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Abstract

Object-orienteddatabasesystemgooDBMSs)are supposedo offer at leastthe functionality availablein commercial
relational DBMSs of today. Oneimportantconsequencef this is that they haveto provide a separatiorof the global
(conceptual)databaseschemafrom the externalschema(“subschemd of a particulartask. Views are a mechanism
to realizethis dataindependenceln addition, they also supportmultiple levels of detail, securityand authorization,
and interoperabilityin a heterogeneousnvironment.In a relationalDBMS, views are definedby queries. However,
they cannot be freely updated.We describeconceptsof an objectmodeland query languagethat are necessaryor
object view definitions. We show that updatingobject views is much more feasiblethan in the caseof relational
views. The key propertyof a querylanguageleadingto this resultis objectpreservingoperatorsemantics That is,
in contrastto many previousobject algebrasquery resultsare setsof existingobjectsinsteadof datatuplesor new
objects. Consequentlyye haveto solve the classificationproblem: whereto include the view in the type and class
lattices.
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1 Infroduction

Relational databasesystemsprovide a very simple, yet powerful view mechanism:any query, since

it returnsa relation, can be usedto define a view, that is, an additional (derived, virtual) relation.

Abstractingfrom the details of a particularquery language views are definedby a statementsuch as

“define view nameas query” In this paper,we show how the samecan be donein an object-oriented
databasesystem. Relationalviews can not be updatedfreely, sinceit is often ambiguoushow to trace

view updatesback to updatesof basetuples. Views containingthe key of their (one) underlyingbase

relation can be updated.In an 00DBMS, since objectshave an identity independentf their associated
values,this problemdisappearsf the querylanguagepreserve®bjects’identities. We discussproperties
of an object-orientedquery languagethat are necessaryo allow for updatableobjectviews.

Thereare the following four major reasonswvhy to supportview capabilitiesin an object-oriented
databaseystem:(1) size of the global schemg&just for manageabilitywe may needto split into smaller
pieces);(2) authorization(showonly relevantdata,thatis, restrictaccesdy visibility); (3) integrationin
a heterogeneousnvironment(provide customizeddata models’ for different clients); and (4) “upward
compatibility” (views have provenuseful in relational DBMSs, ooDBMSs are supposedo extendthe
functionality of RDBMSS).

In fact, there is large consensughat views should be definablein an ooDBMS. As 00DBMSs
are a quite novel areaof researchwe refer to the literature on object-orienteddata modelsinsteadof
implementedsystems. Thereis a constantlyincreasingnumberof such publications,however,only a
few of them mentionviews at all. Somelist view definition capabilitiesas an objectivein their query
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proposedobject-orientedquery languagesave an inherentproblem: They either generatenew objects
or just datatuples(valueg as queryresults. In the former case,views definedby thesequerieswould
not containbaseobjects,so updatesdo not propagate.In the latter case,no methodscan be appliedto
gueryresults,nor will updatesnakeany sense.We will comebackto theseproposalgn the discussion
after we have presentedour solution.

Thekeyideathatleadsto afully flexible view definition capabilityof a querylanguages to makethe
operationsobjectpreserving The objectscontainedin the resultof a query are the input objects(some
of them, in general). Object preservationis importantfor it makesupdatespropagateautomatically:
an updateto an objectin a view is an updateof a baseobject. In the contextof views thereare two
directionsfor updatepropagation:

1. Updateson baseobjectsare reflectedin views. This distinguishesviews from snapshotswhere
copiesof the baseobjectsare takenthat are kept separateand may changeindependently.

2. Updateson view objectsshouldpropagatdo the underlyingbaseobjectswherepossible.This view
updateproblemis known to be difficult in the relationalcontext. Sincethere,“object identity” is
tied to key attributevalues,only views containingthe key may be updated GPZ88, SLW88].

Obviously, with object preservinggquery semantics both directionsof updatepropagationwill follow
naturally. We have shown earlier [SS90a] how to define an object preservingquery algebra. It is
particularly noticeablethat object preservingsemanticscan be given to all query operators,including
joins and complex expressions.Thus, thereis no limitation of the expressivepower queriesusedfor
view definitions. Here we will show that views definedby sucha query languagecan almostfreely
be updated.

We presentour resultsin the contextof a particularobject model, COCOON. Even though object
modelsusually differ quite a lot in the particularterminologyusedor in severaldetails,thereis broad
consensusn the high-levelconceptghatshouldbe provided. The objectmodelwe useis fairly standard,
so the resultscan be interpretedand adoptedto other models as well. Besidesobject preservation,
further important conceptsof COCOON, which are exploited in our approachto view updates,are:
multiple instantiation (objects may be instancesof more than one type and they may changetypes
dynamically), multiple classmembershigobjectsmay be membersof severalclassesat the sametime;
class membershipmay also be changeddynamically), and class predicates(defining necessary—and
sometimesalso sufficient—constrainton membersof superclassefr beinga memberof a subclass).

The organizationof the paperis asfollows: in Section2 we review the conceptsof the COCOON
object model. First we summarizethe basic terminology and the object preservingsemanticsof the
guery languageoperators. Then we focus on the genericupdateoperations. Section3 showshow to
ddfine views by queries,how to position the resulttypesin the type lattice, and how classpredicates
determinethe positionof the view in the classhierarchy.In this paper,we do not give formal definitions,
ratherwe usean example-driverpresentationHowever,we discussthe generalproblemsand solutions
after presentingepresentativexamples.Section4 compareour approachwith someotherrecentwork.
Finally, Section5 concludeswith a summaryof the key propertiesthatled to our results.

2 An Object Model

Essentially, the COCOON model as describedin [SS90a, SS90b] is an object-function-model
(cf. [WLH90, DMB 87, Day89)). Its constituentsireobjects functions typesandclasses Thequerylan-
guage,COOL, offers object-preservin@swell asobject-generatingenericqueryoperatorsplus generic
updateoperators.In this paper,we do not useobject-generatingjuery operators.The key objectivein
the designof COOL wasits set-orienteddescriptivecharacteristicssimilar to a relationalalgebra. In
fact, COOL can be seenas an extensionof our nestedrelationalquery language/SS86].
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COCOON:is a core objectmodel,meaningthat we focuson the essentiaingredientsnecessaryo define
a set-orientedquery language. For instance,tuples as a type constructorare excludedfrom the core.
Basically, all we needis objects(concreteand abstract)and one type constructor,namely set Other
featurescan be addedlater due to the orthogonalityof the languageg/SLR™91].

Objects areinstanceof abstractdatatypes(ADTSs). They canbe manipulatedonly by meansof their
interface, a set of functions.

Data areinstancesf concretetypes (suchas numbers,strings) and constructedypes (such as sets).
The distinction from objectsis similar to [Bee89].

Functions aredescribedy anameandsignaturgi.e., domainandrangetypes). Functionscanbesingle-
or set-valuedthey are the interfaceoperationsof types. The implementationis specifiedseparatelywe
do not show this here). Notice that we distinguishretrieval functionsfrom methods that is to say,
functionswith side-efects. Unlessstatedotherwise,we usethe term functionsin the generalsensein
the sequel. Retrievalfunctionsare a uniform abstractionof “attributes” and “relationships”of classical
datamodels.A usefulfeatureis the capabilityof defininginversesof functions. This integrity constraint
is enforcedby the systemduring updates.For an example,seebelow under“types”.

Types describethe commoninterfaceof all instancesof that type, thatis, the collection of applicable
functionsand their interaction. The latter gives the function’s semanticswhich can be specifiedin the
form of axioms, for example. We do not considerthis any further here. So, the definition of a type
basically consistsof two parts: a setof functionsand a type name! The following exampledefinesa
type CompanyTwith four functions cname,staff, locations,and open new_branch

type CompanyTis_a ObjectT =
cname: string,
staff : set of EmployeeTinverse employer,
locations: set_of CityT,

method open new_branch(CityT);
As we will seelater, queriescandynamically producenew types. Thoseare unnamedput their set of
functionscan be derived from the query by standardtype inference.

Subtyping. If atype is definedas a subtypeof another,e.g.

type EmployeeTis_a PersonT= ... ;

then every instancee of the subtypeEmployeeTis also an instanceof the supertypePersonT This is
calledmultipleinstantiation Consequentlyall functionsdefinedon the supertypePersonT applyto the
subtype EmployeeTtoo. Further,functionson the subtypemay be morerestrictedthanthey are on the
supertype(that is, their rangemay be a subtypeof that definedin the supertype).Subtypingdefinesa
partialorder“ <" ontypes. Internally,thetype systems completedo form alattice of types(the powerset
lattice of the setof all functionsin the databaseschema)suchthat for any two typestheir leastupper
boundand greatestower boundare alwaysdefined. The top elementof the lattice is the most general
type ObjectT (therefore all instancef definedtypesin the databasearealsoinstancesf ObjectT). We
allow multiple inheritance that is, types may have more than one supertype. We assumethat naming
conflicts havealreadybeenresolved(for instance by prefixing function nameswith type names).

Classes. We strictly distinguishtypesfrom classedn the following sense(seealso[ACO85, Bee89]):
Typesareinterfacespecificationga collectionof functions),whereasclassesare containerdor objectsof
sometype (type extents).A classC is a collection object (an instanceof the metatypeclass). For each

1 In this paper,we write a ...T at the end of an identifier to makeclearthatit is a type,anda ...C for classes.
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class,areinstance®f atype,themember_type(CPueto multiple instantiationjndividual membersnay
be instance®f severalothertypestoo. Eventhoughclassesepresenpolymorphicsets,type checkingof

our languagealwaysrefersto the unigue membertype of the involved sets. A classdefinition specifies
a classname,the membertype, the namesof superclassesndan optionalclasspredicate(for the latter

two, seebelow, under subclasses):

class EmployeeC. EmployeeTsomePersonC;

Due to the separatiorof typesand classestheremay be any numberof classedor a particulartype (for
instancemorethanoneasthe resultof selectionoperationsseebelow, or none,if we arenotinterested
in maintainingan explicit extentof that type).

Subclasses. Thereareseveralchoicesasto how to definea subclasselationship.Dependingon whether
the membertypesof two classesarethe sameor oneis a subtypeof the other,anddependingon whether
the extentof oneclassis a subsetf the extentof the other. Thatis, we havetwo known relationshipgo
consider: subtypeand subset.As will be seen,thesetwo often correlate but they neednot. Therefore,
we will alwaysdistinguishcarefully which one of them holds. We will speakof a subclasgelationship
C1C Cy, iff for the two classest is true that member_type(J < member_type(&8 and extent(G) C
extent(G). Usually, at leastone of the orderingrelationshipswill be proper. Considerthe following
example:

type PersonTis_a ObjectT= ..,;

type EmployeeTis_a PersonT= ...;

classPersonC: PersonTsome ObjectC;

class YoungC: PersonTsome PersonCwhere age < 30;
class EmployeeC. EmployeeTsomePersonC;

The classYoungCis a subclassof PersonCwith the sametype, but a subsetof the objects,whereas
EmployeeGs a subclassassociatedavith a subtypeof PersonT The predicategivenfor classYoungCis a
constrainthatall membersf YoungChaveto be youngerthan30. This is a necessaryhut not sufficient
condition for membersof PersonCto becomemembersof YoungC Changingthe keyword someto all
would indicatea necessarand sufficient condition: in this casethe DBMS would automaticallyclassify
personsinto the subclass,if the predicateevaluatesto true. Notice that, unlike e.g.[D*90, Kim89,
S090], we definethe extentof a classC to include the membersof all its subclasses.

2.2 Object Algebra

One of our primary goalsin the modelis a strongly-typedalgebrathat allows for static type checking
[BTBO89]. This is achievedby usingthe type associatedvith a classto checkwhetherthe operations
on the classmembersare legal. We use a set-orientedalgebra,where the inputs and outputsof the
operationsare setsof objects. Hence,query operatorscan be appliedto extentsof classesset-valued
function results,query results,or setvariables. Theseare collectively called <set-expr>in the sequel.
Formally, a classnameC as an agumentis a shorthandfor extent(C)

Variables and Assignments. Due to the set-orientedstyle of the query language,objectsare typically
unnamed.However,variablescan be usedastemporarynames(“handles”)for objects. They haveto be
declaredwith their type, suchthat compile-timetype checkingappliesto variablestoo. For example,

var My_Chevy: AutomobileT,;

declaresa variable My _Chevyof type AutomobileTthat can, for example,be assigneahe resultof an
objectcreationin order to identify the new objectin subsequenfupdate)operations.

Selection ( select[P] (<set-expr> ) returnsa subsewf the input setof objects,namelythosesatisfying
the predicateP. The type of the setis unchangedi.e., it is typekset-expr>)
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type, a supertypeof the input type, aslessfunctionsare definedon the output, namelyonly thoselisted
in the projection. All objectsof the input setare alsoelementsof the outputset (objectpreservation.

Extend ( extend[<fname>:=<expr>,...] (<set-expr> ). Projectioneliminatesfunctions,extenddefines
new derived ones. Obviously, eachgiven function name<fname> must be differentfrom all existing
functionsfor thetype of theinput. <expr> canbe anylegal arithmetic-,boolean-or set-expressionThe
objectsof the input setare preservedthatis, extend returnsa setwith the sameobjectsasthe input, but
with a new type, a subtypeof the input type (all the old functionsplus the new onesare definedon it).

Setoperations. As the extentof classesare setsof objects,we canperformsetoperationsasusual. One
notablepoint is the criterion for duplicateelimination (or equality determination):equality of abstract
objectsis what this usuallycalledidentity. So, this is the notion thatis usedin the setoperationd. With
a polymorphictype system,we needno restrictionson operandtypesof setoperationultimately, they
are all objects). The resulttype, however,dependson the input types: for the union it is the lowest
commonsupertypeg(in the lattice) of the input types. The differenceoperationyields a subsetof its first
argumentwith the sametype; finally, intersectionresultsin the greatesttommonsubtype.

Thesearethe basicobjectpreservinggueryoperatorof our algebra.Otheroperatorssuchasjoin canbe
derivedfrom them(cf. Section3.5). The completealgebraincludesan operator(extract) for generating
setsof tuplesas queryresultsto communicatewith value-orientecenvironment§gSS90b]. Formally, we
do not provide objectgeneratingquery operators.However,new objectscanbe derivedby combininga
querywith an updateoperator,nsert, that generateshe new objects(see[SLR*91] for details).

2.3 Update Operations

Oneof the main objectivesof the object-orientecapproachs to useonly type-specifizipdateoperations,
So asto guaranteeonsistency We supportthis functionality in our modelby methods userscanapply
type-specificmethodsto updateobjects.

Update. As a first extension,like in the relational case,we want to be able to specify set-oriented
updates;that is, identify a setof objectsto be updated(e.g., by a query) and apply the updatemethod
to all qualifying objectswithout programmingan explicit loop. This set-orientedupdatemodecan help
increasethe performanceof updates.We provide a descriptiveiterator that takesthe updatemethodas
a parameter:

update [ m ] ( <set-expr>);
The semanticsof this statementis obvious: methodm is appliedto all objectsreturnedby the set
expression.Update could also be called “apply_to_all”.

As a secondextensionto type-specificupdateoperationswe provide a setof generallyapplicable
genericupdateoperations Suchgenericupdateoperationscan be usedby type implementorsto define
type-specificmethods. The genericupdateoperationsinclude insert and delete to createand destroy
objects(possiblyin a set-orientedashion),add andremoveto addexistingobjectsto a setor to remove
them from it, respectively,and set to set functionsto new values.

Insert takesasamumentsa classC, with membertype of, say, T, andassignmentsf valuesto functions
definedon T. An instanceof T is createdand addedto the specfied class,the functionslisted are set
to the given values. The classpredicateis checked. If violated, the insertis rejectedby the integrity
checker. The result of the insert operationis the newly createdobject. For example,we createa new
instancein class EmployeeCby:

2 Thisis the problemof determininguniquenes®f objectsas mentionedin [Kim89]. The othertwo problemsmentioned
there,heterogeneityndscopeof classesaretreateddifferentlyin our model: classesreconsiderechomogeneougll member
objectsareinstancef the membertype), andthe extentalwaysincludesall subclasse¢seeabove).
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Here, js hasto be a variable of type EmployeeT Notice that we do not createobjectsthat are not
membersof any class.

Delete (<set-expr) destroysall objectsv returnedby <set-expr: theyareremovedfrom all classesand
function valuesin the database.

Add and Remove havea weakereffect thaninsertanddelete:they haveno impacton the existenceof
objects. Rather,existing objectsare addedto or removedfrom a set. Both operationstake two setsof
objects(e.g.,classnamesor queries)as parametersThe first setof objectsis addedto or removedfrom
the second.For examplelet E be a queryreturningsomeemployeeobjectsand ¢ a variableholding a
companyobject, we can make all employeesn E work for ¢ by:

add [ E] ( staffc) );

Notice that we appliedthe updateto the staff function definedon companiesthe function employeris
updatedautomatically,sinceit is definedto be the inverseof staft

Add andremoveare also usedto changeclassmembershipof objectsdynamically. For example,
if p is a personobject, add [{ p}] (Employee@ makesp a memberof classEmployeeC and thus an
instanceof EmployeeTConverselyremove[{p}] (Employee(takesp out of EmployeeGbut leavesit
in PersonC and all other superclassesf EmployeeCif any). Classpredicatesare checkedupon add
andremoveoperations.They may leadto ‘rejection’ of the operation: an explicit add will be ignored
if the classpredicateis not fulfilled, and an explicit removewill beignoredif the classhasa sufficient
classpredicatethat holdsfor the object. Generally,membershipn a classwith sufficient classpredicate
is not manipulatedexplicitly by add/remove but only implicitly by changingfunctionvaluesusedin the
classpredicate.For moredetailson the effectsof updatesn connectionwith classprediactesee[LS91].

Set assignsnew valuesto functions. Let e be a variableholding an employee thenset[ salary=3,000
] (e) assignsa new salaryto e. Setis usedinside of update andinsert and is usually written as an
assignmen(salary(e) := 3,000). Type implementorscan specify a function-specificmethod(set_salary
in the example)to performthe assignmenfFBC*87]. Arbitrary computationsanbe performedin such
a method,e.g.,to checksomeconstraintsto updateadditionalinformation, or evento refusethe update.
For example,updatinga derivedfunction may be implementedas either changingthe underlyingvalues
or refusing the update.

Nesting of Update Operations. Notice that the genericupdateoperationsmay not only be appliedto
classesbut alsoto set-valuedattributesandqueryresults. Justastype-specifianethodstheseoperations
are applicableinside an update. For instancewe canadd all employeeganaking morethan50K to the
staf of the CS departmenty the following operation:

update [ add [ select[salary > 504 (Employeeq] (staff)] (select[name= 'CS’] (Department().

The exampleworks asfollows: a subsetof the departmentlassis identified by the selecton (this may

or may not be a singletonsethere). The departmentseturnedare updated by adding to the set-valued
function staff thoseemployeeobjectsreturnedby the “inner” selecton on the employeeclass. So, what

happenss that function staff for the CS department(sghangests value to include the resultsetof the

inner selection. Notice in particular, that no objectsare copied since objectscan be elementsof an

arbitrary numberof setswithout replication (object sharing!).

3 Views and Updates

Classesontainedn the global schemaare calledbaseclassesobjectsin theseclassesre storedasbase
objects Queriescanbe usedto defineadditional(derived)view classes The extentof views is usually
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a specializednterfaceto somebaseobjects. A useror an applicationprogramusually works only with

a small portion of the global schemaa subschemathat is particularly tailored for the task performed.
Sucha subschemaonsistsof a collectionof baseand/orview classesogethemwith the functionsdefined
on them. Someconsistencyconstraintgconcerningclosure)haveto be enforcedfor subschemasye do

not elaborateon them here (see,e.g.[HZ90]). Our view mechanisnmsimply allows arbitrary queriesto

serveas view definitions, exactly asin relational DBMSs:

define view <name> as <query;

After the executionof this statement<name> will appearasa (persistentclassof the databaseust like
baseclasses.The only differenceis that the extentof the view is definedby the <query> expression,
basedon the extentsof other (view and/orbase)classes.Notice that views may, of course,be defined
basedon other views. For easeof discussionwe will, however,call the underlyingclass(esYor each
view ‘base class(es)'.

Becauseviews arejust anotherkind of classesthey canbe usedasargumentsof updateoperations,
just asbaseclassesan. In contrastto the relationalmodel, only a few restrictionshaveto be imposed.
In fact, all updateoperatorshavethe sameeffect asif they were appliedto the baseclass,becausehe
views’ extentsare derived from these.

3.1 Selection Views

Selectionviews createsubclassesontainingall objects satisfying the selectionpredicate. The type
remainsunchanged.As an example,we definea view of all companieshaving at leastone branchin
New York (seeFig. 1):

define view NYCompVas
select[ § # select[name= ‘New York’] (locationg ] ( CompanyC);

This is a well-definedselection,since“d +# select{name= ‘New York’] (location)” is a valid predicate which
happensto include a (sub) query.

@ locations @ name

Figure 1. Selectionscreate subclasses.

Insertion,addition,deletionor removalof aninstancen the view NYComp\Wvorks on the baseclass
CompanyC Insertion of objectsthat do not fulfill the selectionpredicatelead to a problem (the same
problemoccurswith updatesthat changethe truth value of the classpredicate). Thereare two choices
how to react: (i) rejectsuchinsertions/updategincethey violate somekind of closureproperty[Heg90,
HZ90], or (ii) allow themby insertinginto the baseclass/updatinghe objectanddetermining‘visibility ”
in the view by the selectionpredicate. Commercialrelational DBMSs implementthe secondchoice.
Notethatthe problemis not dueto ambiguitiesin the updatetranslation but ratherone of whatyou want
to allow. One might ague which way to go. The following examplecreatesa new object ThisComp
throughthe view (assumingvariable paris holds a city objectwith name+# 'NewYork’):

ThisComp:= insert [ chame:= ..., locations:= { paris }, president:=... ] ( NYCompV);

3 Eventhoughviews may be materializedfor performancereasonsput then care mustbe takento keepthem consistent

or to invalidatethem.
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object doesnot satisfy the condition for view membership.Thus, the new objectis not visible in the
view. It would, however,be insertedinto the baseclass. Similarly, when somecompanyc is updated
by addinga New York branchoffice to it's locations the updatemakesc a memberof the NYCompV
view. If the lastbranchoffice in New York of a NYComp\objectis removedthe companyis no longer
a memberof the view class.

In any case,to guaranteantegrity after updatesthe systemhasto automaticallyre-classifyobjects
after updates:A selectionview definesa derivedclassV asa subclasof its baseclassB by a predicate
P. The effect is exactlythe sameasif the DB schemacontainedthe following classdefinition (both, B
andV, have as membertype sometype T):

define classV: T all B where P;

In this case,we clearly expectthe systemto guarantee/'s extentto be exactly that subsetof objects
in B's extentsatisfying predicateP. Thatis, evenif we choosesolution (i) for the aboveview update
problem,we will haveto changeclassmembershiputomaticallywhenfunction valuesare changedhat
affect classpredicates.Therefore,we adoptthe secondchoice and admit suchinsertions/additiongnto
selectionviews. A more ‘conservative’'view updatesemanticscan always be achievedby overriding
the genericadd andinsert operators.Other modificationsof objectsin the view poseno problems,all

methodsfrom the baseclassare available.

3.2 Difference Views

A differenceview is a subclassof the minuendand containsall objectsthat are not memberof the
subtrahend.The resulttype is that of the minuend,that is, the type of the subtrahenddoesnot affect
the operationat all. As an example,we candefinecompanieshaving at leastone branchin New York
but do not produceautomobiles:

define view NYDiffCompVas
NYCompV— ( select[ ‘Automobile’ € products] (CompanyQ );

In generaltherealwaysexistsa selectionexpressiorthat yields the sameresultasthe difference.Such
selectionexpressionsare appliedto the minuendwith the predicatethat excludesobjectscontainedin
the subtrahend.In the example,we usea dummy variable c to formulatethe query (similar to the self
or this standardidentifiers of other languages):

define view NYDiffCompVas
select[ ¢ ¢ (select[ ‘Automobile’ € products] (Company@) ] ( ¢ : NYCompV);

Becausedifferenceis a specialkind of selection,we do not needto discussupdatesany further, we
alreadyknow how to updateselectionviews.

3.3 Union Views

A union view is a superclas®f the two classesconstructingit. Its extentcontainsall membersof the

baseclassesandits type is the intersectionof the two setsof functionsapplicableto the basesclasses
(that is, the leastupperboundin the type lattice). If a function f is definedin both baseclassesthe

union type containsf with the union of the both rangesas rangeof f*. For example,we createa view

of legal entitiesthat containscompaniesand persons:

define view LegalEntityVas PersonCunion CompanyG

4 As alreadymentioned,function namesare assumedo be unique. Therefore,if a function name occurstwice, both
occurrencesneanthe samefunction (possiblywith differentrangerestrictions).
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Figure 2. Unions create superclasses.

The function nameis the only one applicableto membersof the LegalEntityVview. All other
functionsof companiesor personsare only availablein the contextof either CompanyTor PersonT

As for updateghereis oneinherentproblemin union views: If we wantto insert or add objectsto
the view, we haveto propagateheseto at leastone baseclass. But, which oneto choose?In general,
the choiceis ambiguousso we eitherhaveto disallow suchupdatespr to include the objectinto both
baseclasses.Classpredicatesassociatedvith the baseclassesif any, could eventuallydeterminewhich
onewill containthe new object. Since classpredicatesare optional, however,we can not rely on this
solution. Our choiceis therefore,to propagateinsert and add to both baseclassesof union views.
Neverthelessyserscan defineinsert and add methodsspecificto the view’s type.

All othergenericupdateoperationsareapplicableto unionviews (delete set remove in theobvious
way: They propagateto both baseclassesCompanyCand PersonC Particularly,remove puts objects
out of both extents(if they were members). Further, as with all views, any methodsincludedin the
result type can be applied.

3.4 Intersection Views

Views defined by the intersectionof two classesare subclasse®f them containing objects that are
membersof both baseclasses. Thereforethe result type includesthe functions of both classes’types
(it is the greatestower boundof the input types). As an example,we can defineworking studentsvia
the following intersection:

define view WorkStudVas StudentCintersect EmployeeC

name

hiredate dept

450(:7# EmployeeC @ gpa
salary

Figure 3. Intersectionscreate subclasses.

Usersof this view arepermittedto apply all functions(andmethodsnoneis shownhere)of students
(name,dept,andgpa)andof employeegname hiredate soc#,andsalary). Thesefunctionsappliedto the
memberf theview yield the sameresultsasappliedto the baseclassesbecaus¢he objectsarethe same.

Analogouslyto the union operation,thereis a problemin removalfrom intersectionviews: due to
the symmetryof intersectionjt is ambiguougo which underlyingclassthe removeoperationshouldbe
propagated.Our choiceis, again,to propagateo both baseclasses. Insertingor addingobjectsto the
view propagatesand addsthem into both baseclasses.Propagatiorof deletionor modification(sel) is
straightforward,becauseof object preservation.

5 Again, userscanddfine type-specificremove methodsas appropriate.
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Projectionviews aresuperclassesf their underlyingbaseclasswith changedypes. Thelist of functions
that canbe usedin the view determineghe resulttype. Projection“has no effect” on the instancelevel,
it just affectsobjecttypesby “hiding” somefunctions(like a “type cast), thatis, the extentis the same
asthe baseclass. For example ,we may wish to “hide” the salaryfrom the usersof a view PublicEmpV
on EmployeeCby projecting away the salary function:

define view PublicEmplVas project [ hame,soc#,h@date] ( EmployeeQ);

name

SocH

s
EmployeeC

!

Figure 4. Projectionscreate superclasses.

Usersof this view operateon exactly the sameobjects(the sameextent) asthosein EmployeeCthey
canuseall the employeefunctions(including methods) exceptsalary (seeFig. 4)°. Thereforethe type
of PublicEmplVis a supertypeof EmployeeCbut a subtypeof PersonC

Updatesperformedon the view will alsoaffect the membersof classEmployeeCsincethey are the
sameasthoseof PublicEmplV Inserting,adding,deletingand removingobjectsin a projectionview is
feasible. Supposewe createa new employeein the view, usingthe following operation:

NewEmp:= insert [ name:= ..., addr := ..., soc#:= ... ] ( PublicEmplV);

Theinsert works asif it wereappliedto the baseclass,EmployeeCThe only differenceis thatwe can

not assigna salaryusingthe genericassignmen(sef operator sincethis would resultin atype checking
error. However,asthe typesof objectsalso containmethods projectionscan also specify the subsetof

methodsretainedin the view. In particular,our exampleprojectionmay hide a retrieval function (such
as salary) but containthe correspondingupdatemethod(suchas give_raiseor assign_salary. In this

case,a value associatedvith the object can be updatedbut can not be retrievedby the usersof this

view. As a consequenceyrojectionviews can be usedto restrictaccesgrivilegesin a ratherelaborate
way: modificationcanbe permittedwhereretrievalis forbiddenor vice versa.In casea classpredicate
on the baseclass statesthat certain functions (such as salary) have to have a value (i.e., are total),

insertionsinto projectionviews that eliminatethesefunctionsare automaticallyrefusedby checkingthe

classpredicateupon insertion.

6 Herewe seethat the objectsare instancef two typesat the sametime. In orderto decidetype safenes®f function

applications,type checkingworks on the classlevel: using the salary function on class PublicEmplVwould resultin a
(compile-time)type error, eventhougheachemployeeobject“has” both types,EmployeeTand PublicEmpIT

10
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Views definedby extend are subclasseghe type of which containssomeadditional,derivedfunctions.
The view’s extentis identical to that of its superclass.We can, for instance,definea derivedfunction
resp_for(“responsiblefor”) for employeeobjectsby the following query (seeFig. 5):

define view PresEmplVas
extend [ resp_for:= select[presidente] (CompanyQ] ( e : EmployeeC);

Inserting, adding, deleting, removing objectsto/from the view propagatedo the baseclassand vice
versa. Further, all methodscan be applied.

In this respect,projectionviews and extendviews behavesimilar. Both createnew classeswhose
extenthasto beidenticalto that of the underlyingclasses.The new classescould havebeenintroduced
in the DB schemaequivalentlyby:

define classV: VT all C;
Thatis, extenfV)=exten{C) and VT < member_typ) for extend and vice versafor project.

The values of the extendedfunction, resp_forin the example, can not be updateddirectly by
assignmentgse). This is not particularto views, but occurswith all derivedfunctions, becauseheir
valuesare calculated. They are updatedindirectly instead,by changingother functions’ values. In the
exampleabove,changingthe presidentvalue of a companyobjectmay updatethe value of resp_forfor
some employeeobjects.

president
G
resp_for

PresEmplV

Figure 5. Extend defines subtypeswith new functions.

Disallowingthe manipulatiorof extendedunctions’valuesseemsjuiteastrongrestriction. However,
all this really meansis that we can not assigna new value “out of the blue” to sucha function. But if
the function value is a (set of) other object(s),we can updatethis (or these)object(s). In the example,
sinceresp for returnscompanieswe canapply all (genericandtype-spedic) updateoperationgo these
companies.Someof theseupdatesmay havean effect on the derivedfunction: if we changethe value
of the presidentfunction for the objectsin resp_for this may leadto resp for return anothervalue next
time for the currentemployee!

3.7 Join Views

Joinsare usually usedto combineobjectsthat are relatedby some’relationship’ expresseds a logical
predicateover their valuesin some functions (attributes). The relationshipsthat are of mostinterest
arerealizedvia functionsin our model. So, only a few other relationshipsmay eventuallyneedto be
establishedby somekind of join.

We havealreadyseena way of establishinghew ‘relationships’amongobjects,namely,definingnew
functions betweenthem: the extend operatordoesthis. So, one way of expressingoin viewsin our
modelis to define the requiredrelationshipas a new function connectingthe matchingpairs of objects.

For example,to supportquerieslike “employeesliving in a town in which some(not necessarily
their) companyis located” — which would require an (equi-) join of the two correspondingelations

11
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over the employeeclassby introducinga new function LocalCompreturningcompaniedocatedat the
employee’shometown by the following extend operation:

define view OuterJoinVas
extend [ LocalComp:= select[addresse locatior] (CompanyQ ] ( EmployeeC);

The view OuterJoinVwill be a subclassof EmployeeCcontainingall EmployeeCobjects. The new
function returnsthe setof “join partners”(which may alsobe empty). To implementan inner equijoin,
an additionalselectionwith the predicate”LocalComp# 0" mustbe applied,for example:

define view InnerJoinV as select[ LocalComp# @ ] ( OuterJoinV);

location address
< @ EmployeeC
LocalComp

Figure 6. Outer and inner join defined by extend views.

“Joining” objectsby meansof the extend operatoris object preserving that is, the result of this
join is a new “relationship” amongexistingobjects. Updateoperationson “join” views behaveexactly
as discussedor extendviews. Thatis, all updatesare allowed, exceptsimply assigninga new value
to LocalComp For example,valuesof employeeand/orcompanyfunctionsmay be changeddeletion
andremovalof employeesds also possible,and all type-specificmethodsmay be applied. Particularly,
an objectmay be addedor removedfrom the view indirectly by changinga company’slocation, or the
addressof an employee(cf. selectionviews).

The readermay have noticedthat ‘joining’ by meansof the extend operatoris not a symmetrical
operator. We havediscusseshis problemin depthin [SS90a]. In short, we can provide a symmetric
solution by extendingthe other classwith the inverse function. Alternativesfor join-like operations
include object generatingones and tuple (pairs of objects)generatingones. Comparisonswith other
guery languages’solutionsto this problemare also containedin that other paper.

3.8 Typing, Classification, and Composite Queries

In the sectionsabovewe haveddinedthe queryoperatorsn termsof resulttype andextent. We havealso
shownhow updateson views canbe propagatedo the underlyingbaseclass(es).The typesand extents
of queryresultshavebeenpositionedrelative to their operandclass(es) To completethe discussion]et
us now discussthree remainingproblems(cf. [Kim89]):

1. Whatis the final position of the resulttype in the type lattice?

2. Whatis the final position of the resultclass(i.e., the view) in the classhierarchy?

3. How aretypesand extentsderivedfor views definedby compositequeries(or, equivalently,views
definedover views) and can they be updated?

12
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definedthe resulttype and whetherit is a sub-or supertypeof the input type. However,this resulttype
neednot be an immediatesub- or supertype.For example,considerthe view definedby the following
expression(seethe left part of Fig. 7):

define view EmpV as project [name,hiredaté ( EmployeeO);

Resulttypeshaveto be positionedin the type lattice consistentwith the other existingtypes. This
may leadto the new type being placedfurther up or down the hierarchy.In the example,EmpVmoves
up the lattice beyond PublicEmpV Also, it may be necessaryo introduceseveralother new typesas
intermediatenodesin the type hierarchy. For example,considerthe view V definedby projectingthe
name,soc#and salary of EmployeeQcf. [GTC*90, MS89]). Here,in orderto get function inheritance
right, an additional (anonymous)ype is ‘introduced’ (seeFig. 7).

The typing problemand the reoilganizationof the type lattice is neverthelessatherstraightforward.
The type lattice is actually (a part of) the powersetlattice over the set of all functionsin the global
schema.Completealgorithmsfor insertioninto a type lattice, including complexity analysesare given
in [MS89], for instance.

name
name
— G
hiredate hiredate ook
_—

V:= project [name,soct,salary]

socH#
. EmployeeC sary
PublicEmpIV (EmployeeC) PublicEmplV ®—>
EmployeeC EmployeeC

Figure 7. Absolute typing of projection.

4

g
8

Classfication. Operationsaffecting the extent,especiallyselectionsposeanotherproblem. In orderto
positionthe resultextentcorrectlyin the class(i.e., subsethierarchy,we haveto decideclasspredicate
implication: classS is subclassof C if C's predicateimplies that of S.

It is well-known that predicatesubsumptiornis undecidablein general. So, how canwe succeedn
positioning a view in the classlattice ?

Therearetwo waysout: (i) Permitonly decidablepredicates Researclon knowledgerepresentation
languagesn the KL-ONE family [BS85] showsthat, evenwith quite strongrestrictionson the form of
allowed predicatesthe problem remainsundecidablegfSS89, Neb90]. In our case,in the presenceof
computedfunctionsand subqueriesthe situationis evenworse. (i) Implementan incompletedecision
procedure. This meansto consideronly those parts of the class predicatesduring the classification
that are known to be decidable. The position determinedby the incompleteclassificationprocedureis
guaranteedo be correct,but theremay be caseswherethe view could have beenplacedfurther down
the classlattice, if the completeclasspredicatehad beenused. We have chosenthat secondsolution
for our implementation. The simplestand straightforwardsolution would be not to classify at all, but
then selectionswill alwaysresultin direct subclassesBesidesthe lessinformative classhierarchythat
would be presentedo the userin this case,this hasother (performance)penalties.In caseof queries,

7 Formally, sincethe type hierarchy,as definedby the user, is internally completedinto a lattice, this ‘new’ type has

alreadybeenpresentbefore.

13
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canbe reducedto a simplerexpressiorwith only one class,if oneis knownto be a subsetof the other.
Furthermore,consistentprocessingof updateoperations,for example,insertionsinto a class,is also
faster the more accuratethe classhierarchyis: insertioninto a subclassautomaticallyinsertsinto all
superclassedf the classhierarchywerea completelattice, nothingmore hadto be checked.otherwise,
we haveto checkthe (instantiated)classpredicatesof all other classegoo.

Composite queries. Viewsdefined by compositequeriesarewell-defined, sincewe canstepwisecompute
resulttypesand extents(sincethe modelis closedand the operatorscombineorthogonally). However,
the final view extentand type may be rather“far” away from the input in the classand type lattice,

respectively. Eachoperatorintroducesan intermediateclassand type, so if we wantto keepthe final

result“connected”to theinputin the lattices,we haveto inserttheseintermediatenodestoo. One might

ask, how are namesto be given to theseintermediatetypes and classes. First of all, they neednot

be named,sincewe would not want to usethemin declarationgfor types)or queries(for classeshy

explicit names. Alternatively, we can easily add syntacticsugarto give explicit namesto intermediate
resultsin a query.

We illustratethe classfication of compositequeriesby the following examplethat usesa well-known
algebraicequivalenceof the relational algebra:

define view V1 as select[age > 2Q] ( project [age,namé (PersonG );
define view V2 as project [age, namé ( select[age > 20] (PersonG );

V1 first generatesan intermediateclasswith all personobjectsbut an associatednembertype that is
a supertypeof PersonT Thenit resultsin the final classV1 being a subclassof that intermediatewith
the sametype, but only a subsetof the extent. V2 proceedsthe other way round: first a subsetof
extent(PersonCis createdwith an unchangedype. Subsequentlyve keepthis intermediateextentfor
the result classV2 but it hasa supertype. As suggestedy Figure 8, the two expressionsarein fact
equivalent.

name C
project [.] (Person)) age
O w1

V2
select [..] (Person)

Figure 8. Classifying composite queries

This examplealsoservesasa goodargumentfor strictly separatingsubtypeand subsetrelationships
amongclasseqalsosee[Bee89]): If we usethe subclasgelationshipthat combinessubtypeand subset,
then neitheris V1 a subclassof PersonCnor vice-versa. If, however,we separatethe two concepts,
two relationshipshold betweenV1 (or V2) and PersonC— but in oppositedirections! The view class
V1 hasa member_typesay VT, that is a supertypeof PersonT but the extentof V1 is a subsetof
extent(PersonC)Graphically,with two kinds of arrows,one for ‘subset_of and one for ‘subtype of’,
we havethe “cyclic” situationshownin Figure8.

14
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classeghatarein fact views. Thatis, updateoperatorsappliedto a compositeview havethe sameeffect
asif they wereappliedto the intermediateview, createdas predecessowhile the stepwisecomputation
of the compositeview. Updatingthis intermediateview, however,also propagatego its predecessor,
and so on until the propagationaffects a baseclass. Therefore,updatingcompositeviews is restricted
to thoseupdateoperatorsthat can be stepwisepropagated.

4 Related Work

Recently, there have been other proposalsfor view supportin ooDBMSs [AB91, HZ90, SIGP90].
They are fundamentallydifferentin that our approachis the only one that usesthe standardways of

defining views by nothing else than query languageexpressions. They either introduce special view

definition featuregAB91] or useotherfacilities of their systemqFUGUE [HZ90] usestype hierarchies
for information hiding, POSTGREYJSJGP90]usesthe rule systemto simulateviews).

The O, approachof [AB91] introducesspecialconstructsor defining“virtual classes”.Theytry to
usethe querylanguage‘as much as possible”in their view capability, however,somefunctionality is
duplicated(for instanceunionandintersectioras“generalizatiorand specializatiorabstractions”). They
usea slightly modified versionof the O, datamodel,droppingthe distinction between(stored)attributes
and (derived)methods. This is a first way of introducingderivedinformationin the form of computed
attributevalues;this featureis includedin our modelfrom the beginning.In somerespectstheir views
more generalthan ours, for instancethey can hide functions(i.e., projectaway) not only in one class,
but automaticallyin all subclassesOur projectionviews, in contrast,hide the attribute only from the
oneclassthatis the view’s baseclass,so we would haveto derive views from all subclassegxplicitly.
What they called“behavioralabstractioty i.e., deriving a virtual classasthe union of all classesvhose
type containssomegiven functions,is possiblein our approachusingqueriesthat mix the meta-leveland
the objectlevel. We allow suchqueries,however,they have not beendiscussechere[Tre91]. On the
otherhand,our approachis more generalin thatit allows all legal queriesto serveas view definitions,
without introducingany “imaginary” new objects. This includesjoins, for which they haveto maintain
internal datato make sure that the new view objectsget the samelD every time the view is queried.
The mostimportantdifference,however,lies in the simplicity of our approachsincejust usethe query
languagefor view definitions.

FUGUE [HZ88] allows multiple instantiationand eachtype of an object servesas one view onto
it. More generalview mechanismsre discussedn [HZ90]. There,“view” meanswhat we called a
subschemabove,thatis, a collection of baseand derived classessubjectto someclosureconstraints.
Whatcorrespond$o our views areadditionaltypes(andcollectionsof objectsof thesenewtypes)defined
in their “views”. The mechanisms more general sinceeachnew type may be implementeddifferently
over the existing types. this includesissuessuch as object preservationversusobject generation,and
whetheroneview objectcorrespondo oneor manybaseobjects. While theunderlyingalgebraof [SZ89b,
SZ89a]doesnot provide object-preservin@peratorsemanticsthey cansimulateobject-preservingiews
by atypethatimplementsobjectidentity by usingthe Olds of someother(i.e., the base)objects. Updates
on their views are possible,if the implementorof the derivedtypesprovidesthe correspondingnethods
(which may be implementedusing methodsof the basetypes). Their view mechanismbasicallybuilds
on abstractiormechanism®f object-orientedorogrammingratherthanon a genericquerylanguage.

A similar approachcanbe foundin [TYI88], where‘virtual' classesanbe definedover Smalltalk
classesVirtual classesredefinedby a (class)predicatethat determinesnembership.The do not permit
multiple inheritance,nor do they operatorschangingthe type of objects. However, new methodscan
be definedfor virtual classes.

ThenewPOSTGRESule system(PRS2,see[SIGP90])canalsobeusedto establisithe functionality
of views: Rulescandefinederivedrelations,andotherrulescanspecifyupdatesemanticdor theseview
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than ours. On the other hand,we provide a standardway of view definitionstogetherwith a standard
updatesemantics. Similar to their approach,our updatesemanticscan be changedas appropriate. In
PRS2this is achievedby defining rules, in our approachby overriding some of the genericupdate
operatorsand/or defining type-specificmethods.

5 Conclusion

In this paperwe presenteda simple approachto views in object-orienteddatabasesLike in relational
systems,queriescan be usedto definethe extentsof virtual classesthat is, collectionsof objectsthat
arederivedfrom somebaseclasses.The presentatiorwasinformal andintendedto carry over theideas,
not the exactdetails. A more formal treatmentis containedin [LS91]. The centralidea is that once
the query languagefulfills somebasicrequirementsits usefor defining updatableviews follows quite
naturally. Neverthelessto our knowledge,this is the only object-orientedquery languagewith sucha
view capability. In contrastto otherapproachesye canusearbitrary queriesto defineviews, in exactly
the sameway asin relationalquerylanguages.n the sequelwe summarizethe propertiesof the query
languagethat havebeenessentiafor the view definition capability and the view updatesemantics:

— object preservation,
— typel/classseparation,
— multiple instantiationand multiple classmembership.

If someof thesepropertiesare not met by a languagewe will seethat our solutionswill fail, partly or
completely. Thus,the resultswe obtainedare not boundto the COOL languageput to theseproperties.

Objectpreservationis the centralconcept.lt is crucial for a straightforwardview definition facility.
Objectpreservingoperatorsemanticaneansthat the resultsof queriesare (someof) the existingobjects
from the database.The other choicesare: object-generatingpperators(resultsare objects, but newly
generateanes)or tuple-generatingperatorgresultsaredata,not objects). Examplesof querylanguages
with tuple-generatingand/or object-generatingsemanticsare [AK89, ASL89, SZ89b]. If queriesjust
return dataaboutobjects, e.g.relationsof tuple values: how could one try to apply updatesto query
results? Updating the result relation will not affect the objects. Such query semanticsare useful for
output purposesfor interfacingwith value-orientedsystemspor for restructuringoperationgHS91], but
not for updatableviews. If a querylanguagegeneratebjectsthat are new similar problemsarise:
we might apply methods,but how canthey affect the original objects? One can, of course,play some
implementationtricks, suchas keepingthe old Old as a “hidden” field, but this is a hack ratherthan
a clear concept. To our knowledge,the object algebraof [SO90] and that of [HFW9O0] are the only
other (algebraic)languageswith object preservingoperators. They also mentionview supportas one
of the reasonsfor that semanticsbut view updateshave not yet beeninvestigated. Somerule-based
languagessuchasF-logic [KL89], canspecifyobject-preservingswell asobject-generatingperations,
since there, Olds are availablein the language.

The type/classseparation that can also be found in [Bee89,HFW90], is a consequencef object
preservation:if both projectionsand selectionsare to preserveobjects,andif compositeselect/project
gueriesare permitted,we needthis separatiorin orderto connectthe view classproperlywith the base
class. The position of query resultsin the type and classhierarchieshaveto be less precisewithout
this distinction (see[Kim89], whereall queryresultsare direct subclassesf “OBJECT”). Particularly,
this separatiorof the difficult classfication problemfrom typing allows for a strongly typed language
with precisetype inferencing. Furthermore no algebraoperationchangedoth, type and extent,except
for union and intersectionof two classeswith differing types. So, the separationis a clarification of
distinct concepts.

Multiple instantiationand multiple classmembershimare animmediateconsequencef objectpreser-
vation: sinceprojection,for example,changeghe type, all objectsin the result“acquired” a new type.
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we can treat updatesto query resultsin the sameway as updatesto stored classesand the updates
propagateautomatically.[Kim89] doesnot permit multiple classmembershipanotherreasonwhy view
supportis non-trivial in this model (views are mentionedin the paperas an importantconcept,but no
solutions are presented).

Classificationof queryresultshasbeenmentionedin [Kim89] as a problemto be solvedfor closed
guery languages. But the positioning of result classesthere (directly below “OBJECT’) is not very
helpful. With the separationinto two hierarchiesand with multiple instantiationand classmembership,
however,we can keep the position of the query resultvery closeto the input class(es). None of the
previouswork we have seenoffers similar solutions. The modeldescribedn [Day89] is quite closeto
our approach.View definition is alsorecognizedasimportant. The presentatiorof the querylanguage,
however,doesnot elaborateon view definitions, updatesvia views are not investigated,neitheris the
placementof resultsin the lattices.

Dynamicreclassificatiorduring updates: More automaticclassificatiorfunctionality known from Al
systemdbecomesiecessaryhenwe takeinto accountthatobjectscandynamicallygainandloosetypes
during their life time. In particular,updateoperationsmay affect the type and classificationof objects;
a changeof an existing objectcan makeit a memberof a more specificclass(becausenow it satisfies
it's classpredicate)or a more generalone (if the classpredicateof it's currentclassis violated by the
update). Examplesfor this have beendiscussedbovefor selectionviews.

Acknowledgement The COCOONmModelhasbeendevelopedointly with Hans-&rg Schek,to whom
theauthorsareindebtedor numerousliscussion®f the subject.He, Bin Jiang,andChristianRich helped
in improving an earlier version of this paper[SLT90]. An extendedabstractof this paperappearedn
[SS91].
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