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Correlation functions in one-dimensional complex scalar field theory provide a toy model for

phase fluctuations, sign problems, and signal-to-noise problems in lattice field theory. Phase un-

wrapping techniques from signal processing are applied to lattice field theory in order to map

compact random phases to noncompact random variables that can be numerically sampled with-

out sign or signal-to-noise problems. A cumulant expansion can be used to reconstruct average

correlation functions from moments of unwrapped phases, but points where the field magnitude

fluctuates close to zero lead to ambiguities in the definition of the unwrapped phase and signifi-

cant noise at higher orders in the cumulant expansion. Phase unwrapping algorithms that average

fluctuations over physical length scales improve but do not completely resolve these issues in one

dimension. Similar issues are seen in other applications of phase unwrapping, where they are

found to be more tractable in higher dimensions.
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1. Introduction

Lattice quantum field theory (LQFT) can be used to predict the properties of strongly interact-

ing systems directly from the Standard Model or from low-energy effective field theories. Path in-

tegrals are approximated as finite-dimensional integrals in LQFT that can sometimes be efficiently

computed with Monte Carlo (MC) methods. However, for many interesting systems ranging from

nuclei and neutron stars to strongly correlated electrons, LQFT path integrals face sign problems

that obstruct efficient MC methods using importance sampling.

Sign problems arise when different field configurations make contributions to path integrals

that have different signs or phases. When a sign problem is present, the integrand of the path

integral cannot be interpreted as a probability distribution and importance sampling cannot be used.

Instead, one can MC sample according to a different probability distribution and then reweight the

contribution of each field configuration by the ratio of the integrand to the distribution used for

sampling. In reweighting approaches to the baryon chemical potential sign problem that use the

zero-density lattice quantum chromodynamics (LQCD) partition function for importance sampling,

the signal-to-noise (StN) ratio of this reweighting factor vanishes exponentially as the spacetime

volume is taken to infinity [1–5]. Standard calculations of hadronic correlation functions similarly

involve averages of zero-density importance-sampled gauge field configurations that are weighted

by the value of the correlation function in each configuration. The StN ratio for baryon correlation

functions decreases exponentially as the baryon number or source/sink separation are increased

with a rate predicted by the moment analysis of Parisi [6] and Lepage [7]. The baryon StN problem

arises from phase fluctuations between correlation functions in different gauge field configurations

and is therefore another manifestation of the baryon number sign problem [8].

This work considers zero-plus-one-dimensional [(0+ 1)D] complex scalar field theory as a

toy model for StN problems arising from phase fluctuations where possible solutions can be tested

on an analytically tractable system. The distribution of phase fluctuations in complex scalar field

correlation functions with nonzero U(1) charge is found to qualitatively resemble the distribution

of LQCD baryon correlation function phase fluctuations described in Ref. [8]. In an analytically

tractable approximation, complex scalar field phase fluctuations are shown to be wrapped normally

distributed with an exponentially-severe StN problem. Building on the idea that StN problems

arise whenever phase fluctuations are sampled numerically, this work explores a new method in

which phase differences are “unwrapped,” or numerically integrated over a series of spacetime

separations. The resulting unwrapped phases are noncompact random variables rather than circular

random variables defined modulo 2π . Moments of unwrapped phase differences can be calculated

from positive-definite path integrals that do not have sign problems and do not generically require

computational resources that increase exponentially with increasing U(1) charge. Correlation func-

tions can be calculated from moments of unwrapped phase differences using cumulant expansion

techniques similar to those of Ref. [9].1 The phase unwrapping techniques used here are analo-

gous to phase unwrapping techniques used elsewhere in science and engineering including signal

processing, radar interferometry, x-ray crystallography, and magnetic resonance imaging [16–19].

1Cumulant expansions of noncompact “extensive phases” have also been applied to sign problems in QCD and other

theories at nonzero chemical potential [10–15].
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Though the 1D phase unwrapping algorithms studied here are not specific to this toy model,

1D phase unwrapping algorithms generically suffer from numerical instabilities and do not im-

mediately provide a robust solution to LQFT sign and StN problems. Multidimensional phase

unwrapping algorithms are known to avoid analogous numerical instabilities in other contexts, and

more robust phase unwrapping algorithms might be achieved in future investigations of phase un-

wrapping in multidimensional LQFTs.

2. Complex scalar field statistics

Consider a complex scalar field ϕ(t) with a U(1)-invariant interaction V (|ϕ(t)|) where t =

0, . . . ,L−1 is a uniform periodic lattice. With lattice spacing set to unity, the Euclidean action is

S(ϕ)≡
L−1

∑
t=0

(
ϕ∗(t +1)−ϕ∗(t)

)(
ϕ(t +1)−ϕ(t)

)
+M2|ϕ(t)|2 +V (|ϕ(t)|). (2.1)

The action has a U(1) symmetry, ϕ → e−iαϕ , that can be used to classify sectors of states in the

LQFT Hilbert space that do not mix under (Euclidean) time evolution. Field products of the form

OQ,2P(t) ≡ ϕ(t)Q|ϕ(t)|2P for Q ≥ 0 and O−Q,2P ≡ O∗
Q,2P transform under U(1) in the charge Q

representation. Green’s functions of these operators,

GQ,2P(t) = 〈OQ,2P(t)O
∗
Q,2P(0)〉 ≡ ∑

n

Zn;Q,2Pe−En;Qt
[
1+O

(
e−En;Q(L−t)

)]
, (2.2)

access all states of the theory, see Ref. [20] for more details. The scalar boson propagator is

G(t)≡ G1,0(t) and in the non-interacting case V = 0 its mass is E ≡ E0;0 = 2 arcsinh(M/2).

Since the action is real, e−S is a positive-definite function that can be interpreted as a prob-

ability distribution P(ϕ) ≡ 1
Z

e−S(ϕ). MC methods can be used to produce stochastic samples

from this distribution of complex scalar fields ϕi and composite operators O i
Q,2P with i = 1, . . . ,N.

Correlation functions can be approximated with ensemble averages,

GQ,2P =
1

N

N

∑
i=1

O
i
Q,2P(t)

[
O

i
Q,2P(0)

]∗
= GQ,2P

[
1+O

(
Var(GQ,2P)√

N

)]
. (2.3)

Ground-state energies are approximated by EQ,2P(t)≡− ln
(
GQ,2P(t +1)

)
+ ln

(
GQ,2P(t)

)
as t →∞.

The StN problem can be analytically estimated for the non-interacting theory. Following stan-

dard Parisi-Lepage arguments [6,7], the variance of GQ,2P can be described by a linear combination

of correlation functions. The variance of GQ,2P is related to the variance of GQ,2P by 1/
√

N in the

large-N limit and ignoring finite-L effects is given by

StN(Re[GQ,2P(t)])≡
GQ,2P(t)√

Var(Re[GQ,2P(t)])
=
√

2Ne−QEt
[
1+O

(
e−2Et

)
+O(N−1/2)

]
. (2.4)

Correlation functions describing sectors with U(1) charge Q 6= 0 face an exponentially severe StN

problem where the exponent is proportional to the U(1) charge of the system.

Analogously to the phase fluctuations associated with baryon number charge [8], phase fluc-

tuations associated with U(1) charge are responsible for the StN problem in the free scalar the-

ory. Fig. 1 shows a decomposition of correlator and effective mass into magnitude and phase

2
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Figure 1: The left plot shows a magnitude-phase decomposition of the scalar boson propagator for the

non-interacting MC ensemble C0 described in Sec. 4 with ensemble averages of the propagator, propagator

magnitude, and propagtor phase factor in blue, orange, and green respectively. The right plot shows the

corresponding effective masses E =−∂t ln〈ϕ(t)ϕ∗(0)〉, ER =−∂t ln〈|ϕ(t)ϕ(0)|〉, and Eθ =−∂t ln
〈

eiΘ(t)
〉

.

This and other figures are reproduced from Ref. [20].

〈
eiθ(t)−iθ(0)

〉
≡
〈
eiΘ(t)

〉
components. The scalar boson propagator magnitude is O(1) both sample-

by-sample and in expectation with no severe StN problem. The phase of the scalar boson prop-

agator is O(1) sample-by-sample by definition but O(e−Et) in expectation with a severe O(e−Et)

StN problem. Analogous behavior occurs for generic correlation functions. The phase of a general

correlation function ΘQ(t)≡ arg
[
OQ,2P(t)O

∗
Q,2P(0)

]
= iQΘ(t) depends on the U(1) charge of the

correlation function and
〈
eiΘQ

〉
has both an expectation value and a StN problem of O(e−QEt).

For arbitrary V (|ϕ|), the partition function factorizes into magnitude and phase contributions,

Z =

ˆ ∞

0

L−1

∏
t=0

[
d|ϕ(t)| |ϕ(t)| e−2|ϕ(t)|2−V (|ϕ(t)|)

]ˆ π

−π

L−1

∏
t=0

[
1

π
dθ(t) eκ(t)cos(∆(t))

]
, (2.5)

with κ(t) ≡ 2|ϕ(t)||ϕ(t − 1)| and ∆(t) ≡ θ(t)− θ(t − 1). For a given scalar field magnitude the

phase differences ∆(t) are independent in the L → ∞ limit where the PBC constraint ∑
L−1
t=0 ∆(t) =

2πw can be neglected. The L → ∞ distribution for ∆(t) is a von Mises distribution and is well

studied in circular statistics [21, 22], P(∆(t)) = eκ(t)cos(∆(t))/2πI0(κ(t)).

It is difficult to calculate further properties of this distribution analytically. Instead, the analysis

is further simplified by assuming small magnitude fluctuations and phase differences,

|ϕ(t)||ϕ(t ′)|− 〈|ϕ(t)||ϕ(t ′)|〉
〈|ϕ(t)||ϕ(t ′)|〉 ≪ 1 and ∆(t)≪ 1. (2.6)

For fine discretizations with M2 ≪ 1, the gradient term provides the dominant contribution to the

action and Eq. (2.6) should approximately hold for generic neighborhoods of generic field con-

figurations. In this approximation, phase differences between adjacent lattice sites are identically

distributed as well as independent since κ(t)≈ κ ≡ 1
L ∑t 〈κ(t)〉. The distribution of ∆ becomes,

P(∆)≈
√

κ

2π ∑
k∈Z

e−κ(∆+2πk)2/2 =
1

2π ∑
n∈Z

ein∆−n2/(2κ), (2.7)

3
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Figure 2: Histograms of differences of correlator phase differences at separations 1, 10, and 25 lattice sites

for ensemble C0. The histograms represent the empirical probability distribution functions P(θ(t)−θ(t −
δ t)) with δ t = 1, 10, and 25 respectively, while the blue curves show wrapped normal fits predicted by

Eq. (2.8). Heavy tails not reproduced by the wrapped normal fits are apparent and also arise for baryon

phases in LQCD [8] as well as for the real parts of baryon correlation functions [23].

a wrapped normal distribution describing a normally distributed random variable defined mod 2π .

The wrapped normal characteristic function is identical to the normal characteristic function,

ΦP(∆)(n)≡
〈
ein∆

〉
≈ e−n2/2κ . The characteristic function for propagator phase Θ can be described

as a product of characteristic functions of ∆, such that Fourier transformation gives

P(Θ) =
1

2π ∑
n∈Z

e−inΘΦP(Θ)(n)≈
1

2π ∑
n∈Z

e−inΘe−tn2/2κ . (2.8)

Under the assumptions of Eq. (2.6), the scalar boson propagator is given by G(t)≈ 〈|ϕ(t)ϕ(0)|〉×
e−t/(2κ) with κ ≈ 1/2E and 〈|ϕ(t)ϕ(0)|〉 ≈ Z1;0,1. The expectation value of the ensemble-average

correlation function can be calculated in this approximation as
〈
G
〉
≈ Z1;0,1e−Et . Its variance is

given by Var(G)≈ Z2
1;0,1

(
1− e−2Et

)
/2N, and its StN ratio is

StN(G) =

〈
G
〉

√
Var(G)

≈
√

2Ne−Et
[
1+O

(
e−Et

)]
. (2.9)

The full StN problem for the scalar propagator arises even under the approximations of Eq. (2.6).

Determination of the scalar propagator pole mass by MC sampling phases distributed according

to Eq. (2.8) is equivalent to parameter inference for a wrapped normal distribution with variance

1/κ ≈ 2E. Avoiding large finite sample size errors in wrapped normal parameter inference re-

quires 1√
N
. 〈cos(Θ)〉 ≈ e−Et [21] indicating that the window of time in which reliable parameter

inference is possible has size scaling only as logN.

3. Unwrapped phase statistics

The analysis above suggests that avoiding sign and StN problems is equivalent to avoiding

numerical sampling of circular random variables. In this simple theory, the phase can be analyti-

cally integrated out to produce a dual theory with positive-definite path integral representations for

correlation functions [20, 24]. As a tractable alternative for more complicated theories where all

phase variables cannot be integrated out analytically, one can imagine numerically sampling the

4
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Figure 3: The left plot shows real and imaginary parts of one MC sample of the (0+ 1)D free complex

scalar field propagator C(t) exhibiting near-zeros of the magnitude indicated by the arrows. The right plot

shows the wrapped correlator phase Θ(t)= argC(t) and three definitions of the unwrapped phase denoted Θ̃1,

Θ̃2, and Θ̃3, respectively produced by integrating a linear discretization of dθ̃/dt, assuming Eq. (3.2), and

algebraic phase unwrapping [19] of a linear polynomial interpolation of C(t). The numerical and algebraic

winding number methods agree exactly at all lattice sites and only differ in their interpolation between lattice

sites. Numerical integration leads to O(π) deviations of Θ̃1 from Θ̃2 and Θ̃3 for all t > 30.

real-valued angular displacement accumulated by the phase along [0, t] including any 2π revolu-

tions about the unit circle. A variety of “phase unwrapping” techniques have been developed in

other contexts to extract noncompact variables representing angular displacement from numerical

samples of compact phases, see Refs. [16–19] for reviews.

An unwrapped phase defined by integrating phase differences along a 1D path satisfies

Θ̃(t)≡ θ̃(t)− θ̃(0)≡ Θ(t)+2πν(t). (3.1)

The unwrapped phase difference Θ̃(t) associated with a LQFT propagator is the principal-valued

or “wrapped” phase difference plus 2π times a winding number ν(t) equal to the total number

of oriented branch cut crossings along the integration path. The phase unwrapping problem is to

determine winding numbers ν(t) that make the unwrapped phase θ̃(t) a nearly continuous function

of t even across the branch cuts of θ(t).

If one assumes a true unwrapped distribution arising from sampling a smooth function with

sufficiently fine resolution, such that the unwrapped phases satisfy

|θ̃(t)− θ̃(t −1)|< π, (3.2)

Itoh demonstrated in Ref. [25] that a unique assignment of winding numbers ν(t) results. In LQFT,

quantum fluctuations can lead to points where |ϕ(t)| ≈ 0 for which dθ̃/dt is nearly singular and

Eq. (3.2) is not a good assumption, as shown in Fig. 3. The violation of Eq. (3.1) leads to O(π)

discrepancies between different winding number definitions at all lattice sites with t larger than the

site where Eq. (3.2) is violated. Near-zeros therefore produce an accumulating O(π) sensitivity in

the unwrapped phase which increases with increasing t. This accumulation-of-errors problem is

revisited in Sec. 4.

5
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All phase unwrapping schemes applied below meet the constraint that the unwrapped phase θ̃

differs from θ by 2π times an integer winding number ν and therefore that

W [θ̃ ]≡ θ̃ mod 2π = θ , (3.3)

where the wrapping operator W restricts the unwrapped phase to the interval (−π,π]. This ensures

that the average wrapped and unwrapped correlation functions are identical

〈
eR+iΘ̃

〉
=
〈

eR+i(Θ+2πν)
〉
=
〈

eR+iΘ
〉
≈ Z1;0,1e−Et . (3.4)

Since wrapped phase differences Θ are related to Θ̃ by applying W , a normal distribution for Θ̃

is compatible with the approximate wrapped normal distribution for Θ, Eq. (2.7). Under these

assumptions, the boson mass is given as N → ∞ by

Ẽ(t)≡ 1

2N

N

∑
i=1

[
Θ̃i(t)

2 − Θ̃i(t +1)2
]
. (3.5)

The StN ratio for the associated correlation function G̃(t) is

StN
(

G̃(t)
)
≈

√
N√

2Et

[
1+O(N−1/2)

]
. (3.6)

Eq. (3.6) demonstrates that normally distributed unwrapped phases provide correlation function

estimates whose StN ratios decrease polynomially as t−1 rather than exponentially as e−Et as the

spacetime volume t containing nonzero U(1) charge is increased.

For field configurations violating the small fluctuation assumptions of Eq. (2.6), it is necessary

to construct an estimator for the correlator 〈eR+iΘ̃〉, and more generally Green’s functions GQ,2P =

〈eRQ,2P+iΘ̃Q〉, that does not depend on assumptions about the distribution of R and Θ. Due to

the integer winding number constraint, W [θ̃ ] = θ , the characteristic functions for the wrapped or

unwrapped samples agree at n = 1, GQ,2P = ΦRQ,2P+iΘQ
(1) = Φ

RQ,2P+iΘ̃Q
(1). Once the unwrapped

characteristic function is fit to numerical results by some method, the Green’s function can be

estimated by evaluating the resultant fit function at n = 1,

Φ
RQ,2P+iΘ̃Q

(1) =
〈

eRQ,2P+iΘ̃
〉
≈ ∑

n

Zn;Q,2P e−Ent . (3.7)

Cumulant expansion methods similar to those explored in Refs. [9, 26, 27] can be used to

estimate Φ
RQ,2P+iΘ̃Q

(1). The cumulants for a generic characteristic function Φz(k) are defined by

the Taylor series for ln(Φz), and can be related to the moments of z. An estimator for the ensemble-

average correlation function and ground-state energy can then be defined in terms of cumulant

estimates,

G̃
(nmax)
Q,2P = exp

[
nmax

∑
n=1

1

n!
κn

(
RQ,2P + iΘ̃Q

)]
and Ẽ

(nmax)
Q,2P =−∂t log G̃

(nmax)
Q,2P . (3.8)

In the limits nmax → ∞ and N → ∞, the estimate G̃
(nmax)
Q,2P should approach the average correlation

function GQ,2P and for sufficiently large source/sink separation, the ground-state energy Ẽ
(nmax)
Q,2P

should approach EQ,0.

6
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The leading contributions to Eq. (3.8) are κ1(RQ,2P), κ2(RQ,2P), and κ2(Θ̃Q), since κ1(Θ̃Q)

and the covariance of RQ,2P and Θ̃Q are guaranteed to vanish by Θ̃Q →−Θ̃Q symmetry. Higher-

order contributions with n ≥ 3 would vanish in the infinite statistics N → ∞ limit if R and Θ̃Q were

exactly normally distributed and independent. If an unwrapping algorithm can be chosen so that

this is approximately true, fast convergence can be expected in the cumulant series. In practice,

the series must be truncated at some finite order nmax. Systematic uncertainties can be assigned by

comparing results for Ẽ(nmax) with multiple truncation points nmax.

The correct ground-state energy EQ ≡ EQ,0 is reproduced at second-order in the expansion if

the variance of Θ̃Q is approximately 1/κQ ≈ 2EQ. The StN results of Eq. (3.6) can therefore be

applied to G̃
(nmax)
Q,2P if E is replaced by EQ to give

StN
(

G̃
(2)
Q,2P

)
≈

√
N

2EQt

[
1+O(N−1)

]
. (3.9)

Despite the vanishing of all cumulants with n ≥ 3 under the assumptions of Eq. (2.6), the statistical

uncertainties of these higher cumulants increase with increasing n. For large n, the variance of the

nth cumulant will be dominated by the variance of the nth moment, leading to StN behavior

StN
(κn

n!

)
≈ StN

(
1

(2n!)
Θ̃2n

)
≈
√

N2−n+1/4
[
1+O(n−1)+O(N−1)

]
. (3.10)

At higher orders, the scaling of the StN with EQt is not immediately analytically tractable, but it is

not expected to fall exponentially. Eqs. (3.9) and (3.10) then suggest that, in the small fluctuation

approximation of Eq. (2.6), StN ratios for G̃
(nmax)
Q,2P decrease sub-exponentially with increasing EQt

but exponentially with increasing nmax. These expectations are confirmed numerically in Sec. 4.

Eq. (3.10) shows that even under the simplifying assumptions of Eq. (2.6), the construction of

a complete solution to the sign problem using phase unwrapping and the cumulant expansion still

requires an extrapolation nmax → ∞ where N must be taken exponentially large in nmax to remove

all truncation errors at fixed statistical precision. For LQFTs including LQCD, observations of the

ubiquity of complex-log-normally distributed correlation functions [8,9,28–32] suggest that useful

results might be obtained using modest nmax despite the exponential difficulty of extrapolating to

nmax → ∞. Understanding the size of truncation errors in practical calculations and systematic

limitations of this method will likely require specific studies for particular LQFTs of interest.

4. Monte Carlo results

MC simulations of (0+ 1)D scalar field theory enable direct analysis of the efficacy of us-

ing cumulant expansions based on unwrapped moments to address the StN problem in charged

correlators. The assumptions of Eq. (2.6) are dropped and fully general discussion of the free

and interacting cases is presented below. To produce unwrapped phases for the cumulant analysis,

three numerical unwrapped schemes are considered that each satisfy W [θ̃ ] = θ but enforce different

smoothness criteria to define θ̃

1. Single-point integration: enforce

∣∣∣θ̃(t)− θ̃(t −1)
∣∣∣< π as in Eq. (3.2).

2. Windowed integration (window w): enforce

∣∣∣θ̃(t)− 1
min(w,t) ∑

t−1
t ′=max(t−w,0) θ̃(t ′)

∣∣∣< π.

7
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Figure 4: Scalar boson mass estimates for ensembles C±
2 versus window and width parameters in the win-

dowed and Gaussian unwrapping schemes. An O(1) constant of proportionality is estimated in each case to

produce results consistent between the two schemes. Darker error bars indicate statistical uncertainty, while

lighter errors bars include truncate errors estimate by the variation in central values of Ẽ(2), Ẽ(4), and Ẽ(6).

The red bands show dual ensemble results for comparison.

3. Gaussian-weighted integration (width σ ): enforce

∣∣∣θ̃(t)−∑
t−1
t ′=0 N e−(t ′−t)2/(2σ2)θ̃(t ′)

∣∣∣ < π

with normalization N fixed by ∑
t−1
t ′=0 N e−(t ′−t)2/(2σ2) = 1

The second and third smoothness criteria enable more robustly handling large phase fluctuations

by averaging a local neighborhood of phases and enforcing smoothness on larger scales.

Families of MC ensembles A,B,C,D,E were generated with five different values of |M2|,
corresponding to lattice spacings that range from very coarse to very fine while L was scaled to hold

physical lattice extent fixed. Families A (|M2| = 0.1), B (|M2| = 0.025), and C (|M2| = 0.00625)

were used for a full spectral analysis, while D (|M2| = 0.0015625) and E (|M2| = 0.000390625)

were included to determine the effect of lattice spacing on phase unwrapping. Within each family

X , both a non-interacting ensemble (denoted X0) and interacting ensembles (denoted Xn) were

generated with n ∈ {1,2} indicating which of two dimensionless couplings λL/|M2| were used.

When λ > 0, a negative-mass phase can be accessed by choosing M2 < 0. A further superscript

on interacting ensembles (X±
n ) denotes the sign of M2. MC ensembles were also generated using

the dual form of the theory in which phase fluctuations are analytically integrated out in order to

obtain precise results for verifying the accuracy of phase unwrapping; see Ref. [20] for details.

A second-order cumulant estimate of the scalar boson mass using single-point integration is

found to overestimate the true value on ensembles A, B, and C. Conversely, accurate results can be

obtained from a second-order cumulant estimate using windowed or Gaussian-weighted integration

with an appropriately chosen window or width. Fig. 4 demonstrates such a tuning procedure for

the windowed and Gaussian integration schemes applied to the scalar boson mass estimate Ẽ(n) for

representative interacting ensembles C±
2 . Systematic errors due to truncation are estimated from

variation in the central values of higher-order truncations nmax = 4,6 and are plotted in the figure

using lighter error bars. When window size is smaller than the optimal size, the cumulant estimate

converges from above, with higher order truncations becoming steadily more accurate at the cost of

statistical precision. Conversely, larger window sizes show convergence from below with similar

error scaling. Directional convergence can intuitively be explained by the effect of window size (or
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Figure 5: Statistical variance in ground-state energy estimates versus correlator time separation for inter-

acting ensembles C±
2 . The gray overlay plots the variance for the standard effective mass estimator, with a

fit to the theoretical Parisi-Lepage estimate of exponential decrease N e−Et in red. The purple points show

the variance of the effective mass in the dual lattice variable ensemble and demonstrate exponential variance

growth that is significantly less severe than the standard effective mass. The nmax = 2 estimate (green) with

phase unwrapping has even less severe variance growth and becomes more precise than the dual variable

estimate at large t. Phase unwrapped cumulant effective masses with nmax = 2, 4, 6 show variance growth

with downward curvature on the logarithmic scale that is consistent with polynomial variance growth.

width) on the second-order variance estimate. Overly small window sizes are sensitive to lattice

fluctuations below the physical scale and overly large window sizes prevent diffusion away from the

mean, producing the over- and under-estimates of Fig. 4. Estimating truncation errors at multiple

window sizes thus allows minimization of these errors by a good choice of phase unwrapping

scheme, to the extent that error estimates are reliable.

The StN scaling in time separation is plotted in Fig. 5 for the boson mass estimate using a

tuned Gaussian integration scheme. The second-order cumulant contribution has almost constant

StN at all time separations, and is more precise than the dual-variables comparison at large time

separations. The StN for higher-order contributions decreases with time but at a rate slower than

the standard mass estimator.

In higher charge sectors, a similar tuning procedure produces precise results at second order in

the cumulant expansion for ground state energies EQ,0. The optimal window in each case was found

to approximately match the correlation length in the corresponding charge sector wQ ∼ 1/EQ,0.

Second-order estimates based on a well-tuned Gaussian integration scheme for a range of charge

sectors are plotted in Fig. 6, demonstrating minimal degradation of StN in time. Estimates of the

StN scaling with cumulant order and charge sector are further plotted in the figure, indicating that

StN for the second-order cumulant estimate does not degrade with charge Q, while the StN for

higher-order truncations falls off in Q at a rate slower than the exponential scaling of the standard

estimator. The numerical results are thus compatible with the analytical results derived in Sec. 2

which indicated polynomial scaling in Q and t for all truncations, but poor scaling with cumulant

order n. Similar scaling is observed for interacting ensembles, with a full comparison of the low-

lying spectra presented in Ref. [20]. The results for both Q = 1 mass estimates and higher-Q

9
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Figure 6: The left plot shows the second-order cumulant estimates of ground-state energies Ẽ
(2)
Q,0 of charge

sectors Q = 1, . . . ,8 for non-interacting ensemble C0. The right plot shows the average inverse StN of these

ground-state energy measurements for a time region t = 10 → 20 as a function of Q for various cumulant ex-

pansion truncation orders. Gaussian-weighted integration with σ = 1.41 is used to calculate the unwrapped

phase.

correlators indicate that for second-order cumulant estimates, statistical precision is not a limiting

factor. Instead, the systematic uncertainty associated with truncation dominates.

The analytical description of phase unwrapping in Sec. 3 suggested that unwrapping scheme

sensitivity arose due to large phase differences between sites. For smaller lattice spacing, one

might expect the frequency of such large jumps to decrease such that scheme dependence could be

reduced as the continuum limit was approached. In the analytic approximation considered above,

the probability of large jumps P(|∂tθ |> π −ε) can be calculated using the von Mises distribution.

For fixed ε > 0 the large jump probability then falls off approximately exponentially.

Correlations between |ϕ| and θ break the assumptions leading to this analytic result. Fig. 7

compares the analytic expectation with numeric results. Numerical results show that the probability

of large phase differences actually falls off much slower than exponentially, and the probability that

at least one link will break the small-difference assumption in fact grows. The scaling is surpris-

ingly similar between free-field ensembles and interacting ensembles in the negative mass phase,

where the average |ϕ| is non-zero and near-zeros of the magnitude are expected to be infrequent.

This suggests a bleak future for phase unwrapping techniques in (0+1)D scalar field theory,

as the scheme sensitivity is not systematically improved in any limit of the theory. In general,

(0+1)D theories are particularly sensitive to phase unwrapping scheme due to the accumulation-

of-errors described in Sec. 3: estimates for correlation functions are not only sensitive to scheme in

local neighborhoods of large phase differences, but also at each subsequent point in the integration

path. In a one-dimensional lattice, there is only one such integration path, forcing all integration

to later times to go through regions of large phase fluctuation and leading to a variation of order

(2π)n in the nth-order cumulant based on unwrapping scheme.

10
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Figure 7: The left plot shows the probability of large phase jumps defined by |θ(t)− θ(t − 1)| > π/2 for

a variety of ensembles. The blue curve shows results for free-field ensembles A0, B0, C0, D0, and E0 as

a function of 1/|M| and therefore approximately as a function of the correlation length. The green curve

shows analogous results for interacting scalar field ensembles A−
1 , B−

1 , C−
1 , D−

1 and E−
1 with M2 < 0 and

fixed −λL/M2 = 16. The dotted red (dashed pink) curve shows the analytic small-fluctuation predictions

corresponding to von Mises distributed phase differences with κ ≈ 1/(2E) calculated for the free (interact-

ing) ensembles. The right plot shows the same probabilities multiplied by the lattice size L to represent the

probability that a field configuration will have a large phase jump.

5. Conclusions and future directions

Correlation functions possessing non-zero U(1) charge face sign problems arising from phase

fluctuations. Sign problems appear even in theories for which the vacuum partition function is

positive-definite, including both free scalar field theory and QCD. This work demonstrates that an

improved MC estimator for these correlation functions can be constructed, which trades the StN

problems of the sample mean for truncation error in a cumulant expansion. Producing a convergent

cumulant expansion relies on unwrapping the correlator phase arg(C(t)) on each MC sample. In

a (0+ 1)D toy model, analytical methods estimate that StN decreases polynomially in time sepa-

ration at fixed cumulant order and numerical results confirm this expectation. While approximate

analytical results suggest reduced unwrapping scheme dependence at finer lattice spacings, full

numerical results indicate the opposite in one dimension.

The difficulties of phase unwrapping in (0+ 1)D theories suggest directions for future work.

In other fields, unwrapping in two [33,34] and higher [35–37] dimensions has been shown to solve

the accumulation-of-errors issue. It is the subject of future work to determine whether unwrapping

of LQFT correlation function samples can be similarly improved by moving to higher dimensions.

More generally, cumulant expansion of log magnitudes and unwrapped phases provides a tunable

technique to make a positive-definite estimate of correlation functions with non-zero U(1) charge.

Another promising direction for future work is to use such an approximation within ensemble gen-
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eration to improve the StN characteristics of reweighting factors for charged correlation functions.
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