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Abstract

Object-orienteddatabasesystems(ooDBMSs)aresupposedto offer at leastthe functionality availablein commercial
relationalDBMSs of today. Oneimportantconsequenceof this is that they haveto providea separationof the global
(conceptual)databaseschemafrom the externalschema(“subschema”) of a particular task. Views are a mechanism
to realizethis data independence.In addition, they alsosupportmultiple levelsof detail, securityandauthorization,
and interoperabilityin a heterogeneousenvironment.In a relationalDBMS, views aredefinedby queries.However,
they cannot be freely updated.We describeconceptsof an objectmodelandquery languagethat arenecessaryfor
object view definitions. We show that updatingobject views is much more feasiblethan in the caseof relational
views. The key propertyof a query languageleadingto this result is objectpreservingoperatorsemantics. That is,
in contrastto many previousobject algebras,query resultsare setsof existingobjectsinsteadof datatuplesor new
objects. Consequently,we haveto solve the classificationproblem: whereto include the view in the type andclass
lattices.
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1 Introduction

Relationaldatabasesystemsprovide a very simple, yet powerful view mechanism:any query, since
it returns a relation, can be used to define a view, that is, an additional (derived, virtual) relation.
Abstractingfrom the details of a particularquery language,views are definedby a statementsuch as
“define view nameas query.” In this paper,we showhow the samecan be donein an object-oriented
databasesystem. Relationalviews cannot be updatedfreely, sinceit is often ambiguoushow to trace
view updatesback to updatesof basetuples. Views containingthe key of their (one) underlyingbase
relationcanbe updated.In an ooDBMS, sinceobjectshavean identity independentof their associated
values,this problemdisappears,if thequerylanguagepreservesobjects’identities.We discussproperties
of an object-orientedquery languagethat arenecessaryto allow for updatableobjectviews.

Thereare the following four major reasonswhy to supportview capabilitiesin an object-oriented
databasesystem:(1) sizeof the global schema(just for manageabilitywe may needto split into smaller
pieces);(2) authorization(showonly relevantdata,that is, restrictaccessby visibility); (3) integrationin
a heterogeneousenvironment(providecustomized‘data models’ for different clients); and (4) “upward
compatibility” (views haveprovenuseful in relational DBMSs, ooDBMSsare supposedto extendthe
functionality of RDBMSs).

In fact, there is large consensusthat views should be definablein an ooDBMS. As ooDBMSs
are a quite novel areaof research,we refer to the literatureon object-orienteddatamodelsinsteadof
implementedsystems.There is a constantlyincreasingnumberof such publications,however,only a
few of them mentionviews at all. Somelist view definition capabilitiesas an objectivein their query
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languagedesign,but do not elaborateon the problemafter describingthe query language.Many of the
proposedobject-orientedquery languageshavean inherentproblem: They either generatenew objects
or just datatuples(values) as query results. In the former case,views definedby thesequerieswould
not containbaseobjects,so updatesdo not propagate.In the latter case,no methodscanbe appliedto
queryresults,nor will updatesmakeany sense.We will comebackto theseproposalsin the discussion
after we have presentedour solution.

Thekey ideathatleadsto a fully flexible view definitioncapabilityof a querylanguageis to makethe
operationsobjectpreserving: The objectscontainedin the result of a queryare the input objects(some
of them, in general). Object preservationis important for it makesupdatespropagateautomatically:
an updateto an object in a view is an updateof a baseobject. In the contextof views thereare two
directionsfor updatepropagation:

1. Updateson baseobjectsare reflectedin views. This distinguishesviews from snapshots,where
copiesof the baseobjectsare takenthat arekept separateandmay changeindependently.

2. Updateson view objectsshouldpropagateto the underlyingbaseobjectswherepossible.This view
updateproblemis known to be difficult in the relationalcontext. Since there, “object identity” is
tied to key attributevalues,only views containingthe key may be updated[GPZ88,SLW88].

Obviously, with object preservingquery semantics,both directionsof updatepropagationwill follow
naturally. We have shown earlier [SS90a] how to define an object preservingquery algebra. It is
particularly noticeablethat object preservingsemanticscan be given to all query operators,including
joins and complexexpressions.Thus, there is no limitation of the expressivepower queriesusedfor
view definitions. Here we will show that views definedby such a query languagecan almost freely
be updated.

We presentour resultsin the contextof a particularobject model, COCOON.Even thoughobject
modelsusuallydiffer quite a lot in the particular terminologyusedor in severaldetails,thereis broad
consensuson thehigh-levelconceptsthatshouldbeprovided.Theobjectmodelwe useis fairly standard,
so the resultscan be interpretedand adoptedto other models as well. Besidesobject preservation,
further important conceptsof COCOON, which are exploited in our approachto view updates,are:
multiple instantiation (objects may be instancesof more than one type and they may changetypes
dynamically),multiple classmembership(objectsmay be membersof severalclassesat the sametime;
classmembershipmay also be changeddynamically), and class predicates(defining necessary—and
sometimesalsosufficient—constraintson membersof superclassesfor beinga memberof a subclass).

The organizationof the paperis as follows: in Section2 we review the conceptsof the COCOON
object model. First we summarizethe basic terminology and the object preservingsemanticsof the
query languageoperators. Then we focus on the genericupdateoperations. Section3 showshow to
define views by queries,how to position the result types in the type lattice, and how classpredicates
determinethepositionof theview in theclasshierarchy.In this paper,we do not give formal definitions,
ratherwe usean example-drivenpresentation.However,we discussthe generalproblemsandsolutions
afterpresentingrepresentativeexamples.Section4 comparesour approachwith someotherrecentwork.
Finally, Section5 concludeswith a summaryof the key propertiesthat led to our results.

2 An Object Model

Essentially, the COCOON model as described in [SS90a, SS90b] is an object-function-model
(cf. [WLH90, DMB

�

87,Day89]). Its constituentsareobjects, functions, typesandclasses. Thequerylan-
guage,COOL, offers object-preservingaswell asobject-generatinggenericqueryoperatorsplus generic
updateoperators.In this paper,we do not useobject-generatingqueryoperators.The key objectivein
the designof COOL was its set-oriented,descriptivecharacteristics,similar to a relationalalgebra. In
fact, COOL canbe seenasan extensionof our nestedrelationalquery language[SS86].
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2.1 Basic Concepts

COCOONis a core objectmodel,meaningthatwe focuson theessentialingredientsnecessaryto define
a set-orientedquery language. For instance,tuples as a type constructorare excludedfrom the core.
Basically, all we needis objects(concreteand abstract)and one type constructor,namely set. Other
featurescan be addedlater due to the orthogonalityof the language[SLR

�

91].

Objects are instancesof abstractdatatypes(ADTs). They canbe manipulatedonly by meansof their
interface,a set of functions.

Data are instancesof concretetypes(suchas numbers,strings)and constructedtypes(suchas sets).
The distinction from objectsis similar to [Bee89].

Functions aredescribedby anameandsignature(i.e., domainandrangetypes).Functionscanbesingle-
or set-valued,they are the interfaceoperationsof types. The implementationis specifiedseparately(we
do not show this here). Notice that we distinguish retrieval functions from methods, that is to say,
functionswith side-effects. Unlessstatedotherwise,we usethe term functionsin the generalsensein
the sequel.Retrievalfunctionsarea uniform abstractionof “attributes” and “relationships”of classical
datamodels.A usefulfeatureis the capabilityof defininginversesof functions.This integrity constraint
is enforcedby the systemduring updates.For an example,seebelow under“types”.

Types describethe commoninterfaceof all instancesof that type, that is, the collectionof applicable
functionsand their interaction. The latter gives the function’s semantics,which canbe specifiedin the
form of axioms, for example. We do not considerthis any further here. So, the definition of a type
basicallyconsistsof two parts: a set of functionsand a type name.1 The following exampledefinesa
type CompanyTwith four functionscname,staff, locations,andopen_new_branch.

type CompanyTis_a ObjectT=

cname: string,

staff : set_of EmployeeTinverse employer,

locations: set_of CityT,

. . .

method open_new_branch(CityT);

As we will seelater, queriescandynamicallyproducenew types. Thoseare unnamed,but their set of
functionscan be derived from the query by standardtype inference.

Subtyping. If a type is definedas a subtypeof another,e.g.

type EmployeeTis_a PersonT= ... ;

then every instancee of the subtypeEmployeeT, is also an instanceof the supertypePersonT. This is
calledmultipleinstantiation. Consequently,all functionsdefinedon thesupertype,PersonT, apply to the
subtype,EmployeeT, too. Further,functionson the subtypemay be morerestrictedthanthey areon the
supertype(that is, their rangemay be a subtypeof that definedin the supertype).Subtypingdefinesa
partialorder“

�
” on types.Internally,thetypesystemis completedto form a latticeof types(thepowerset

lattice of the setof all functionsin the databaseschema),suchthat for any two typestheir leastupper
boundandgreatestlower boundarealwaysdefined. The top elementof the lattice is the most general
type ObjectT(therefore,all instancesof definedtypesin the databasearealsoinstancesof ObjectT). We
allow multiple inheritance,that is, typesmay havemore than one supertype.We assumethat naming
conflictshavealreadybeenresolved(for instance,by prefixing function nameswith type names).

Classes. We strictly distinguishtypesfrom classesin the following sense(seealso [ACO85, Bee89]):
Typesareinterfacespecifications(a collectionof functions),whereasclassesarecontainersfor objectsof
sometype (type extents).A classC is a collectionobject (an instanceof the metatypeclass).For each

1 In this paper,we write a ...T at the endof an identifier to makeclear that it is a type, anda ...C for classes.
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class,thereis a setof objects,calledits extent(extent(C)). Theelementsof thatset,calledmembersof the
class,areinstancesof a type,themember_type(C). Dueto multiple instantiation,individual membersmay
beinstancesof severalothertypestoo. Eventhoughclassesrepresentpolymorphicsets,typecheckingof
our languagealwaysrefersto the uniquemembertype of the involved sets. A classdefinition specifies
a classname,the membertype, the namesof superclasses,andan optionalclasspredicate(for the latter
two, seebelow, under subclasses):

classEmployeeC: EmployeeTsomePersonC;

Due to the separationof typesandclasses,theremay be any numberof classesfor a particulartype (for
instance,morethanoneasthe resultof selectionoperations,seebelow,or none,if we arenot interested
in maintainingan explicit extent of that type).

Subclasses. Thereareseveralchoicesasto how to definea subclassrelationship.Dependingon whether
themembertypesof two classesarethesameor oneis a subtypeof theother,anddependingon whether
theextentof oneclassis a subsetof theextentof theother. That is, we havetwo knownrelationshipsto
consider:subtypeandsubset.As will be seen,thesetwo often correlate,but they neednot. Therefore,
we will alwaysdistinguishcarefully which oneof themholds. We will speakof a subclassrelationship
C1

�
C2, if f for the two classesit is true that member_type(C1)

�
member_type(C2) and extent(C1) �

extent(C2). Usually, at leastone of the orderingrelationshipswill be proper. Considerthe following
example:

type PersonTis_a ObjectT= ...;

type EmployeeTis_a PersonT= ...;

classPersonC: PersonTsomeObjectC;

classYoungC: PersonTsomePersonCwhere age < 30;

classEmployeeC: EmployeeTsomePersonC;

The classYoungC is a subclassof PersonCwith the sametype, but a subsetof the objects,whereas
EmployeeCis a subclassassociatedwith a subtypeof PersonT. Thepredicategivenfor classYoungCis a
constraintthatall membersof YoungChaveto beyoungerthan30. This is a necessary,but not sufficient
condition for membersof PersonCto becomemembersof YoungC. Changingthe keywordsometo all
would indicatea necessaryandsufficient condition: in this casetheDBMS would automaticallyclassify
personsinto the subclass,if the predicateevaluatesto true. Notice that, unlike e.g.[D

�

90, Kim89,
SÖ90], we definethe extentof a classC to include the membersof all its subclasses.

2.2 Object Algebra

One of our primary goals in the model is a strongly-typedalgebrathat allows for static typechecking
[BTBO89]. This is achievedby using the type associatedwith a classto checkwhetherthe operations
on the classmembersare legal. We use a set-orientedalgebra,where the inputs and outputsof the
operationsare setsof objects. Hence,query operatorscan be appliedto extentsof classes,set-valued
function results,query results,or set variables. Theseare collectively called <set-expr> in the sequel.
Formally, a classnameC as an argumentis a shorthandfor extent(C).

Variables and Assignments. Due to the set-orientedstyle of the query language,objectsare typically
unnamed.However,variablescanbe usedastemporarynames(“handles”)for objects.They haveto be
declaredwith their type, suchthat compile-timetype checkingappliesto variablestoo. For example,

var My_Chevy: AutomobileT;

declaresa variableMy_Chevyof type AutomobileTthat can, for example,be assignedthe result of an
object creationin order to identify the new object in subsequent(update)operations.

Selection ( select[P] (<set-expr>) ) returnsa subsetof the input setof objects,namelythosesatisfying
the predicateP. The type of the set is unchanged,i.e., it is type(<set-expr>).
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Projection ( project [A1, ..., Ai] (<set-expr>) ). The outputof a projectionis a setwith a usuallynew
type, a supertypeof the input type,as lessfunctionsaredefinedon the output,namelyonly thoselisted
in the projection.All objectsof the input setarealsoelementsof the outputset (objectpreservation).

Extend ( extend[<fname>:=<expr>,... ] (<set-expr>) ). Projectioneliminatesfunctions,extenddefines
new derivedones. Obviously, eachgiven function name<fname> must be different from all existing
functionsfor thetypeof the input. <expr> canbeany legalarithmetic-,boolean-,or set-expression.The
objectsof the input setarepreserved,that is, extend returnsa setwith thesameobjectsasthe input, but
with a new type, a subtypeof the input type (all the old functionsplus the new onesaredefinedon it).

Set operations. As theextentof classesaresetsof objects,we canperformsetoperationsasusual.One
notablepoint is the criterion for duplicateelimination (or equality determination):equality of abstract
objectsis what this usuallycalledidentity. So, this is thenotion that is usedin thesetoperations2. With
a polymorphictype system,we needno restrictionson operandtypesof setoperations(ultimately, they
are all objects). The result type, however,dependson the input types: for the union it is the lowest
commonsupertype(in the lattice) of the input types.The differenceoperationyields a subsetof its first
argumentwith the sametype; finally, intersectionresultsin the greatestcommonsubtype.

Thesearethebasicobjectpreservingqueryoperatorsof our algebra.Otheroperators,suchasjoin canbe
derivedfrom them(cf. Section3.5). Thecompletealgebraincludesan operator(extract) for generating
setsof tuplesasqueryresultsto communicatewith value-orientedenvironments[SS90b].Formally, we
do not provideobjectgeneratingqueryoperators.However,new objectscanbe derivedby combininga
querywith an updateoperator,insert, that generatesthe new objects(see[SLR

�

91] for details).

2.3 Update Operations

Oneof themainobjectivesof theobject-orientedapproachis to useonly type-specificupdateoperations,
so asto guaranteeconsistency.We supportthis functionality in our modelby methods: userscanapply
type-specificmethodsto updateobjects.

Update. As a first extension,like in the relational case,we want to be able to specify set-oriented
updates;that is, identify a setof objectsto be updated(e.g.,by a query) andapply the updatemethod
to all qualifying objectswithout programmingan explicit loop. This set-orientedupdatemodecanhelp
increasethe performanceof updates.We providea descriptiveiterator that takesthe updatemethodas
a parameter:

update [ m ] ( <set-expr> );

The semanticsof this statementis obvious: method m is applied to all objects returnedby the set
expression.Update could also be called “apply_to_all”.

As a secondextensionto type-specificupdateoperations,we provide a set of generallyapplicable
genericupdateoperations. Suchgenericupdateoperationscanbe usedby type implementorsto define
type-specificmethods. The genericupdateoperationsinclude insert and delete to createand destroy
objects(possiblyin a set-orientedfashion),add andremoveto addexistingobjectsto a setor to remove
them from it, respectively,and set to set functions to new values.

Insert takesasargumentsa classC, with membertypeof, say,T, andassignmentsof valuesto functions
definedon T. An instanceof T is createdand addedto the specified class,the functions listed are set
to the given values. The classpredicateis checked. If violated, the insert is rejectedby the integrity
checker. The result of the insert operationis the newly createdobject. For example,we createa new
instancein classEmployeeCby:

2 This is the problemof determininguniquenessof objectsasmentionedin [Kim89]. The other two problemsmentioned
there,heterogeneityandscopeof classes,aretreateddifferently in our model: classesareconsideredhomogeneous(all member
objectsare instancesof the membertype),andthe extentalwaysincludesall subclasses(seeabove).
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js := insert [ name:=‘John Smith’, address:=..., ... ] ( EmployeeC);

Here, js has to be a variable of type EmployeeT. Notice that we do not createobjects that are not
membersof any class.

Delete (<set-expr>) destroysall objectsv returnedby <set-expr>: theyareremovedfrom all classesand
function valuesin the database.

Add and Remove havea weakereffect thaninsertanddelete: they haveno impacton the existenceof
objects. Rather,existingobjectsareaddedto or removedfrom a set. Both operationstake two setsof
objects(e.g.,classnamesor queries)asparameters.The first setof objectsis addedto or removedfrom
the second.For example,let E be a query returningsomeemployeeobjectsandc a variableholding a
companyobject, we can makeall employeesin E work for c by:

add [ E ] ( staff(c) );

Notice that we appliedthe updateto the staff function definedon companies,the function employeris
updatedautomatically,since it is definedto be the inverseof staff.

Add and removeare also usedto changeclassmembershipof objectsdynamically. For example,
if p is a personobject, add [{ p}] (EmployeeC) makesp a memberof classEmployeeC, and thus an
instanceof EmployeeT. Conversely,remove[{ p}] (EmployeeC) takesp out of EmployeeC(but leavesit
in PersonC, and all other superclassesof EmployeeC, if any). Classpredicatesare checkedupon add
and removeoperations.They may lead to ‘rejection’ of the operation:an explicit add will be ignored
if the classpredicateis not fulfilled, andan explicit removewill be ignoredif the classhasa sufficient
classpredicatethat holdsfor the object. Generally,membershipin a classwith sufficient classpredicate
is not manipulatedexplicitly by add/remove, but only implicitly by changingfunctionvaluesusedin the
classpredicate.For moredetailson theeffectsof updatesin connectionwith classprediactessee[LS91].

Set assignsnew valuesto functions. Let e be a variableholding an employee,thenset [ salary=3,000
] (e) assignsa new salary to e. Set is usedinside of update and insert and is usually written as an
assignment(salary(e) := 3,000). Type implementorscanspecifya function-specificmethod(set_salary,
in theexample)to performthe assignment[FBC

�

87]. Arbitrary computationscanbe performedin such
a method,e.g.,to checksomeconstraints,to updateadditionalinformation,or evento refusethe update.
For example,updatinga derivedfunction may be implementedaseitherchangingthe underlyingvalues
or refusing the update.

Nesting of Update Operations. Notice that the genericupdateoperationsmay not only be applied to
classes,but alsoto set-valuedattributesandqueryresults.Justastype-specificmethods,theseoperations
areapplicableinsidean update. For instance,we canadd all employeesmakingmorethan50K to the
staff of the CS departmentby the following operation:

update [ add [ select [salary > 50k] (EmployeeC)] (staff )] (select [name= ’CS’] (DepartmentC)).

The exampleworks asfollows: a subsetof the departmentclassis identifiedby the selection (this may
or may not be a singletonsethere). The departmentsreturnedareupdated by adding to the set-valued
function staff thoseemployeeobjectsreturnedby the “inner” selection on the employeeclass.So,what
happensis that function staff for the CS department(s)changesits value to include the resultsetof the
inner selection. Notice in particular, that no objectsare copied, since objectscan be elementsof an
arbitrary numberof setswithout replication(object sharing!).

3 Views and Updates

Classescontainedin theglobal schemaarecalledbaseclasses, objectsin theseclassesarestoredasbase
objects. Queriescanbe usedto defineadditional(derived)view classes. The extentof views is usually
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not storedexplicitly, but rathercomputedfrom the view-definingqueryupondemand3. Views provide
a specializedinterfaceto somebaseobjects.A useror an applicationprogramusuallyworks only with
a small portion of the global schema,a subschema, that is particularly tailored for the task performed.
Sucha subschemaconsistsof a collectionof baseand/orview classestogetherwith the functionsdefined
on them. Someconsistencyconstraints(concerningclosure)haveto be enforcedfor subschemas,we do
not elaborateon them here(see,e.g.[HZ90]). Our view mechanismsimply allows arbitraryqueriesto
serveas view definitions,exactly as in relationalDBMSs:

define view <name> as <query>;

After theexecutionof this statement,<name> will appearasa (persistent)classof thedatabase,just like
baseclasses.The only differenceis that the extentof the view is definedby the <query> expression,
basedon the extentsof other (view and/orbase)classes.Notice that views may, of course,be defined
basedon other views. For easeof discussionwe will, however,call the underlyingclass(es)for each
view ‘base class(es)’.

Becauseviews arejust anotherkind of classes,they canbe usedasargumentsof updateoperations,
just asbaseclassescan. In contrastto the relationalmodel,only a few restrictionshaveto be imposed.
In fact, all updateoperatorshavethe sameeffect as if they wereappliedto the baseclass,becausethe
views’ extentsare derived from these.

3.1 Selection Views

Selectionviews createsubclassescontaining all objects satisfying the selectionpredicate. The type
remainsunchanged.As an example,we definea view of all companieshaving at leastone branchin
New York (seeFig. 1):

define view NYCompVas

select [
���� select [name= ‘New York’] (locations) ] ( CompanyC);

This is a well-definedselection,since“
���� select[name= ‘New York’] (location)” is a valid predicate,which

happensto include a (sub) query.

NYCompV

locations name
CompanyC CityC

Figure 1. Selectionscreate subclasses.

Insertion,addition,deletionor removalof an instancein theview NYCompVworkson thebaseclass
CompanyC. Insertionof objectsthat do not fulfill the selectionpredicatelead to a problem(the same
problemoccurswith updatesthat changethe truth valueof the classpredicate).Thereare two choices
how to react: (i) rejectsuchinsertions/updates(sincetheyviolatesomekind of closureproperty[Heg90,
HZ90], or (ii) allow themby insertinginto thebaseclass/updatingtheobjectanddetermining“visibility ”
in the view by the selectionpredicate. Commercialrelational DBMSs implementthe secondchoice.
Notethat theproblemis not dueto ambiguitiesin theupdatetranslation,but ratheroneof whatyou want
to allow. One might argue which way to go. The following examplecreatesa new object ThisComp
throughthe view (assumingvariableparis holdsa city objectwith name �� ’NewYork’):

ThisComp:= insert [ cname:= ..., locations:= { paris }, president:= ... ] ( NYCompV);

3 Even thoughviews may be materializedfor performancereasons,but thencaremust be takento keepthemconsistent
or to invalidatethem.
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If this view updateis admitted,theclassifyingpredicateof theselectionview determinesthat the inserted
object doesnot satisfy the condition for view membership.Thus, the new object is not visible in the
view. It would, however,be insertedinto the baseclass. Similarly, when somecompanyc is updated
by addinga New York branchoffice to it’s locations, the updatemakesc a memberof the NYCompV
view. If the last branchoffice in New York of a NYCompVobject is removed,the companyis no longer
a memberof the view class.

In any case,to guaranteeintegrity after updates,the systemhasto automaticallyre-classifyobjects
after updates:A selectionview definesa derivedclassV asa subclassof its baseclassB by a predicate
P. The effect is exactly the sameas if the DB schemacontainedthe following classdefinition (both, B
and V, have as membertype sometype T):

define classV: T all B where P;

In this case,we clearly expectthe systemto guaranteeV’s extent to be exactly that subsetof objects
in B’s extentsatisfyingpredicateP. That is, evenif we choosesolution (i) for the aboveview update
problem,we will haveto changeclassmembershipautomaticallywhenfunction valuesarechangedthat
affect classpredicates.Therefore,we adoptthe secondchoiceand admit suchinsertions/additionsinto
selectionviews. A more ‘conservative’view updatesemanticscan always be achievedby overriding
the genericadd and insert operators.Othermodificationsof objectsin the view poseno problems,all
methodsfrom the baseclassare available.

3.2 Difference Views

A differenceview is a subclassof the minuendand containsall objectsthat are not memberof the
subtrahend.The result type is that of the minuend,that is, the type of the subtrahenddoesnot affect
the operationat all. As an example,we candefinecompanieshavingat leastonebranchin New York
but do not produceautomobiles:

define view NYDiffCompVas

NYCompV� ( select [ ‘Automobile’ �
products] (CompanyC) );

In general,therealwaysexistsa selectionexpressionthat yields the sameresultas the difference.Such
selectionexpressionsare applied to the minuendwith the predicatethat excludesobjectscontainedin
the subtrahend.In the example,we usea dummy variablec to formulatethe query (similar to the self
or this standardidentifiers of other languages):

define view NYDiffCompVas

select [ c �� (select [ ‘Automobile’ � products ] (CompanyC)) ] ( c : NYCompV);

Becausedifferenceis a specialkind of selection,we do not needto discussupdatesany further, we
alreadyknow how to updateselectionviews.

3.3 Union Views

A union view is a superclassof the two classesconstructingit. Its extentcontainsall membersof the
baseclasses,and its type is the intersectionof the two setsof functionsapplicableto the basesclasses
(that is, the leastupperbound in the type lattice). If a function f is definedin both baseclasses,the
union type containsf with the union of the both rangesas rangeof f4. For example,we createa view
of legal entities that containscompaniesand persons:

define view LegalEntityVas PersonCunion CompanyC;

4 As alreadymentioned,function namesare assumedto be unique. Therefore,if a function nameoccurs twice, both
occurrencesmeanthe samefunction (possiblywith different rangerestrictions).
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bdate

LegalEntityV

PersonC

name

CompanyC
locations

Figure 2. Unions create superclasses.

The function name is the only one applicableto membersof the LegalEntityV view. All other
functionsof companiesor personsareonly availablein the contextof eitherCompanyTor PersonT.

As for updatesthereis oneinherentproblemin union views: If we want to insert or add objectsto
the view, we haveto propagatetheseto at leastonebaseclass. But, which one to choose?In general,
the choiceis ambiguous,so we eitherhaveto disallow suchupdates,or to include the object into both
baseclasses.Classpredicatesassociatedwith the baseclasses,if any,could eventuallydeterminewhich
one will containthe new object. Sinceclasspredicatesare optional,however,we can not rely on this
solution. Our choice is therefore,to propagateinsert and add to both baseclassesof union views.
Nevertheless,userscan define insert and add methodsspecificto the view’s type.

All othergenericupdateoperationsareapplicableto unionviews(delete, set, remove) in theobvious
way: They propagateto both baseclasses,CompanyCand PersonC. Particularly,removeputs objects
out of both extents(if they were members). Further,as with all views, any methodsincluded in the
result type can be applied.

3.4 Intersection Views

Views defined by the intersectionof two classesare subclassesof them containing objects that are
membersof both baseclasses.Thereforethe result type includesthe functionsof both classes’types
(it is the greatestlower boundof the input types). As an example,we candefineworking studentsvia
the following intersection:

define view WorkStudVas StudentCintersect EmployeeC;

soc#

PersonC
name

EmployeeC

hiredate

StudentC

WorkStudV

salary
gpa

dept

Figure 3. Intersectionscreate subclasses.

Usersof this view arepermittedto applyall functions(andmethods;noneis shownhere)of students
(name,dept,andgpa)andof employees(name,hiredate,soc#,andsalary).Thesefunctionsappliedto the
membersof theview yield thesameresultsasappliedto thebaseclasses,becausetheobjectsarethesame.

Analogouslyto the union operation,thereis a problemin removalfrom intersectionviews: due to
the symmetryof intersection,it is ambiguousto which underlyingclassthe removeoperationshouldbe
propagated.Our choiceis, again,to propagateto both baseclasses.5 Insertingor addingobjectsto the
view propagatesand addsthem into both baseclasses.Propagationof deletionor modification(set) is
straightforward,becauseof object preservation.

5 Again, userscandefine type-specificremovemethodsasappropriate.
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3.5 Projection Views

Projectionviewsaresuperclassesof their underlyingbaseclasswith changedtypes.The list of functions
that canbe usedin the view determinesthe result type. Projection“has no effect” on the instancelevel,
it just affectsobjecttypesby “hiding” somefunctions(like a “type cast”), that is, the extentis the same
asthe baseclass.For example,we may wish to “hide” the salaryfrom the usersof a view PublicEmpV
on EmployeeCby projectingaway the salary function:

define view PublicEmplVas project [ name,soc#,hiredate] ( EmployeeC);

soc#

hiredate

name

salary
EmployeeC

PersonC

PublicEmplV

Figure 4. Projectionscreate superclasses.

Usersof this view operateon exactly the sameobjects(the sameextent)as thosein EmployeeC, they
canuseall the employeefunctions(including methods),exceptsalary (seeFig. 4)6. Thereforethe type
of PublicEmplVis a supertypeof EmployeeCbut a subtypeof PersonC.

Updatesperformedon the view will alsoaffect the membersof classEmployeeC, sincethey are the
sameas thoseof PublicEmplV. Inserting,adding,deletingandremovingobjectsin a projectionview is
feasible.Supposewe createa new employeein the view, using the following operation:

NewEmp:= insert [ name:= ..., addr := ..., soc# := ... ] ( PublicEmplV);

The insert works as if it wereappliedto the baseclass,EmployeeC. The only differenceis that we can
not assigna salaryusingthegenericassignment(set) operator,sincethis would resultin a typechecking
error. However,as the typesof objectsalsocontainmethods,projectionscanalsospecify the subsetof
methodsretainedin the view. In particular,our exampleprojectionmay hide a retrieval function (such
as salary) but contain the correspondingupdatemethod(suchas give_raiseor assign_salary). In this
case,a value associatedwith the object can be updatedbut can not be retrievedby the usersof this
view. As a consequence,projectionviews canbe usedto restrict accessprivilegesin a ratherelaborate
way: modificationcanbe permittedwhereretrieval is forbiddenor vice versa.In casea classpredicate
on the baseclassstatesthat certain functions (such as salary) have to have a value (i.e., are total),
insertionsinto projectionviews that eliminatethesefunctionsareautomaticallyrefusedby checkingthe
classpredicateupon insertion.

6 Herewe seethat the objectsare instancesof two typesat the sametime. In order to decidetype safenessof function
applications,type checkingworks on the class level: using the salary function on classPublicEmplVwould result in a
(compile-time)type error, eventhougheachemployeeobject “has” both types,EmployeeTandPublicEmplT.
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3.6 Extend Views

Views definedby extend aresubclasses,the type of which containssomeadditional,derivedfunctions.
The view’s extentis identical to that of its superclass.We can, for instance,definea derivedfunction
resp_for(“responsiblefor”) for employeeobjectsby the following query (seeFig. 5):

define view PresEmplVas

extend [ resp_for := select [president=e] (CompanyC) ] ( e : EmployeeC);

Inserting, adding, deleting, removing objectsto/from the view propagatesto the baseclassand vice
versa. Further, all methodscan be applied.

In this respect,projectionviews andextendviews behavesimilar. Both createnew classes,whose
extenthasto be identical to that of the underlyingclasses.The new classescould havebeenintroduced
in the DB schemaequivalentlyby:

define classV: VT all C;

That is, extent(V)=extent(C) andVT
�

member_type(C) for extend andvice versafor project.

The values of the extendedfunction, resp_for in the example, can not be updateddirectly by
assignments(set). This is not particular to views, but occurswith all derivedfunctions,becausetheir
valuesarecalculated.They areupdatedindirectly instead,by changingother functions’ values. In the
exampleabove,changingthe presidentvalueof a companyobjectmay updatethe valueof resp_forfor
someemployeeobjects.

CompanyC

resp_for

president

PresEmplV

EmployeeC

Figure 5. Extend defines subtypeswith new functions.

Disallowingthemanipulationof extendedfunctions’valuesseemsquiteastrongrestriction.However,
all this really meansis that we cannot assigna new value “out of the blue” to sucha function. But if
the function value is a (set of) other object(s),we can updatethis (or these)object(s). In the example,
sinceresp_for returnscompanies,we canapplyall (genericandtype-specific) updateoperationsto these
companies.Someof theseupdatesmay havean effect on the derivedfunction: if we changethe value
of the presidentfunction for the objectsin resp_for, this may leadto resp_for returnanothervaluenext
time for the current employee!

3.7 Join Views

Joinsareusuallyusedto combineobjectsthat arerelatedby some’relationship’ expressedasa logical
predicateover their valuesin somefunctions (attributes). The relationshipsthat are of most interest
are realizedvia functionsin our model. So, only a few other relationshipsmay eventuallyneedto be
establishedby somekind of join.

We havealreadyseena way of establishingnew‘relationships’amongobjects,namely,definingnew
functionsbetweenthem: the extend operatordoesthis. So, one way of expressingjoin views in our
model is to define the requiredrelationshipasa new function connectingthe matchingpairs of objects.

For example,to supportquerieslike “employeesliving in a town in which some(not necessarily
their) companyis located” — which would requirean (equi-) join of the two correspondingrelations
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on the predicate“COMP.LOC=EMP.ADDR” in a relationalDB —, we can definea view OuterJoinV
over the employeeclassby introducinga new function LocalCompreturningcompanieslocatedat the
employee’shometown by the following extend operation:

define view OuterJoinVas

extend [ LocalComp:= select [address
�

location] (CompanyC) ] ( EmployeeC);

The view OuterJoinVwill be a subclassof EmployeeCcontainingall EmployeeCobjects. The new
function returnsthe setof “join partners”(which may alsobe empty). To implementan inner equi join,
an additionalselectionwith the predicate“LocalComp

�� � ” must be applied,for example:

define view InnerJoinVas select [ LocalComp
�� � ] ( OuterJoinV);

LocalComp

CompanyC EmployeeC

OuterJoinV

addresslocation

InnerJoinV

Figure 6. Outer and inner join defined by extend views.

“Joining” objectsby meansof the extend operatoris object preserving, that is, the result of this
join is a new “relationship” amongexistingobjects. Updateoperationson “join” views behaveexactly
as discussedfor extendviews. That is, all updatesare allowed, exceptsimply assigninga new value
to LocalComp. For example,valuesof employeeand/orcompanyfunctionsmay be changed,deletion
and removalof employeesis alsopossible,and all type-specificmethodsmay be applied. Particularly,
an objectmay be addedor removedfrom the view indirectly by changinga company’slocation,or the
addressof an employee(cf. selectionviews).

The readermay havenoticed that ‘joining’ by meansof the extend operatoris not a symmetrical
operator. We havediscussesthis problemin depthin [SS90a]. In short, we can provide a symmetric
solution by extendingthe other classwith the inverse function. Alternatives for join-like operations
include object generatingonesand tuple (pairs of objects)generatingones. Comparisonswith other
query languages’solutionsto this problemarealsocontainedin that other paper.

3.8 Typing, Classification, and Composite Queries

In thesectionsabovewehavedefinedthequeryoperatorsin termsof resulttypeandextent.We havealso
shownhow updateson views canbe propagatedto the underlyingbaseclass(es).The typesandextents
of queryresultshavebeenpositionedrelativeto their operandclass(es). To completethe discussion,let
us now discussthreeremainingproblems(cf. [Kim89]):

1. What is the final position of the result type in the type lattice?
2. What is the final positionof the result class(i.e., the view) in the classhierarchy?
3. How are typesandextentsderivedfor views definedby compositequeries(or, equivalently,views

definedover views) and can they be updated?
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Typing. For the type changingoperatorsproject and extend(as well as union, intersection)we have
definedthe result type andwhetherit is a sub-or supertypeof the input type. However,this result type
neednot be an immediatesub-or supertype.For example,considerthe view definedby the following
expression(seethe left part of Fig. 7):

define view EmpVas project [name,hiredate] ( EmployeeC);

Resulttypeshaveto be positionedin the type lattice consistentwith the otherexisting types. This
may leadto the new type beingplacedfurther up or down the hierarchy.In the example,EmpVmoves
up the lattice beyondPublicEmpV. Also, it may be necessaryto introduceseveralother new typesas
intermediatenodesin the type hierarchy. For example,considerthe view V definedby projectingthe
name,soc#andsalary of EmployeeC(cf. [GTC

�

90, MS89]). Here,in order to get function inheritance
right, an additional(anonymous)type is ‘introduced’ (seeFig. 7).7

The typing problemand the reorganizationof the type lattice is neverthelessratherstraightforward.
The type lattice is actually (a part of) the powersetlattice over the set of all functions in the global
schema.Completealgorithmsfor insertioninto a type lattice, including complexityanalyses,aregiven
in [MS89], for instance.

hiredate

name

soc#

hiredate

salary

name

EmpV

PublicEmplV

EmployeeC

PersonC

EmpV

PersonC

PublicEmplV

EmployeeC

soc#

salary

?

V

projectV:=               [name,soc#,salary]

       (EmployeeC)

Figure 7. Absolute typing of projection.

Classification. Operationsaffecting the extent,especiallyselections,poseanotherproblem. In order to
positionthe resultextentcorrectly in the class(i.e., subset)hierarchy,we haveto decideclasspredicate
implication: classS is subclassof C if C’s predicateimplies that of S.

It is well-known that predicatesubsumptionis undecidablein general.So, how canwe succeedin
positioning a view in the class lattice ?

Therearetwo waysout: (i) Permitonly decidablepredicates.Researchon knowledgerepresentation
languagesin the KL-ONE family [BS85] showsthat, evenwith quite strongrestrictionson the form of
allowed predicates,the problem remainsundecidable[SS89,Neb90]. In our case,in the presenceof
computedfunctionsandsubqueries,the situationis evenworse. (ii) Implementan incompletedecision
procedure. This meansto consideronly those parts of the class predicatesduring the classification
that are known to be decidable.The position determinedby the incompleteclassificationprocedureis
guaranteedto be correct,but theremay be caseswherethe view could havebeenplacedfurther down
the classlattice, if the completeclasspredicatehad beenused. We havechosenthat secondsolution
for our implementation.The simplestand straightforwardsolution would be not to classify at all, but
thenselectionswill alwaysresult in direct subclasses.Besidesthe lessinformativeclasshierarchythat
would be presentedto the user in this case,this hasother (performance)penalties. In caseof queries,

7 Formally, since the type hierarchy,as definedby the user, is internally completedinto a lattice, this ‘new’ type has
alreadybeenpresentbefore.
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a known subclassrelationshipcan help to optimize: for example,an intersectionbetweentwo classes
canbe reducedto a simplerexpressionwith only oneclass,if one is known to be a subsetof the other.
Furthermore,consistentprocessingof updateoperations,for example,insertionsinto a class, is also
faster the more accuratethe classhierarchyis: insertion into a subclassautomaticallyinsertsinto all
superclasses.If the classhierarchywerea completelattice, nothingmorehadto be checked.otherwise,
we haveto checkthe (instantiated)classpredicatesof all other classestoo.

Compositequeries. Viewsdefinedby compositequeriesarewell-defined,sincewe canstepwisecompute
result typesand extents(sincethe model is closedand the operatorscombineorthogonally). However,
the final view extent and type may be rather “far” away from the input in the classand type lattice,
respectively. Eachoperatorintroducesan intermediateclassand type, so if we want to keepthe final
result“connected”to the input in the lattices,we haveto insert theseintermediatenodestoo. Onemight
ask, how are namesto be given to theseintermediatetypes and classes. First of all, they neednot
be named,sincewe would not want to usethem in declarations(for types)or queries(for classes)by
explicit names.Alternatively, we can easily addsyntacticsugarto give explicit namesto intermediate
results in a query.

We illustratetheclassificationof compositequeriesby thefollowing examplethatusesa well-known
algebraicequivalenceof the relational algebra:

define view V1 as select [age > 20] ( project [age, name] (PersonC) );

define view V2 as project [age, name] ( select [age > 20] (PersonC) );

V1 first generatesan intermediateclasswith all personobjectsbut an associatedmembertype that is
a supertypeof PersonT. Then it resultsin the final classV1 being a subclassof that intermediatewith
the sametype, but only a subsetof the extent. V2 proceedsthe other way round: first a subsetof
extent(PersonC)is createdwith an unchangedtype. Subsequentlywe keepthis intermediateextent for
the result classV2 but it has a supertype. As suggestedby Figure 8, the two expressionsare in fact
equivalent.

select

project 

project [..] (Person)

select [..] (Person)

bdate

name

age

PersonC

V1

V2

subset

subtype

Figure 8. Classifying compositequeries

This examplealsoservesasa goodargumentfor strictly separatingsubtypeandsubsetrelationships
amongclasses(alsosee[Bee89]): If we usethe subclassrelationshipthat combinessubtypeandsubset,
then neither is V1 a subclassof PersonCnor vice-versa. If, however,we separatethe two concepts,
two relationshipshold betweenV1 (or V2) andPersonC— but in oppositedirections! The view class
V1 has a member_type,say VT, that is a supertypeof PersonT, but the extent of V1 is a subsetof
extent(PersonC)! Graphically,with two kinds of arrows,one for ‘subset_of’and one for ‘subtype_of’,
we have the “cyclic” situation shown in Figure8.
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Updatingcompositeviews canbe regardedasa cascadeof updatepropagationsvia the intermediate
classesthatarein fact views. That is, updateoperatorsappliedto a compositeview havethesameeffect
as if they wereappliedto the intermediateview, createdaspredecessorwhile the stepwisecomputation
of the compositeview. Updating this intermediateview, however,also propagatesto its predecessor,
and so on until the propagationaffects a baseclass. Therefore,updatingcompositeviews is restricted
to thoseupdateoperatorsthat can be stepwisepropagated.

4 Related Work

Recently, there have been other proposalsfor view support in ooDBMSs [AB91, HZ90, SJGP90].
They are fundamentallydifferent in that our approachis the only one that usesthe standardways of
defining views by nothing else than query languageexpressions.They either introducespecialview
definition features[AB91] or useotherfacilities of their systems(FUGUE [HZ90] usestype hierarchies
for informationhiding, POSTGRES[SJGP90]usesthe rule systemto simulateviews).

The O2 approachof [AB91] introducesspecialconstructsfor defining“virtual classes”.They try to
usethe query language“as much as possible” in their view capability, however,somefunctionality is
duplicated(for instance,unionandintersectionas“generalizationandspecializationabstractions”).They
usea slightly modifiedversionof theO2 datamodel,droppingthedistinctionbetween(stored)attributes
and (derived)methods.This is a first way of introducingderivedinformation in the form of computed
attributevalues;this featureis includedin our model from the beginning.In somerespects,their views
moregeneralthan ours, for instancethey can hide functions(i.e., projectaway) not only in one class,
but automaticallyin all subclasses.Our projectionviews, in contrast,hide the attributeonly from the
oneclassthat is the view’s baseclass,so we would haveto deriveviews from all subclassesexplicitly.
What they called“behavioralabstraction”, i.e., deriving a virtual classasthe union of all classeswhose
typecontainssomegivenfunctions,is possiblein our approachusingqueriesthatmix themeta-leveland
the object level. We allow suchqueries,however,they havenot beendiscussedhere[Tre91]. On the
otherhand,our approachis moregeneralin that it allows all legal queriesto serveasview definitions,
without introducingany “imaginary” new objects.This includesjoins, for which they haveto maintain
internal data to makesure that the new view objectsget the sameID every time the view is queried.
The most importantdifference,however,lies in the simplicity of our approach,sincejust usethe query
languagefor view definitions.

FUGUE [HZ88] allows multiple instantiationand eachtype of an object servesas one view onto
it. More generalview mechanismsare discussedin [HZ90]. There, “view” meanswhat we called a
subschemaabove,that is, a collection of baseand derivedclasses,subjectto someclosureconstraints.
Whatcorrespondsto our viewsareadditionaltypes(andcollectionsof objectsof thesenewtypes)defined
in their “views”. The mechanismis moregeneral,sinceeachnew type may be implementeddifferently
over the existing types. this includesissuessuch as object preservationversusobject generation,and
whetheroneview objectcorrespondto oneor manybaseobjects.While theunderlyingalgebraof [SZ89b,
SZ89a]doesnot provideobject-preservingoperatorsemantics,theycansimulateobject-preservingviews
by a typethatimplementsobjectidentity by usingtheOIdsof someother(i.e., thebase)objects.Updates
on their views arepossible,if the implementorof the derivedtypesprovidesthe correspondingmethods
(which may be implementedusingmethodsof the basetypes). Their view mechanismbasicallybuilds
on abstractionmechanismsof object-orientedprogrammingratherthanon a genericquerylanguage.

A similar approachcanbe found in [TYI88], where‘virtual’ classescanbe definedover Smalltalk
classes.Virtual classesaredefinedby a (class)predicatethatdeterminesmembership.Thedo not permit
multiple inheritance,nor do they operatorschangingthe type of objects. However,new methodscan
be defined for virtual classes.

ThenewPOSTGRESrulesystem(PRS2,see[SJGP90])canalsobeusedto establishthefunctionality
of views: Rulescandefinederivedrelations,andotherrulescanspecifyupdatesemanticsfor theseview
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relations.As the rule languageis morepowerful thanour query language,their views aremoregeneral
than ours. On the other hand,we provide a standardway of view definitionstogetherwith a standard
updatesemantics.Similar to their approach,our updatesemanticscan be changedas appropriate. In
PRS2this is achievedby defining rules, in our approachby overriding someof the genericupdate
operatorsand/or defining type-specificmethods.

5 Conclusion
In this paperwe presenteda simple approachto views in object-orienteddatabases.Like in relational
systems,queriescan be usedto definethe extentsof virtual classes,that is, collectionsof objectsthat
arederivedfrom somebaseclasses.The presentationwasinformal andintendedto carry over the ideas,
not the exact details. A more formal treatmentis containedin [LS91]. The central idea is that once
the query languagefulfills somebasicrequirements,its usefor defining updatableviews follows quite
naturally. Nevertheless,to our knowledge,this is the only object-orientedquery languagewith sucha
view capability. In contrastto otherapproaches,we canusearbitraryqueriesto defineviews, in exactly
the sameway as in relationalquery languages.In the sequelwe summarizethe propertiesof the query
languagethat havebeenessentialfor the view definition capabilityandthe view updatesemantics:

– object preservation,
– type/classseparation,
– multiple instantiationand multiple classmembership.

If someof thesepropertiesarenot met by a language,we will seethat our solutionswill fail, partly or
completely.Thus,the resultswe obtainedarenot boundto the COOL language,but to theseproperties.

Objectpreservationis the centralconcept.It is crucial for a straightforwardview definition facility.
Objectpreservingoperatorsemanticsmeansthat the resultsof queriesare(someof) the existingobjects
from the database.The other choicesare: object-generatingoperators(resultsare objects,but newly
generatedones)or tuple-generatingoperators(resultsaredata,not objects).Examplesof querylanguages
with tuple-generatingand/or object-generatingsemanticsare [AK89, ASL89, SZ89b]. If queriesjust
return dataabout objects,e.g.relationsof tuple values: how could one try to apply updatesto query
results? Updating the result relation will not affect the objects. Such query semanticsare useful for
outputpurposes,for interfacingwith value-orientedsystems,or for restructuringoperations[HS91], but
not for updatableviews. If a query languagegeneratesobjectsthat are new, similar problemsarise:
we might apply methods,but how can they affect the original objects?One can,of course,play some
implementationtricks, suchas keepingthe old OId as a “hidden” field, but this is a hack rather than
a clear concept. To our knowledge,the object algebraof [SÖ90] and that of [HFW90] are the only
other (algebraic)languageswith object preservingoperators. They also mention view supportas one
of the reasonsfor that semantics,but view updateshave not yet beeninvestigated. Somerule-based
languages,suchasF-logic [KL89], canspecifyobject-preservingaswell asobject-generatingoperations,
since there,OIds are availablein the language.

The type/classseparation, that can also be found in [Bee89,HFW90], is a consequenceof object
preservation:if both projectionsand selectionsare to preserveobjects,and if compositeselect/project
queriesarepermitted,we needthis separationin order to connectthe view classproperlywith the base
class. The position of query results in the type and classhierarchieshave to be less precisewithout
this distinction (see[Kim89], whereall query resultsaredirect subclassesof “OBJECT”). Particularly,
this separationof the difficult classification problemfrom typing allows for a strongly typed language
with precisetype inferencing. Furthermore,no algebraoperationchangesboth, type andextent,except
for union and intersectionof two classeswith differing types. So, the separationis a clarification of
distinct concepts.

Multiple instantiationandmultipleclassmembershipareanimmediateconsequenceof objectpreser-
vation: sinceprojection,for example,changesthe type, all objectsin the result “acquired” a new type.
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If we considerobjectsin queryresultsasbeingmembersof the resultclassaswell asthe input class(es),
we can treat updatesto query results in the sameway as updatesto storedclassesand the updates
propagateautomatically.[Kim89] doesnot permit multiple classmembership,anotherreasonwhy view
supportis non-trivial in this model (views are mentionedin the paperas an importantconcept,but no
solutionsare presented).

Classificationof queryresultshasbeenmentionedin [Kim89] asa problemto be solvedfor closed
query languages. But the positioning of result classesthere (directly below “OBJECT”) is not very
helpful. With the separationinto two hierarchiesandwith multiple instantiationandclassmembership,
however,we can keep the position of the query result very close to the input class(es).None of the
previouswork we haveseenoffers similar solutions. The modeldescribedin [Day89] is quite closeto
our approach.View definition is alsorecognizedas important. The presentationof the query language,
however,doesnot elaborateon view definitions,updatesvia views are not investigated,neither is the
placementof results in the lattices.

Dynamicreclassificationduring updates:More automaticclassificationfunctionalityknown from AI
systemsbecomesnecessarywhenwe takeinto account,thatobjectscandynamicallygainandloosetypes
during their life time. In particular,updateoperationsmay affect the type andclassificationof objects;
a changeof an existingobject canmakeit a memberof a morespecificclass(becausenow it satisfies
it’s classpredicate)or a moregeneralone (if the classpredicateof it’s currentclassis violatedby the
update). Examplesfor this havebeendiscussedabovefor selectionviews.

Acknowledgement The COCOONmodelhasbeendevelopedjointly with Hans-J̈org Schek,to whom
theauthorsareindebtedfor numerousdiscussionsof thesubject.He,Bin Jiang,andChristianRichhelped
in improving an earlier versionof this paper[SLT90]. An extendedabstractof this paperappearedin
[SS91].
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