〉, · · · , 〈1(n− 2n− 1n)〉} has k sign flips (11.2)

This statement is easy to prove. Let us consider the following sequences of minors

〈1234〉 〈1235〉 〈1236〉 · · · 〈123n〉
〈1234〉 〈1345〉 〈1346〉 · · · 〈134n〉
〈1234〉 〈1345〉 〈1456〉 · · · 〈145n〉

...
...

... · · · ...

〈1234〉 〈1345〉 〈1456〉 · · · 〈1(n− 2n− 1n)〉

(11.3)

The first row is our usual sequence {〈123i〉}, which has k sign flips. The second row has the

same first entry as the first row, and thereafter is of the form 〈134i〉. The third row has the

same first two entries as the second row, and is thereafter of the form 〈145i〉, and so on. Now

it is easy to see that the number of sign flips of the i’th and (i+1)’st rows must be the same.

The first parts of the two rows coincide; thereafter the argument is exactly the same as what

we used to show that the number of sign flips for the m = 2 amplituhedron is independent of

the point we project through, namely, that by Plucker, we know that either there are no sign

flips in successive slots, or both flip, or if the top row flips, the next slot where a flip occurs

just in one row, it must occur in the bottom row. Since we know that all the last entries are

of the form 〈ii+ 11n〉 and thus have a fixed sign, this means that the number of sign flips

must be equal. In this way we work our way from the top to bottom rows, and conclude

that the sequence {〈1(234)〉, 〈1(345)〉, · · · , 〈1(n− 2n− 1n)〉 has k sign flips, as desired.

The statement of parity at loop level is more interesting. Let’s work at one-loop to

begin with. We know that when we project through AB, the sequence 〈AB12〉, 〈AB13〉, · · · ,
〈AB1n〉 should have k + 2 sign flips. Now, we would like to see what happens when we

dualize the Zi to Wi; our claim is that loop-level parity is the statement that the sequence

{〈ABW1W2〉, 〈ABW1W3〉 · · · , 〈ABW1Wn〉} has k sign flips (11.4)

In general, we can expand

〈ABW1Wj〉 = 〈ABn1〉〈2j−1jj+1〉−〈ABn2〉〈1j−1jj+1〉+〈AB12〉〈nj−1jj+1〉. (11.5)

If we want to write this back with Y ’s, we have to add a Y to both sets of brackets,

[Y ABn1] [Y 2j − 1jj + 1] − [Y ABn2] [Y 1j − 1jj + 1] + [Y AB12] [Y nj − 1jj + 1] . The

claim is that this sequence should have k sign flips. For k = 0, this is the statement that

all 〈ABW1Wi〉 are positive, a statement we will say more about in section 14. We don’t

have a proof for general k, though we have checked these statements numerically for a large

range of k, n, L.
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12 Different winding sectors, M×M and correlation functions

Given that the amplituhedron has maximal winding, it is natural to ask whether there

is any meaning to sectors with different winding/flip patterns. Let us start again with

the case of m = 2, k = 2. The amplituhedron corresponds to winding number 1, but is

there some meaning to the sector where we still have [Y ii + 1] > 0 but where we have

winding number 0? The interpretation of the m = 2 amplitudes as the 1-loop integrand

for the MHV amplitudes suggests an obvious candidate. We know that by parity we can

replace Za with Wa = (Za−1ZaZa+1); doing this takes us from the integrand for MHV

amplitudes to that for MHV amplitudes. So it is natural to conjecture that the canonical

form associated with winding 0 sector corresponds to the MHV 1-loop integrand. We

have verified empirically that this is correct, by identifying the MHV integrand with the

canonical form with logarithmic singularities on the minimally winding space. The forms

are of course different, for instance for n = 5 we have

MMHV =
〈AB(512) ∩ (234)〉〈3451〉 − 〈AB51〉〈1234〉〈2345〉 − 〈AB34〉〈4512〉〈5123〉

〈AB12〉〈AB23〉〈AB34〉〈AB45〉〈AB51〉 (12.1)

while

MMHV =
〈AB13〉〈2345〉〈4512〉 − 〈AB51〉〈1234〉〈2345〉 − 〈AB34〉〈4512〉〈5123〉

〈AB12〉〈AB23〉〈AB34〉〈AB45〉〈AB51〉 (12.2)

It is interesting to note a feature of the geometry also reflected in the forms. The

winding number 1 and 0 regions are almost disjoint, in the sense that they don’t touch

on co-dimension one boundaries. Only when we go to higher-dimensional boundaries that

correspond to collinear regions do the two regions touch. This is reflected in the forms:

while both forms have the same “physical poles”, the forms are different, and the residues

on the co-dimension one boundaries are also different. But upon taking enough residues

and going to high enough co-dimension boundaries, the forms match when the shared

boundaries match.

We can continue in this way to discuss any number of loops, still with k = 0. When

projecting through each (AB)i, we either get winding number 0 or 1. If we define the

all-loop integrand for MHV and MHV amplitudes to beM, written in a loop expansion as

M = 1 + g2M1 + g4M2 + · · · ,M = 1 + g2M1 + g4M2 + · · · (12.3)

then

MM = 1 + g2(M1 +M1) + g4(M2 +M2 +M1M1 +M1M1) + · · · (12.4)

At each loop order, we are adding over all the possible winding numbers, and thus M×M
is naturally decomposing the space defined simply by the boundary inequalities

〈(AB)jii+ 1〉 > 0, 〈(AB)i(AB)j〉 > 0 (12.5)

into the pieces with different winding numbers. It is interesting to note that at 1-loop there

is a well-defined form with logarithmic singuarties on these boundaries. Interestingly, it
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does not correspond to the parity even sum of the MHV and MHV integrands,but to the

parity odd difference between them, which vanishes for n = 4 but is non-vanishing for

higher n.

It is interesting that this space defined by the “obvious physical boundaries” inequal-

ities has a nice physical interpretation. Indeed we began our investigations in this paper

by noting that the space we get simply from imposing the obvious physics boundaries

[Y ii+ 1jj + 1] > 0, [Y (AB)αii+ 1] > 0, [Y (AB)α(AB)β ] > 0 (12.6)

does not give us the amplituhedron, but it may find a natural meaning related to the

“square” of the amplitude, and simplified even further, to correlation functions. Indeed

recent years have seen a beautiful connection between amplitudes and the light-like limit

of stress-tensor correlators in N = 4 SYM. For MHV amplitudes, it is natural to think

of the lines (ZiZi+1) and the loops (AB) on the same footing; we can indeed think of a

collection of lines L1,··· ,n+L. Going to the light-like limit simply picks n of these lines Li
out and asks La to intersect La+1 cyclically. The correlation function itself is however a

fully permutation invariant function of all the Li. It is therefore tempting to associate

the geometry 〈LiLj〉 > 0 with the correlation function. For general k, we can do the

same thing; we consider some number of (k + 2)-planes in (k + 4) dimensions (Y Li) for

i = 1, · · · , (n+ L), which overlap on Y , in such a way the planes are “mutually positive”

[Y LiLj ] > 0 (12.7)

This is a perfectly well-defined space, but the crucial question is, how can we associate

a form with this geometry to reproduce the correlation functions? An inspection of the

correlators themselves shows that they do not have logarithmic singularities — upon taking

residues we encounter double-poles that ruin the logarithmic property. It would be fasci-

nating to nonetheless find some way of associating a form with this space. One obvious

strategy is simply to ask the form to become logarithmic in the lightlike limit, where we

know that the geometry does decompose into different winding sectors with well-defined

forms associated with the square of the amplitude M2. But it would be much more satis-

fying if this could be done more intrinsically; see [21] for some interesting attempts along

these lines. Obviously any such picture must contain all the intricate information associated

with the topology of the amplituhedron.

There are a number of other interesting objects closely related to the amplitudes and

the amplituhedron canonical form. For instance we saw that for m = 2, the canonical

form for any k is the k’th power of the form for k = 1; while this doesn’t hold true for

m = 4, we have nonetheless observed this “k’th power form” is interesting, for instance

it non-trivially has only simple poles. Even more interestingly, at loop level we have the

natural “ratio function” which is the ratio Mn,k,L/Mn,k=0,L. Might any of these objects

be associated with different winding sectors?

13 A “dual” of the amplituhedron

Continuing in the vein of exploring the significance of different winding/flip sectors, it is

natural to ask about a natural counterpart to the amplituhedron: what space do we define
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if, in projecting through some k′-plane, the resulting data has “minimal” winding? It is in

particular natural to ask this for projecting through k′ = m-dimensional planes Ỹ in (k+m)

dimensions; the dimensionality of Ỹ space is m× k, the same as the amplituhedron. Now,

“minimal flips” has a meaning; as we saw in our discussion of the k = 0 amplituhedron, the

positive Grassmannian itself gives us configurations of “zero flips” via projection down to

one dimension. So, it is natural to define the subspace of m-planes in (k +m) dimensions

which satisfy

〈Ỹ Za1 · · · Zak〉 > 0 for a1 < · · · < ak (13.1)

A related motivation for defining this space is simply the following. We may have extremely

naively thought that starting with positive (k+m)-dimensional data and projecting through

Y in the amplituhedron would have left us with positive data. As we have seen this is wrong,

but it is natural to ask what planes Ỹ do have such a property. Note that in the language

of section 5.1, the Ỹ are “positive projections” Pm→m′=0 down to m′ = 0. The space of

Ỹ ’s of this form is not empty, easy examples are afforded by looking at a matrix of positive

Za data that has the form of the “moment curve”



1 · · · 1

x1 · · · xn
x21 · · · x2n
...

...
...

xk+m−11 · · · xk+m−1n




withx1 < · · · < xn (13.2)

All the ordered minors of this matrix are given by Vandermonde determinants and are

positive for x1 < · · · < xn. But if we take Ỹ to be an m−plane given by the bottom m

rows of this matrix, then projecting through Ỹ will give us k dimensional data that simply

corresponds to the top k rows of the matrix which are still positive.

Note that the space of Ỹ ’s defined in this way has the property that

〈Ỹ · Y 〉 > 0 for all Y in the amplituhedron (13.3)

For the special case of k = 1 for any m, the Ỹ ’s are m-planes in m + 1 dimensions,

which are points in the dual Pm. Then the inequalities

〈Ỹ · Za〉 > 0 (13.4)

are the equations defining a polytope in the dual Pm, whose facets are the Za. So for

k = 1, this space can be identified with the dual of the (cyclic) polytope coming from the

external data. The obvious extension to general k gives one natural working definition for

a dual of the amplituhedron, as described in [10, 17].

This definition can naturally be extended to loops when m = 4. At one-loop, we have

Ỹ which is a four-plane in (4 + k) dimensions; but we also have a 2-plane ỹ inside Ỹ ; again

this space of 4-planes Ỹ with a 2-plane ỹ inside it has the same dimensionality as the 1-loop

amplituhedron for m = 4. Requiring minimal winding when projecting through Ỹ and ỹ

requires

〈Ỹ Za1 · · · Zak〉 > 0, 〈ỹZa1 · · · Zak+2
〉 > 0 (13.5)
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At L-loop order, we have L 2-planes ỹi; in addition to the above constraints, we must

also have that 〈〈ỹiỹj〉〉 > 0, where 〈〈abcd〉〉 represents contraction with the antisymmetric

tensor on the 4-dimensional space defined by the 4-plane Ỹ . Said in the (4+k)-dimensional

terms, this says

εI1···I4J1···Jk(ỹi)I1I2(ỹj)I3I4 = ρεI1···I4J1···Jk ỸI1I2I3I4 , with ρ > 0 (13.6)

The space we have described certainly gives us a natural geometric “dual” of the

amplituhedron. As described in [10, 17], there are further motivations to find a dual

amplituhedron; by analogy with the well-understood case of k = 1, we can hope for a

direct and intrinsic definition of the canonical form with logarithmic singularities on the

amplituhedron expressed as an integral over the dual geometry. As already described

in [17] for the simplest case of G+(2, 4), a direct extension of the analogy with k = 1

already involves novel features not seen for polytopes. It will be interesting to see if the

definition of the dual amplituhedron we have given will nonetheless end up playing an

important role in determining the canonical form for both tree and loops.

14 Cutting out the amplituhedron with inequalities

We began by asking whether there was a way of defining the amplituhedron analogous to the

inequalities that cut out a polytope but immediately saw the obvious boundary inequalities

are not enough. We have seen that these conditions must be supplemented by topological

ones to determine the amplituhedron. Here we describe an alternative description which

describes the amplituhedron purely by cutting it out with inequalities; we content ourselves

with a brief description of these inequalities here, leaving a more complete investigation of

this subject to future work.

As we have seen, the “winding” picture becomes natural when projecting through Y

— we are focusing on the information that is contained in all the directions not spanned

by the k-plane Y . Amusingly, the picture of inequalities is defined precisely in the opposite

way, by looking at an interesting configuration of points inside Y . Let us start with m = 2.

We would like to identify points in the k-plane Y , which lives in (k + 2) dimensions. Just

by dimension counting, a 3-plane in (k + 2) dimensions will intersect Y in a point. But

what natural 3-planes can we consider? Given the cyclic structure inherent in the set-up, it

is natural to consider the 3-planes (Za−1ZaZa+1), multiplied by some appropriate factors

of (−1)k−1 for a = 1, n. These 3-planes intersect Y in points that we will call Va. Then,

we claim that Y is in the amplituhedron if and only if [ Y ii + 1] > 0, and also that the

configuration of n, k-dimensional vectors Va is in the positive Grassmannian G+(k, n)!

Checking that Y = C · Z satisfies this condition is interesting. These inequalities are

satisfied due to somewhat magical positivity properties of the following “determinants of

minors”. For instance for k = 2 the claim is that as long as the Z data is positive,

det

∣∣∣∣∣
[ZaZi−1ZiZi+1] [ZaZj−1ZjZj+1]

[ZbZi−1ZiZi+1] [ZbZj−1ZjZj+1]

∣∣∣∣∣ > 0 (14.1)
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for any a < b and i < j. This inequality follows non-trivially as a consequence of the

positivity of the Z data; indeed it is a consequence of a more general interesting statement.

Let’s consider any α1 < α2 < α3, and β1 < β2 < β3 with αi ≤ βi. Now, consider the set of

all indices {1, 2, · · · , n} - {α1 + 1, · · · , α3− 1} - {β1 + 1, · · · , β3− 1}, and choose any a < b

in this set. Then the claim is that

det

∣∣∣∣∣
[aα1α2α3] [bβ1β2β3]

[aβ1β2β3] [bα1α2α3]

∣∣∣∣∣ > 0 (14.2)

These statements can be proven recursively, starting from Z’s that correspond to 0-

dimensional cells of the external data positive Grassmannian where they are easily verified,

and building up to a general configuration of Z’s by shifting adjacent columns; it is easy

to show that the shifts push all such determinants to be positive.

Similarly for k = 3, the analog of this statement is that for any a < b < c, i < j < k,

we have

det

∣∣∣∣∣∣∣

[ZaZbZi−1ZiZi+1] [ZaZbZj−1ZjZj+1] [ZaZbZk−1ZkZk+1]

[ZaZcZi−1ZiZi+1] [ZaZcZj−1ZjZj+1] [ZaZcZk−1ZkZk+1]

[ZbZcZi−1ZiZi+1] [ZbZcZj−1ZjZj+1] [ZbZcZk−1ZkZk+1]

∣∣∣∣∣∣∣
> 0 (14.3)

This follows from a more general statement where (i−1, i, i+1), (j−1, j, j+1), (k−1, k, k+1)

are replaced by any α1 < α2 < α3;β1 < β2 < β3; γ1 < γ2 < γ3 with αi ≤ βi ≤ γi, and

a, b, c are chosen from the set {1, · · · , n} − {α1 + 1, · · · , α3 − 1} − {β1 + 1, · · · , β3 − 1} −
{γ1 + 1, · · · , γ3 − 1} with a < b < c. The obvious generalization of these statements holds

for higher k.

The extension of the inequalities cutting out the tree amplituhedron to any m is

straightforward. For instance for m = 4, we consider the 5-planes (Za−2Za−1ZaZa+1Za+2),

again multiplied by appropriate factors of (−1)k−1 for indices that wrap past n. These 5-

planes intersect the k-plane Y in points Ua. Once again, we conjecture that Y is in the

amplituhedron if and only if the obvious boundaries [Y ii+ 1jj+ 1] > 0, and the configura-

tion of k-dimensional vectors Ua is in G+(k, n). The extension to the all-loop amplituhedron

then follows. We have [Y ii + 1jj + 1] > 0, [(Y AB)αii + 1] > 0, [Y (AB)α(AB)β ] > 0. We

also demand that the 3-planes (Za−1ZaZa+1) intersect the (k+2)-planes (Y AB)α in points

V α
a which are belong to G+(k + 2, n), and the 5-planes (Za−2Za−1ZaZa+1Za+2) intersect

Y in points Ua which belong to G+(k, n).

15 Open problems and outlook

We have presented an essentially combinatorial/topological characterization of the ampli-

tuhedron. It is remarkable that the rich, intricate geometry of the amplituhedron, and

associated with it, all the non-trivial physics of planar N = 4 SYM scattering amplitudes,

can ultimately determined by nothing more than specifying a simple pattern of + and −
sign flips.

A great deal remains to be understood both about the mathematics and physics associ-

ated with this new picture. Most pressingly, we would like to fully establish the equivalence
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of our new formulation of the amplituhedron with the usual one; all that remains to be

shown is that satisfying correct winding or flip patterns implies that Y can be written in

the “Y = C · Z” form. At an even more basic level, we would like to have a proof of the

equivalence between “sign-flip” and “winding/crossing number” pictures.

We have largely focused on describing points on the interior of the amplituhedron, but

it is desirable to find an characterization of all the boundaries of the amplituhedron along

the same lines. On boundaries of the amplituhedron, many of the brackets involving Y

vanish and, for instance, the “sign flip” criterion becomes ill-defined. We can of course

ask if there are perturbations to Y that change “0′′’s into +′s and −’s to get the right

pattern of sign flips, but is there a more efficient combinatorial check of whether degenerate

configurations of Y ’s are in fact legal boundaries of the amplituhedron?

For the simplest m = 1 and m = 2 amplituhedra, we saw that an exhaustive account

of the sign flip/winding patterns directly led to triangulations of the spaces and the de-

termination of their associated canonical forms. This picture does not trivially extend to

higher m, but is there any topological interpretation of the known triangulations of m = 4

amplituhedra, and if not, are there new triangulations that are more natural from the

“winding/flip” point of view?

Do the sectors with different winding numbers have role to play in the physics? We

have seen that the space defined purely by the obvious physical inequalities, even further

generalized to simply mutual positivity between the 2-planes defining loops, seems to be

related to M×M and correlation functions; but what is the invariant property of the

canonical form generalizing the notion of “logarithmic singularities” which can determine

correlators from the geometry?

Finally, the m dimensional image of the amplituhedron made possible by our new

picture seems important from a number of points of view. In one obvious direction, we

can finally treat the geometry of “the integrand” and “the amplitude” on exactly the same

footing (see also [22]). This should be especially useful in the context of the powerful new

methods being developed, using the amplituhedron together with Landau equations, to

constrain (and perhaps determine) the “symbol” of multiloop MHV amplitudes in N =

4 SYM [19, 20, 23]. The winding/flip picture of the amplituhedron should reduce this

program to perfectly well-defined geometry problems, not just for MHV amplitudes but

for amplitudes with all n, k, L.

It is also exciting to have a new picture of the integrand of scattering amplitudes, which

depending solely on the physical (momentum-twistor) data determining the momenta of

the particles. We have seen that 4 × k forms on this kinematical space, which have log-

arithmic singularities on regions with correct winding numbers, determine the maximally

supersymmetric amplitudes. It would be fascinating to extend this picture to the other ex-

amples of amplitudes which are known to be connected to positive geometry — for instance

in ordinary momentum space (or ordinary twistor space) for N = 4 SYM, where “winding”

should plausibly make contact with twistor-strings [24], and ABJM theory [25, 26].

But more ambitiously, the notion of combining all helicity information together in one

object as a differential form, rather than exploiting polarization vectors, or using the “η”’s

of supersymmetric theories, and fixing this form by singularities determined by topological
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properties, is a simple and powerful idea that begs for generalization. Since everything

now depends only on the momenta of external particles, our geometric, topological and

combinatorial imaginations are no longer necessarily shackled to toy worlds with conformal

invariance and supersymmetry, and we can hope to describe scattering amplitudes closer

to the real world in this language. As some first steps in this direction, we are naturally

led to ask: what happens when we have additional data, like lines at infinity that break

conformal invariance; are there new notions of “winding” associated with these structures?

And it is peculiar to restrict our attention to 4×k forms only, are there natural forms of all

degrees, which would certainly be associated with less (or non)supersymmetric theories?
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