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ABSTRACT: In this article we study the amortized 

efficiency of the “move-to-front” and similar rules for 
dynamically maintaining a linear list. Under the assumption 

that accessing the ith element from the front of the list takes 
0(i) time, we show that move-to-front is within a consfant 
factor of optimum among a wide class of list maintenance 

rules. Other natural heuristics, such as the transpose and 

frequency count rules, da not share this property. We 
generalize our results to show that move-to-front is within a 

constant factor of optimum as long as the access cost is a 
convex function. We also study paging, a setting in which 
the access cost is not convex. The paging rule corresponding 
to move-to-front is the “least recently used” (LRU) 

replacement rule. We analyze the amortized complexity of 

LRU, showing that its efficiency differs from that of the off- 

line paging rule (Belady’s MIN algorithm) by a factor that 
depends on the size of fast memory. No on-line paging 
algorithm has better amortized performance. 

1. INTRODUCTION 
In this article we study the amortized complexity of 
two well-known algorithms used in system software. 
These are the “move-to-front” rule for maintaining an 
unsorted linear list used to store a set and the “least 
recently used” replacement rule for reducing page 
faults in a two-level paged memory. Although much 
previous work has been done on these algorithms, most 
of it is average-case analysis. By studying the amortized 
complexity of these algorithms, we are able to gain 
additional insight into their behavior. 

A preliminary version of sxne of the results was presented at the Sixteenth 
Annual ACM Symposium on Theory of Computing. held April 30-May 2, 
1984 in Washington. D.C. 

0 1985 ACM OOOl-0782/S5/0200-0202 75~ 

By amortization we mean averaging the running time 
of an algorithm over a worst-case sequence of execu- 
tions. This complexity measure is meaningful if succes.. 
sive executions of the algorithm have correlated behav- 
ior, as occurs often in manipulation of data structures. 
Amortized complexity analysis combines aspects of 
worst-case and average-case analysis, and for many 
problems provides a measure of algorithmic efficiency 
that is more robust than average-case analysis and 
more realistic than worst-case analysis. 

The article contains five sections. In Section 2 we 
analyze the amortized efficiency of the move-to-front 
list update rule, under the assumption that accessing 
the ith element from the front of the list takes e(i) 
time. We show that this algorithm has an amortized 
running time within a factor of 2 of that of the opti- 
mum off-line algorithm. This means that no algorithm, 
on-line or not, can beat move-to-front by more than a 
constant factor, on any sequence of operations. Other 
common heuristics, such as the transpose and fre- 
quency count rules, do not share this approximate opti- 
mality. 

In Section 3 we study the efficiency of move-to-front 
under a more general measure of access cost. We show 
that move-to-front is approximately optimum as long as 
the access cost is convex. In Section 4 we study paging, 
a setting with a nonconvex access cost. The paging rule 
equivalent to move-to-front is the “least recently used” 
(LRU) rule. Although LRU is not within a constant fac- 
tor of optimum, we are able to show that its amoritzed 
cost differs from the optimum by a factor that depends 
on the size of fast memory, and that no on-line algo- 
rithm has better amortized performance. Section 5 con- 
tains concluding remarks. 
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2. SELF-ORGANIZING LISTS 
The problem we shall study in this article is often 
called the dictionary problem: Maintain a set of items 
under an intermixed sequence of the following three 
kinds of operations: 

access(i): Locate item i in the set. 

insert(i): Insert item i in the set. 

delete(i): Delete item i from the set. 

In discussing this problem, we shall use n to denote 
the maximum number of items ever in the set at one 
time and m to denote the total number of operations. 
We shall generally assume that the initial set is empty. 

A simple way to solve the dictionary problem is to 
represent the set by an unsorted list. To access an item, 
we scan the list from the front until locating the item. 
To insert an item, we scan the entire list to verify that 
the item is not already present and then insert it at the 
rear of the list. To delete an item, we scan the list from 
the front to find the item and then delete it. In addition 
to performing access, insert, and delete operations, we 
may occasionally want to rearrange the list by exchang- 
ing pairs of consecutive items. This can speed up later 
operations. 

We shall only consider algorithms that solve the dic- 
tionary problem in the manner described above. We 
define the cost of the various operations as follows. 
Accessing or deleting the ith item in the list costs i. 
Inserting a new item costs i + 1, where i is the size of 
the list before the insertion. Immediately after an ac- 
cess or insertion of an item i, we allow i to be moved at 
no cost to any position closer to the front of the list; we 
call the exchanges used for this purpose free. Any other 
exchange, called a paid exchange, costs 1. 

Our goal is to find a simple rule for updating the list 
(by performing exchanges) that will make the total cost 
of a sequence of operations as small as possible. Three 
rules have been extensively studied, under the rubric 
of self-organizing linear lists: 

Move-to-front (MF). After accessing or inserting an item, 
move it to the front of the list, without changing the 
relative order of the other items. 

Transpose (TJ After accessing or inserting an item, ex- 
change it with the immediately preceding item. 

Frequency count (FC). Maintain a frequency count for 
each item, initially zero. Increase the count of an item 
by 1 whenever it is inserted or accessed; reduce its 
count to zero when it is deleted. Maintain the list so 
that the items are in nonincreasing order by frequency 
count. 

Bentley and McGeoch’s paper [3] on self-adjusting 
lists contains a summary of previous results. These deal 
mainly with the case of a fixed set of n items on which 

only accesses are permitted and exchanges are not 
counted. For our purposes the most interesting results 
are the following. Suppose the accesses are independ- 
ent random variables and that the probability of access- 
ing item i is pi, For any Algorithm A, let E,+(p) be the 
asymptotic expected cost of an access, where p = 
(pl, p2, . . , p,). In this situation, an optimum algorithm, 
which we call decreasing probability (DP), is to use a 
fixed list with the items arranged in nonincreasing or- 
der by probability. The strong law of large numbers 
implies that EFC(~)/EDP( p) = 1 for any probability distri- 
bution p [8]. It has long been known that EIVIF(~)/EDP( p) 

s 2 [3, 71. Rivest [8] showed that ET(~) 5 EMF(P), with 
the inequality strict unless n = 2 or pi = l/n for all i. 
He further conjectured that transpose minimizes the 
expected access time for any p, but Anderson, Nash, 
and Weber [I] found a counterexample. 

In spite of this theoretical support for transpose, 
move-to-front performs much better in practice. One 
reason for this, discovered by Bitner [4], is that move- 
to-front converges much faster to its asymptotic behav- 
ior if the initial list is random. A more compelling rea- 
son was discovered by Bentley and McGeoch [3], who 
studied the amortized complexity of list update rules. 
Again let us consider the case of a fixed list of n items 
on which only accesses are permitted, but let s be any 
sequence of access operations. For any Algorithm A, let 
CA(s) be the total cost of all the accesses. Bentley and 
McGeoch compared move-to-front, transpose, and fre- 
queny count to the optimum static algorithm, called 
decreasing frequency (DF), which uses a fixed list with 
the items arranged in nonincreasing order by access 
frequency. Among algorithms that do no rearranging of 
the list, decreasing frequency minimizes the total ac- 
cess cost. Bentley and McGeoch proved that &F(S) 5 
2&(s) if MF’s initial list contains the items in order by 
first access. Frequency count but not transpose shares 
this property. A counterexample for transpose is an ac- 
cess sequence consisting of a single access to each of 
the n items followed by repeated accesses to the last 
two items, alternating between them. On this sequence 
transpose costs mn - O(n’), whereas decreasing fre- 
quency costs 1.5m + O(d). 

Bentley and McGeoch also tested the various update 
rules empirically on real data. Their tests show that 
transpose is inferior to frequency count but move-to- 
front is competitive with frequency count and some- 
times better. This suggests that some real sequences 
have a high locality of reference, which move-to-front, 
but not frequency count, exploits. Our first theorem, 
which generalizes Bentley and McGeoch’s theoretical 
results, helps to explain this phenomenon. 

For any Algorithm A and any sequence of operations 
s, let CA(s) be the total cost of all the operations, not 
counting paid exchanges, let XA(S) be the number of 
paid exchanges, and let FA(s) be the number of free 
exchanges. Note that XMF(S) = XT(S) = XFC(S) = 0 and 
that FA(s) for any algorithm A is at most CA(S) - m. 
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(After an access or insertion of the ith item there are at 
most i - 1 free exchanges.) 

THEOREM 1. 
For any Algor;ithm A and any sequence of operations s start- 

ing with the empty set, 

c,W(s) 5 2cA(s) + xA(s) - FA(s) - m. 

PROOF. 

In this proof [land in the proof of Theorem 3 in the next 
section) we shall use the concept of a potential function. 

Consider running Algorithms A and MF in parallel on s. 
A potential function maps a configuration of A’s and 
MF’s lists onto a real number a. If we do an operation 
that takes time t and changes the configuration to one 
with potential V, we define the amortized time of the 
operation to be t + @’ - @. That is, the amortized time 
of an operation is its running time plus the increase it 
causes in the potential. If we perform a sequence of 
operations such that the ith operation takes actual time 
ti and has amortized time ai, then we have the follow- 
ing relationship: 

f: ti = + - 9’ + 2 Ui 
I 

where @ is the initial potential and @’ the final poten- 
tial. Thus we can estimate the total running time by 
choosing a potential function and bounding a, W, and 
a, for each i. 

To obtain the theorem, we use as the potential func- 
tion the number of inversions in MF’s list with respect 
to A’s list. For any two lists containing the same items, 
an inversion in one list with respect to the other is an 
unordered pair of items, i, j, such that i occurs any- 
where before j in one list and anywhere after j in the 
other. With this potential function we shall show that 
the amortized time for MF to access item i is at most 
2i - 1, the amortized time for MF to insert an item into 
a list of size i is at most Z(i + 1) - 1, and the amortized 
time for MF to delete item i is at most i, where we 
identify an item by its position in A’s list. Furthermore, 
the amortized time charged to MF when A does an 
exchange is -1 if the exchange is free and at most I if 
the exchange is paid. 

The initial configuration has zero potential since the 
initial lists are empty, and the final configuration has a 
nonnegative potential. Thus the actual cost to MF of a 
sequence of operations is bounded by the sum of the 
operations’ amortized times. The sum of the amortized 
times is in turn bounded by the right-hand side of the 
inequality we wish to prove. (An access or an insertion 
has amortized time 2cA - 1, where CA is the cost of the 
operation to A; the amortized time of a deletion is CA 5 
2c.4 - 1. The -l’s, one per operation, sum to -m.) 

It remains for us to\bound the amortized times of the 
operations. Consider an access by A to an item i. Let k 
be the position of i in MF’s list and let Xi be the number 
of items that precede i in MF’s list but follow i in A’s 

/ 
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FIGURE 1. Arrangement of A’s and MF’s lists in the proofs of 

Theorems 1 and 4. The number of items common to both shaded 
regions is x,. 

list. (See Figure 1.) Then the number of items preceding 
i in both lists is k - 1 - xi. Moving i to the front of MF’s 
list creates k - 1 - Xi inversions and destroys x8 other 
inversions. The amortized time for the operation (the 
cost to MF plus the increase in the number of inver- 
sions) is therefore k + (k - 1 - Xi) - Xi = 2(k - Xi) - 1. 

But k - Xi : i since of the k - 1 items preceding i in 
MF’s list only i - 1 items precede i in A’s list. Thus the 
amortized time for the access is at most 2i - 1. 

The argument for an access applies virtually un- 
changed to an insertion or a deletion. In the case of a 
deletion no new inversions are created, and the amor- 
tized time is k - Xi 5 i. 

An exchange by A has zero cost to MF, so the amor- 
tized time of an exchange is simply the increase in the 
number of inversions caused by the exchange. This in- 
crease is at most 1 for a paid exchange and is -1 for a 
free exchange. Cl 

Theorem 1 generalizes to the situation in which the 
initial set is nonempty and MF and A begin with differ- 
ent lists. In this case the bound is &F(S) I 2&(s) + 
XA(S) + I - F,+(s) - m, where I is the initial number of 
inversions, which is at most ($‘). We can obtain a result 
similar to Theorem 1 if we charge for an insertion not 
the length of the list before the insertion but the posi- 
tion of the inserted item after the insertion. 

We can use Theorem 1 to bound the cost of MF when 
the exchanges it makes, which we have regarded as 
free, are counted. Let the gross cost of Algorithm A on 
sequence s be TA(s) = CA(S) + FA(s) + XA(S). Then F&s) 
5 C,,(s) - m and XMF(S) = 0, which implies by Theo- 
rem 1 that TMF(S) 5 4cA(S) + 2&(s) - 2F,&) - bI = 

4T,q(S) - 2x,4(S) - 6F~(s) - bl. 
The proof of Theorem 1 applies to any update rule in 

which the accessed or inserted item is moved some 
fixed fraction of the way toward the front of the list, as 
the following theorem shows. 

THEOREM 2. 
If MF(d) (d 2 1) is any rule that moves an accessed or 
inserted item at position k at least k/d - 1 units closer to 

the front of the list, then 

cMF(dl(s) 5 d(2cA(S) + xA(s) - FA(s) - m). 
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PROOF. 
The proof follows the same outline as that of Theorem 
1. The potential function we use is d times the number 
of inversions in MF(d)‘s list with respect to A’s list. We 
shall show that the amortized time for MF(d) to access 
an item i (in position i in A’s list) is at most d(2i - l), 

the amortized time for MF(d) to insert an item into a 
list of size .i is at most d(2i + 1) - 1, and the amortized 
time for MF(d) to delete item i is at most i. Further- 
more, the amortized time charged to MF(d) when A 
does an exchange is -d if the exchange is free and at 
most d if the exchange is paid. These bounds are used 
as in the proof of Theorem 1 to give the result. 

Consider an access to item i. Let k be the position of i 
in MF(d)‘s list, and let p be the number of items past 
which MF(d) moves item i. Let x be the number of 
these items that occur after i in A’s list. (See Figure 2.) 
The decrease in the number of inversions caused by 
this move is x, while the increase is p - x. Thus the 
potential increases by d(p - 2x), and the amortized time 
of the insertion is k + d(p - 2x). We want to show that 
this is less than d(2i - 1). We know k/d - 1 s p s x + i 
- 1; the first inequality follows from the requirement 
on MF(d)‘s update rule, and the second is true since 
each of the items past which i moves is either one of 
the i - 1 items preceeding i in A’s list or one of the x 
items following i in A’s list but preceding i in MF’s 
list. Multiplying by d and using transitivity we get 
k 5 d(x + i). Adding the second inequality multiplied by 
d gives k + dp 5 d(2x + 2i - l), which implies k + 
d(p - 2x) YZ d(2i - l), as desired. 

A similar argument applies to insertion. In the case of 
deletion, the amortized time is at most k - dx, where x 
is defined as in Figure I. This is at most k - x, which in 
turn is no greater than i, as shown in the proof of 
Theorem 1. Since i and d are at least 1, i 5 2i - 1 5 
d(2i - 1). Finally, a free exchange done by Algorithm A 

decreases the potential by d; a paid exchange increases 
or decreases it by d. Note that the -d terms in the 
amortized times sum to give the -dm term in the theo- 
rem. Cl 

No analogous result holds for transpose or for fre- 
quency count. For transpose, a variant of the example 
mentioned previously is a counterexample; namely, in- 

A I 2 

MF(d) 

k 

FIGURE 2. Arrangement of A’s and MF(d)‘s lists in the proof of 
Theorem 2. The number of items common to both shaded regions 
is x. 

sert n items and then repeatedly access the last two, 
alternating between them. A counterexample for fre- 
quency count is to insert an item and access it k + n 
times, insert a second item and access it k + n - 1 
times, and so on, finally inserting the nth item and 
accessing it k + 1 times. Here k is an arbitrary nonnega- 
tive integer. On this sequence, frequency count never 
rearranges the list and has cost Q(kn*) = Q(mn), whereas 
move-to-front has cost m + O(n*). The same example 
with the insertions omitted shows that using a static list 
ordered by decreasing access frequency is not within a 
constant factor of optimal. 

Theorem 1 is a very strong result, which implies the 
average-case optimality result for move-to-front men- 
tioned at the beginning of the section. Theorem 1 states 
that on any sequence of operations, move-to-front is to 
within a constant factor as efficient as any algorithm, 
including algorithms that base their behavior on ad- 
vance knowledge of the entire sequence of operations. 
If the operations must be performed on-line, such off- 
line algorithms are unusable. What this means is that 
knowledge of future operations cannot significantly 
help to reduce the cost of current operations. 

More quantitatively, Theorem 1 provides us with a 
way to measure the inherent complexity of a sequence. 
Suppose we begin with the empty set and perform a 
sequence of insertions and accesses. We define the 
complexity of an access or insert operation on item i to 
be 1 plus the number of items accessed or inserted 
since the last operation on i. The complexity of the 
sequence is the sum of the complexities of its individ- 
ual operations. With this definition the complexity of a 
sequence is exactly the cost of move-to-front on the 
sequence and is within a factor of 2 of the cost of an 
optimum algorithm. 

3. SELF-ORGANIZING LISTS WITH 
GENERALIZED ACCESS COST 

In this section we explore the limits of Theorem I by 
generalizing the cost measure. Let f be any nondecreas- 
ing function from the positive integers to the nonnega- 
tive reals. We define the cost of accessing the ith item 
to be f(i), the cost of inserting an item to be f(i + 1) if 
the list contains i items, and the cost of a paid exchange 
of the ith and (i + l)st items to be A/(i) = f(i + 1) -f(i). 
(We define free and paid exchanges just as in Section 
2.) If A is an algorithm for a sequence of operations s, 
we denote by CA(S) the total cost of A not counting paid 
exchanges and by XA(S) the cost of the paid exchanges, 
if any. To simplify matters we shall assume that there 
are no deletions. 

We begin by studying whether Af(i) is a reasonable 
amount to charge for exchanging the ith and (i + l)st 
items. If we charge significantly less than Af(i) for an 
exchange, then it may be cheaper to access an item by 
moving it to the front of the list, accessing it, and mov- 
ing it back, than by accessing it without moving it. On 
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the other hand, if we charge at least Af(i) for an ex- 
change, then as the following theorem shows, paid ex- 
changes do not reduce the cost of a sequence. 

THEOREM 3. 
l.et.A be an algorithm for a sequence s of insertions and 
accesses. Ther;’ there is another algorithm for s that is no 
more expensive than A and does no paid exchanges. 

PROOF. 

Note that this theorem does not require the initial set 
to be empty. Also note that we can replace each inser- 
tion by an access without changing the cost. We do this 
by adding all the items to be inserted to the rear of the 
initial list, in order of insertion, and replacing each 
insert(i) operation by access(i). Thus we can assume 
without loss of generality that s contains only accesses. 

To eliminate the paid exchanges, we move them one 
by one after the accesses. Once this is done, we can 
eliminate them. without increasing the cost. Consider 
an exchange th.at occurs just before an access. Identify 
the items by i heir positions just before the exchange. 
Let i and i + :L be the items exchanged and let j be the 
item accessed. ‘There are three cases. If j 4 {i, i + l), we 
can move the exchange after the access without chang- 
ing the cost. IF j = i, we save Af(i) on the access by 
performing the exchange afterwards. If j = i + 1, we 
spend Af(i) extra on the access by postponing the ex- 
change, but we can then perform the exchange for free, 
saving Af(i). Thus, in no case do we increase the cost, 
and we either convert the paid exchange to a free ex- 
change or move it after an access. The theorem follows 
by induction. 0 

Theorem 3 holds for any nondecreasing cost function, 
whereas our generalization of Theorem 1, which fol- 
lows, requires convexity of the cost function. We say f 
is convex if Af(i) 2 Af(i + 1) for all i. 

THEOREM 4. 

If f is convex and A is any algorithm for a sequence s of 
insertions and accesses starting with the empty set, 

fC&.s) 5 2&(s) + X,4(s) - mf(1). 

PROOF. 

The proof is just like the proof of Theorem 1. We run A 

and MF in parallel on s and use a potential function, 
defined as follows. At any time during the running of 
the algorithms, we identify the items by their positions 
in A’s list. For each item i, let Xi be the number of items 
j > i preceding i in MF’s list. (See Figure 1.) The value 
of the potential is xi (f(i + xi) - f(i)), where the sum is 
over all the items in the lists. 

We shall show that the amortized time for MF to 
access item i is at most 2f(i) -f(l), the amortized time 
to insert an item in a list of size i is at most 2f(i + 1) - 
f(l), and the amortized time charged to MF when A 
exchanges items i and i + 1 is at most Af(i) if the 
exchange is paid, at most zero if the exchange is free. 

Since the initial configuration has zero potential and 
the final configuration has nonnegative potential, the 
actual cost of the sequence of operations is bounded by 
the sum of the operations’ amortized times. The theo- 
rem will therefore follow from a proof of the bou;ds in 
this paragraph. 

Consider an access of an item i. Let k be the position 
of i in MF’s list. The amortized time for the access is f(k) 

(the actual cost) plus the increase in the potential 
caused by the access. The increase in potential can be 
divided into three parts: the increase due to items j > i, 
that due to item i, and that due to items j < i. Let x, be 
as defined just before the exchange. For j > i the value 
xi does not change when i is moved to the front of MF’s 
list, and there is no corresponding change in the poten- 
tial. The potential corresponding to item i changes from 
f(i + xi) -f(i) to zero, an increase of f(i) - f(i + Xi). For 
each item j < i, the value of Xj can increase by at most 
1, so the increase in potential for all j < i is at most 

,zi ( f( j + xj + 1) - f( j + xjll = ;i Af(i + xi) 5 c Af( j) 
jci 

= f(i) - f(l). 

Combining our estimates we obtain an amortized time 
of at most f(k) + f(i) - f(i + Xi) + f(i) - j(1) = 2f(i) - f(l) + 
f(k) - f(i + xi). Each of the k - 1 items preceding i in 
MF’s list either follows i in A’s list (there are Xi such 
items) or precedes i in A’s list (there are at most i - I 
such items). Thus k 5 i + x[, and the amortized time for 
the access is at most 2f(i) - f(l). 

As in the proof of Theorem 2, we can treat each 
insertion as an access if we regard all the unaccessed 
items as added to the rear of the list, in order of inser- 
tion. The potential corresponding to each unaccessed 
item is zero. Thus the argument for access applies as 
well to insertions. 

Consider an exchange done by A. The amortized time 
charged to MF when A exchanges items i and i + 1 is 
just the increase in potential, since the actual cost to 
MF is zero. This increase is 

f(i + xl) - f(i + Xi) + f(i + 1 + X:+1) - f(i + 1 + Xi+l)r 

where the primes denote values after the exchange. 
Note that the exchange causes item i to become item 
i + 1 and vice-versa. If the original item i precedes the 
original item i + 1 in MF’s list, then xi = Xi+] + 1 and 
x:+~ = xi, which means the amortized time for the ex- 
change is Af(i + Xi) I Af(i). If the original item i follows 
the original item i + 1 in MF’s list, as is the case when 
the exchange is free, then x/ = Xi+1 and xi’+, = Xi - 1, 
which means the amortized time for the exchange is 
-Af(i + Xi+]) 5 0. q 

As is true for Theorem 1, Theorem 4 can be general- 
ized to allow the initial set to be nonempty and the 
initial lists to be different. The effect is to add to the 
bound on &P(S) a term equal to the initial potential, 
which depends on the inversions and is at most 
C:=;’ (f(n) - f(i)). We can also obtain a result similar to 
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Theorem 4 if we charge for an insertion not f(i + l), 
where i is the length of the list before the insertion, but 
f(i), where i is the position of the inserted item after the 
insertion. 

Extending the results of this section to include dele- 
tions is problematic. If we charge f(i) for a deletion in a 
list of size i, Theorem 4 holds if we allow deletions, and 
the total deletion cost is bounded by the total insertion 
cost. We leave the discovery of an alternative way to 
handle deletions to the ambitious reader. 

4. PAGING 
The model of Section 3 applies to at least one situation 
in which the access cost is not convex, namely paging. 
Consider a two-level memory divided into pages of 
fixed uniform size. Let n be the number of pages of fast 
memory. Each operation is an access that specifies a 
page of information. If the page is in fast memory, the 
access costs nothing. If the page is in slow memory, we 
must swap it for a page in fast memory, at a cost of one 
page fuulf. The goal is to minimize the number of page 
faults for a given sequence of accesses. 

Such a two-level memory corresponds to a self-organ- 
izing list with the following access cost: f(i) = 0 if i I n, 
f(i) = 1 if i > n. Since Af(i) = 0 unless i = II, the items in 
positions 1 through II may be arbitrarily reordered for 
free, as may the items in positions greater than n; thus 
the access cost at any time depends only on the set of 
items in positions 1 through n. The only difference be- 
tween the paging problem and the corresponding list 
update problem is that a page in slow memory must be 
moved to fast memory when accessed, whereas the cor- 
responding list reordering is optional. To make our re- 
sults easy to compare to previous work on paging, we 
shall, in this section, use standard paging terminology 
and require that each accessed page be moved to fast 
memory. 

As with list updating, most previous work on paging 
[Z, 5, 6, 91 is average-case analysis. Among paging rules 
that have been studied are the following: 

Least recently used (LRU). When swapping is necessary, 
replace the page whose most recent access was earliest. 

First-in, first-out (FIFO). Replace the page that has been 
in fast memory longest. 

Lust-in, first-out (LIFO). Replace the page most recently 
moved to fast memory. 

Least frequently used (LFU). Replace the page that has 
been accessed the least. 

Longest fonoard distance (MIN). Replace the page whose 
next access is latest. 

All these rules use demand paging: They never move 
a page out of fast memory unless room is needed for a 
newly accessed page. It is well known that premature 
paging cannot reduce the number of page faults. Theo- 
rem 3 can be regarded as a generalization of this obser- 

vation. Least recently used paging is equivalent to 
move-to-front: least frequently used paging corresponds 
to frequency count. All the paging rules except longest 
forward distance are on-line algorithms: that is, they 
require no knowledge of future accesses. Longest for- 
ward distance exactly minimizes the number of page 
faults [2], which is why it is known as the MIN algo- 
rithm. 

We shall compare various on-line algorithms to the 
MIN algorithm. In making such a comparison, it is re- 
vealing to let the two algorithms have different fast 
memory sizes. If A is any algorithm and s is any se- 
quence of m accesses, we denote by nA the number of 
pages in A’s fast memory and by FA(s) the number of 
page faults made by A on s. When comparing A and 
MIN, we shall assume that nA 2 nMIN. Our first result 
shows how poorly any on-line algorithm performs com- 
pared to MIN. 

THEOREM 5. 

Let A be any on-line algorithm. Then there are arbitrarily 
long sequences s such that 

FA(s) Z (nA/(nA - nMlN + ~IIFMJN(sI. 

PROOF. 

We shall define a sequence of nA accesses on which A 
makes nA faults and MIN makes only nA - nMlN + 1 

faults. The first nA - nMIN + 1 accesses are to pages in 
neither A’s nor MIN’s fast memory. Let S be the set of 
nA + 1 pages either in MIN’s memory initially or among 
the nA - nM]N + 1 newly accessed pages. Each of the 
next ~IMIN - 1 accesses is to a page in S not currently in 
A’s fast memory. On the combined sequence of nA ac- 
cesses, A faults every time. Because MIN retains all 
pages needed for the last nMlN - 1 accesses, it faults 
only nA - nMIN + 1 times. This construction can be re- 
peated as many times as desired, giving the theorem. q 

REMARK. 

If n,4 < nMIN, there are arbitrarily long sequences on 
which A always faults and MIN never faults. q 

Our second result shows that the bound in Theorem 
5 is tight to within an additive term for LRU. 

THEOREM 6. 
For any sequence s, 

FLR&) 5 (nLRU/(nLRU - nMlN $- 1))FMINtS) + nMIN. 

PROOF. 

After the first access, the fast memories of LRU and 
MIN always have at least one page in common; namely 
the page just accessed. Consider a subsequence t of s 
not including the first access and during which LRU 
faults f 5 nLaU times. Let p be the page accessed just 
before t. If LRU faults on the same page twice during t, 

then t must contain accesses to at least nLRU + 1 differ- 
ent pages. This is also true if LRU faults on p during t. If 
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neither of these cases occurs, then LRU faults on at 
least f differe:nt pages, none of them p, during t. In any 
case, since f 2; iYLeo, MIN must fault at least f - nMlN + 1 
times during ,t. 

Partition s into so, sl, . . . , sk such that SO contains the 
first access and at most ?tLsu faults by LRU, and Si for 
i=l,..., k contains exactly fiLRo faults by LRLJ. On 
each of si, . . . , Sk, the ratio of LRU faults to MIN faults 
is at most YZLR~J/‘(~LR~ - ~MIN + 1). During SO, if LRU 
faults f. times, MIN faults at least j. - QIN times. This 
gives the theorem. cl 

The additive term of HM~N in the bound of Theorem 6 
merely reflects the fact that LRU and MIN may initially 
have completely different pages in fast memory, which 
can result in LR.U faulting ~MIN times before MIN faults 
at all. If we allow LRU and MIN to have arbitrarily 
different initial fast memory contents, then we can in- 
crease the lower bound in Theorem 4 by IIM~N. On the 
other hand, if we assume that LRU’s fast memory ini- 
tially contains all the pages in MIN’s fast memory and 
no others more recently used, then we can decrease the 
upper bound in Theorem 6 by I~M~N. In either case we 
get exactly matching upper and lower bounds. 

Essentially the same argument shows that Theorem 6 
holds for FIFO. We merely refine the definition of so, ~1, 
. . . , sk so that during si for i = 1, . . . , k, LRU faults 
exactiy nLRo times and also on the access just before Si. 
We can find such a partition by scanning s from back to 
front. The rest of the proof is the same. 

It is easy to construct examples that show that a 
result like Theorem 6 holds neither for LIFO nor for 
LFU. A counterexample for LIFO is a sequence of nLiFo 
- 1 accesses to different pages followed by repeated 
alternating accesses to two new pages. On such a se- 
quence S, &I&S) = m, but &IN(S) = n~iro + 1 if I~MIN 
2 2. A countensxample for LFU is a sequence of k + 1 
accesses to each of nLFu - 1 pages, followed by 2k alter- 
nating accesses to two new pages, k to each, with this 
pattern repeated indefinitely (so that all but the initial 
nLFu - 1 pages have k accesses). On such a sequence, 
I&(S) = m - k(nLF” - l), but &IN(S) 5 m/k if ~MIN L 2. 

5. REMARKS. 
We have studied the amortized complexity of the 
move-to-front rule for list updating, showing that on 
any sequence of operations it has a total cost within a 
constant factor of minimum, among all possible updat- 
ing rules, including off-line ones. The constant factor is 
2 if we do not count the updating cost incurred by 
move-to-front and 4 if we do. This result is much 
stronger than p:revious average-case results on list up- 
date heuristics. Neither transpose nor frequency count 
shares this approximate optimality. Thus, even if one is 
willing to incur the time and space overhead needed to 
maintain frequency counts, it may not be a good idea. 

Our results lend theoretical support to Bentley and 
McGeoch’s experiments showing that move-to-front is 
generally the best rule in practice. As Bentley and 

McGeoch note, this contradicts the asymptotic average- 
case results, which favor transpose over move-to-front. 
Our tentative conclusion is that amortized complexity 
provides not only a more robust but a more realistic 
measure for list update rules than asymptotic average- 
case complexity. 

We have generalized our result on move-to-front to 
any situation in which the access cost is convex. We 
have also studied paging, a setting with a nonconvex 
access cost. Our results for paging can be interpreted 
either positively or negatively. On the one hand, any 
on-line paging algorithm makes a number of faults in 
the worst case that exceeds the minimum by a factor 
equal to the size of fast memory. On the other hand, 
even in the worst case both LRU and FIFO paging come 
within a constant factor of the number of page faults 
made by the optimum algorithm with a constant factor 
smaller fast memory. More precisely, for any constant 
factor c > 1, LRU and FIFO with fast memory size rr 
make at most c times as many faults as the optimum 
algorithm with fast memory size (1 - l/c)n. A similar 
result for LRU was proved by Franaszek and Wagner 
[6], but only on the average. 
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