
Cell Physiol Biochem 2016;40:1252-1260
DOI: 10.1159/000453179
Published online: December 15, 2016 1252
Abousaab/Lang: GSK3ß Up-Regulates EAAT3/4

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2016 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Original Paper

Accepted: November 27, 2016

This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Interna-
tional License (CC BY-NC-ND) (http://www.karger.com/Services/OpenAccessLicense). Usage and distribution 
for commercial purposes as well as any distribution of modified material requires written permission.

DOI: 10.1159/000453179
Published online: December 15, 2016

© 2016 The Author(s) 
Published by S. Karger AG, Basel
www.karger.com/cpb

© 2016 The Author(s)
Published by S. Karger AG, Basel

Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen 
(Germany), Tel. +49 7071/2972194, Fax +49 7071/295618, 
E-Mail florian.lang@uni-tuebingen.de

Prof. Dr. Florian Lang

Up-Regulation of Excitatory Amino Acid 
Transporters EAAT3 and EAAT4 by Lithium 
Sensitive Glycogen Synthase Kinase GSK3ß
Abeer Abousaaba    Florian Langa,b

aDepartment of Cardiology, Vascular Medicine and Physiology I, University of Tuebingen, Tuebingen, 
bDepartment of Molecular Medicine II, Heinrich Heine University Duesseldorf, Duesseldorf, Germany

Key Words
Neuroexcitability • Lithium • Glutamate transporter • SLC1A1 • SLC1A6

Abstract
Background: Cellular uptake of glutamate by the excitatory amino-acid transporters (EAATs) 
decreases excitation and thus participates in the regulation of neuroexcitability. Kinases 
impacting on neuronal function include Lithium-sensitive glycogen synthase kinase GSK3ß. 
The present study thus explored whether the activities of EAAT3 and/or EAAT4 isoforms are 
sensitive to GSK3ß. Methods: cRNA encoding wild type EAAT3 (SLC1A1) or EAAT4 (SLC1A6) was 
injected into Xenopus oocytes without or with additional injection of cRNA encoding wild type 
GSK3ß or the inactive mutant K85AGSK3ß. Dual electrode voltage clamp was performed in order to 
determine glutamate-induced current (IEAAT). Results: Appreciable IEAAT was observed in EAAT3 or 
EAAT4 expressing but not in water injected oocytes. IEAAT was significantly increased by coexpression 
of GSK3ß but not by coexpression of K85AGSK3ß. Coexpression of GSK3ß increased significantly 
the maximal IEAAT in EAAT3 or EAAT4 expressing oocytes, without significantly modifying apparent 
affinity of the carriers. Lithium (1 mM) exposure for 24 hours decreased IEAAT in EAAT3 and GSK3ß 
expressing oocytes to values similar to IEAAT in oocytes expressing EAAT3 alone. Lithium did not 
significantly modify IEAAT in oocytes expressing EAAT3 without GSK3ß. Conclusions: Lithium-
sensitive GSK3ß is a powerful regulator of excitatory amino acid transporters EAAT3 and EAAT4. 

Introduction

Glutamate transporters clear glutamate from synaptic clefts and thus counteract 
excitotoxicity [1-5]. The EAAT3 isoform is expressed in neurons [6-13], retinal ganglion cells 
[14], and glial cells [12, 15-17]. EAAT4 is expressed in cerebellar Purkinje cells and clears 
glutamate from the synapses connecting the climbing fibers with the Purkinje cells [10, 18]. 
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Dysregulation of EAAT3 has been implicated in schizophrenia [19-25], epilepsy [26-
30] and hepatic encephalopathy [31], dysregulation of EAAT4 has been associated with 
schizophrenia [19, 20].

Regulators of neuronal excitability include the glycogen synthase kinase GSK3ß 
[32], a serine/threonine kinase inhibited by the antidepressant Lithium [33]. GSK3ß is 
phosphorylated and down-regulated by protein kinase B (PKB/Akt) [34]. 

The present study explored whether GSK3ß influences the activity of the glutamate 
transporters EAAT3 (SLC1A1) or EAAT4 (SLC1A6). To this end, the carriers were expressed 
in Xenopus oocytes without and with additional expression of wild type GSK3ß or inactive 
K85AGSK3ß and electrogenic glutamate transport quantified by dual electrode voltage clamp. 

Materials and Methods

Constructs
For generation of cRNA [35, 36], constructs were used encoding wild-type human EAAT3 [37], EAAT4 

[37], wild type GSK3ß and inactive mutant K85AGSK3ß [38]. The constructs were generated by site-directed 
mutagenesis (QuikChange II XL Site-Directed Mutagenesis Kit; Stratagene, Heidelberg, Germany) according 
to the manufacturer’s instructions [39]. The mutants were sequenced to verify the presence of the desired 
mutation and used for generation of cRNA as described previously [40-42].

Voltage clamp in Xenopus oocytes
Xenopus oocytes were prepared as previously described [43-45]. 10 ng of wild type GSK3ß or K85AGSK3ß 

cRNA were injected on the first day and 10 ng EAAT3 or EAAT4 cRNA on the same day after preparation of the 
oocytes. The oocytes were maintained at 17°C in ND96-A solution containing (in mM): 88.5 NaCl, 2 KCl, 1 
MgC12, 1.8 CaC12, 2.5 NaOH, 5 HEPES, 5 sodium pyruvate (C3H3NaO3), Gentamycin (100 mg/l), Tetracycline 
(50 mg/l), Ciprofloxacin (1.6 mg/l), Theophiline (90 mg/l). The pH was titrated to 7.4 using NaOH. Where 
indicated, Lithium (1 mM) was added. The voltage clamp experiments [46-48] were performed at room 
temperature 3 days after injection. Two-electrode voltage-clamp recordings were performed at a holding 
potential of -70 mV. The data were filtered at 10 Hz and recorded with a Digidata A/D-D/A converter and 
Clampex V.9 software for data acquisition and analysis (Axon Instruments)[49-51]. The control superfusate 
ND96 contained (in mM) 93.5 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, 2.5 NaOH and 5 HEPES (pH 7.4). The flow 
rate of the superfusion was approx. 20 ml/min, and a complete exchange of the bath solution was reached 
within about 10 s. Glutamate was added to the solutions at the indicated concentrations. The flow rate of the 
superfusion was approx. 20 ml/min, and a complete exchange of the bath solution was reached within about 
10 s [52-54]. 

Statistical analysis
Data are provided as means ± SEM, n represents the number of oocytes investigated. All experiments 

were repeated with at least 3 batches of oocytes; in all repetitions qualitatively similar data were obtained. As 
expression of injected cRNA may vary from batch to batch of oocytes, comparisons were always made within 
the same oocyte batch [55, 56]. Data were tested for significance using ANOVA or t-test, as appropriate. Results 
with p < 0.05 were considered statistically significant.

Results

The present study explored whether the glycogen synthase kinase GSK3ß modifies the 
function of the glutamate transporters EAAT3 and EAAT4. To this end, cRNA encoding EAAT3 
or EAAT4 was injected into Xenopus laevis oocytes with or without additional injection of 
cRNA encoding GSK3ß. Glutamate-induced current determined by dual electrode voltage 
clamp was taken as measure of transport. 

As illustrated in Fig. 1,  addition of glutamate to the superfusate did not elicit an 
appreciable current in water-injected oocytes. Accordingly, the oocytes did not express 
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significant endogenous electrogenic glutamate transport. In EAAT3 expressing oocytes, 
however, the addition of glutamate to the superfusate was followed by appearance of an 
inward current. The additional co-expression of wild-type GSK3ß was followed by a significant 
increase of glutamate-induced current in EAAT3 expressing Xenopus laevis oocytes.

In contrast to wild-type GSK3ß, the inactive K85AGSK3ß mutant did not significantly 
modify the glutamate induced-current in EAAT3 expressing Xenopus oocytes (Fig. 2). 

In order to test whether GSK3ß co-expression modifies the maximal glutamate-induced 
current or the affinity of the carrier, the current induced by glutamate concentrations ranging 
from 1 µM to 5 mM was determined in Xenopus laevis oocytes expressing EAAT3 without 
or with additional expression of wild-type GSK3ß. As illustrated in Fig. 3, the glutamate 
induced-current was a function of the extracellular glutamate concentration. Kinetic analysis 
revealed that the maximal glutamate induced current was significantly (p<0.001) lower in 
Xenopus laevis oocytes expressing EAAT alone (61.92 ± 4.17 nA, n = 10) than in Xenopus laevis 
oocytes expressing EAAT3 together with wild-type GSK3ß (86.03 ± 3.41 nA, n = 10). The 
concentration required for half-maximal glutamate induced current was not significantly 
different between Xenopus oocytes expressing EAAT3 alone (652.04 ± 61.96 µM, n = 10) and 
Xenopus oocytes expressing EAAT3 together with wild-type GSK3ß (562.36 ± 80.88 µM, n = 
10). 

As GSK3ß could be inhibited by Lithium, additional experiments were performed 
in Xenopus oocytes expressing both EAAT3 and wild-type GSK3ß with or without prior 
exposure to 1 mM Lithium. As illustrated in Fig. 4, a 24 hours treatment with Lithium 
significantly decreased the glutamate-induced current in Xenopus oocytes expressing both 
EAAT3 and wild-type GSK3ß. In Xenopus oocytes expressing EAAT3 alone, however, a 24 
hours treatment with Lithium did not significantly modify the glutamate-induced current 

Fig. 1. Effect of wild-type GSK3ß on electrogenic 
glutamate transport in EAAT3 expressing Xenopus 
laevis oocytes. A: Representative original tracings 
showing glutamate (1 mM) - induced current (IEAAT) 
in Xenopus laevis oocytes injected with water (a) 
or expressing EAAT3  without (b) or with (c) addi-
tional co-expression of wild-type GSK3ß. B: Arith-
metic means ± SEM (n = 19-23) of IEAAT in Xenopus 
laevis oocytes injected with water (striated bar), or 
expressing EAAT3 without (white bar) or with wild-
type GSK3ß (black bar). *** (p<0.001) indicates sta-
tistically significant difference from the absence of 
GSK3ß. 

Fig. 2. Effect of inactive mutant K85AGSK3ß on elec-
trogenic glutamate transport in EAAT3 expressing 
Xenopus laevis oocytes. A: Representative original 
tracings showing glutamate (1 mM) - induced cur-
rent (IEAAT) in Xenopus laevis oocytes injected with 
water (a), expressing EAAT3 alone (b) or expressing 
EAAT3 with additional co-expression of wild-type 
GSK3ß (c), or catalytically inactive K85AGSK3ß (d). B: 
Arithmetic means ± SEM (n = 13-15) of IEAAT in Xeno-
pus laevis oocytes injected with water (striated bar) 
or expressing EAAT3 without (white bar) or with 
wild-type GSK3ß (black bar), or catalytically inactive 
K85AGSK3ß (grey bar) *** (p<0.001) indicates statisti-
cally significant difference from oocytes expressing 
EAAT3 alone. 
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(Fig. 4). Thus, Lithium abrogated the stimulating effect of GSK3ß on EAAT3, but did not 
influence EAAT3 activity in the absence of GSK3ß. 

Similar observations were made in oocytes expressing EAAT4. As shown in Fig. 5, 
addition of glutamate to the superfusate did again not elicit an appreciable current in water-
injected oocytes. In EAAT4 expressing oocytes, however, the addition of glutamate to the 
superfusate was followed by appearance of an inward current. The additional co-expression 
of wild-type GSK3ß was followed by a significant increase of glutamate induced-current 
in EAAT4 expressing Xenopus laevis oocytes. In contrast to wild-type GSK3ß, the inactive 
K85AGSK3ß mutant did not significantly modify the glutamate-induced current in EAAT4 
expressing Xenopus oocytes (Fig. 6). 

Fig. 3. Electrogenic glutamate transport in EAAT3-
expressing Xenopus laevis oocytes as a function of 
glutamate concentration without and with presence 
of wild-type GSK3ß. Arithmetic means ± SEM (n = 
10) of IEAAT as a function of glutamate concentration 
in Xenopus laevis oocytes expressing EAAT3 without 
(black squares), or with (white circles) additional 
co-expression of wild-type GSK3ß. *** (p<0.001) 
indicates statistically significant difference from oo-
cytes expressing EAAT3 alone. 

Fig. 4. Effect of Lithium on electrogenic glutamate 
transport in EAAT3 and GSK3ß expressing Xenopus 
laevis oocytes. Arithmetic means ± SEM (n = 17) of 
IEAAT in Xenopus oocytes expressing EAAT3 alone 
(white bars), or expressing EAAT3 together with 
wild-type GSK3ß (black bars) without (left bars) or 
with (right bars) prior exposure to GSK3ß inhibitor 
Lithium (1 mM) for 24 hours. ***(p< 0.001) indicates 
statistically significant difference from Xenopus oo-
cytes expressing EAAT3 alone, ### (p< 0.001) indi-
cates statistically significant (p< 0.001) difference 
from the absence of Lithium.

Fig. 5. Effect of wild-type GSK3ß on electrogenic 
glutamate transport in EAAT4 expressing Xenopus 
laevis oocytes. A: Representative original tracings 
showing glutamate (1 mM) - induced current (IEAAT) 
in Xenopus laevis oocytes injected with water (a) or 
expressing EAAT4 without (b) or with (c) additional 
co-expression of wild-type GSK3ß. B: Arithmetic 
means ± SEM (n = 23) of IEAAT in Xenopus laevis oo-
cytes injected with water (striated bar), or express-
ing EAAT4 without (white bar) or with wild-type 
GSK3ß (black bar). *** (p<0.001) indicates statis-
tically significant difference from the absence of 
GSK3ß. 
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Again, the current induced by glutamate concentrations ranging from 1 µM to 5 mM 
was determined in Xenopus laevis oocytes expressing EAAT4 without or with additional 
expression of wild-type GSK3ß. As illustrated in Fig. 7, the glutamate-induced current was 
a function of the extracellular glutamate concentration. Kinetic analysis revealed that the 
maximal glutamate-induced current was significantly (p<0.001) lower in Xenopus laevis 
oocytes expressing EAAT4 alone (31.11 ± 1.85 nA, n = 8) than in Xenopus laevis oocytes 
expressing EAAT4 together with wild-type GSK3ß (63.64 ± 2.80 nA, n = 7). The concentration 
required for half-maximal glutamate-induced current was not significantly different between 
Xenopus oocytes expressing EAAT4 alone (217.21 ± 26.08 µM, n = 8) and Xenopus oocytes 
expressing EAAT4 together with wild-type GSK3ß (298.39 ± 41.26 µM, n = 7). 

Discussion

The present observations revealed that GSK3ß is a powerful regulator of the excitatory 
amino acid transporters EAAT3 and EAAT4. GSK3ß increased electrogenic glutamate transport 
in EAAT3 and EAAT4 expressing Xenopus oocytes. In contrast, the inactive mutant K85AGSK3ß 
failed to modify the glutamate induced current. Thus, kinase activity is apparently required 
for GSK3ß mediated regulation of EAAT3 and EAAT4  transport activity. 

Coexpression of GSK3ß increased significantly the maximal glutamate-induced current, 
without significantly modifying affinity of the carriers. Possibly, GSK3ß increases the abundance 
of carrier protein in the plasma membrane. 

At least in theory, dysregulation of excitatory amino acid transporters could contribute to 
the complex neuronal actions of the kinase. As were expected [33], the effect of GSK3ß on the 
glutamate induced current was abrogated by Lithium. Whether or not the effect on excitatory 

Fig. 6. Effect of inactive mutant K85AGSK3ß on elec-
trogenic glutamate transport in EAAT4 expressing 
Xenopus laevis oocytes. A: Representative original 
tracings showing glutamate (1 mM) - induced cur-
rent (IEAAT) in Xenopus laevis oocytes injected with 
water (a), expressing EAAT4 alone (b) or expressing 
EAAT4 with additional co-expression of wild-type 
GSK3ß (c), or catalytically inactive K85AGSK3ß (d). B: 
Arithmetic means ± SEM (n = 14-16) of IEAAT in Xeno-
pus laevis oocytes injected with water (striated bar) 
or expressing EAAT4 without (white bar) or with 
wild-type GSK3ß (black bar), or catalytically inactive 
K85AGSK3ß (grey bar) *** (p<0.001) indicates statisti-
cally significant difference from oocytes expressing 
EAAT4 alone. 

Fig. 7. Electrogenic glutamate transport in EAAT4-
expressing Xenopus laevis oocytes as a function of 
glutamate concentration without and with presence 
of wild-type GSK3ß. Arithmetic means ± SEM (n = 
8) of IEAAT as a function of glutamate concentration 
in Xenopus laevis oocytes expressing EAAT4 without 
(black squares), or with (white circles) additional 
co-expression of wild-type GSK3ß. *** (p<0.001) 
indicates statistically significant difference from oo-
cytes expressing EAAT4 alone. 
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amino acid transporters contributes to the pleotropic actions of this widely used antidepressant 
drug, cannot be answered by the present experiments. 

Besides its potential impact on neuronal function, GSK3ß sensitive regulation of EAAT3 
may modify a variety of further functions, as EAAT3 is expressed in a variety of cells and tissues, 
including blood platelets [57, 58], heart [59], renal podocytes [60], epididymis [61], placenta 
[62, 63] and blood-brain barrier [64]. In view of the present observations, glutamate uptake 
into the respective cells is expected to be sensitive to GSK3ß activity.

In conclusion, Lithium sensitive GSK3ß is a powerful stimulator of the excitatory amino 
acid transporters EAAT3 and EAAT4. Regulation of the carriers may thus contribute to the 
impact of neuronal and extracerebral functions of this ubiquitously expressed kinase. 
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