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Section IV: Lipid Modulators of Islet Function

Update on Adipocyte Hormones
Regulation of Energy Balance and Carbohydrate/Lipid
Metabolism
Peter J. Havel

Hormones produced by adipose tissue play a critical role
in the regulation of energy intake, energy expenditure,
and lipid and carbohydrate metabolism. This review will
address the biology, actions, and regulation of three adi-
pocyte hormones—leptin, acylation stimulating protein
(ASP), and adiponectin—with an emphasis on the most
recent literature. The main biological role of leptin ap-
pears to be adaptation to reduced energy availability
rather than prevention of obesity. In addition to the
well-known consequences of absolute leptin deficiency,
subjects with heterozygous leptin gene mutations have
low circulating leptin levels and increased body adiposity.
Leptin treatment dramatically improves metabolic abnor-
malities (insulin resistance and hyperlipidemia) in pa-
tients with relative leptin deficiency due to lipoatrophy.
Leptin production is primarily regulated by insulin-in-
duced changes of adipocyte metabolism. Dietary fat and
fructose, which do not increase insulin secretion, lead to
reduced leptin production, suggesting a mechanism for
high-fat/high-sugar diets to increase energy intake and
weight gain. ASP increases the efficiency of triacylglycerol
synthesis in adipocytes leading to enhanced postprandial
lipid clearance. In mice, ASP deficiency results in reduced
body fat, obesity resistance, and improved insulin sensi-
tivity. Adiponectin production is stimulated by thiazo-
lidinedione agonists of peroxisome proliferator-activated
receptor-� and may contribute to increased insulin sensi-
tivity. Adiponectin and leptin cotreatment normalizes in-
sulin action in lipoatrophic insulin-resistant animals.
These effects may be mediated by AMP kinase–induced fat
oxidation, leading to reduced intramyocellular and liver
triglyceride content. The production of all three hormones
is influenced by nutritional status. These hormones, the
pathways controlling their production, and their receptors
are promising targets for managing obesity, hyperlipid-
emia, and insulin resistance. Diabetes 53 (Suppl. 1):
S143–S151, 2004

A
dipose tissue plays a crucial role in the regula-
tion of energy homeostasis, insulin sensitivity,
and lipid/carbohydrate metabolism. These ac-
tions are mediated by both the actions of a

number of nonsecreted proteins and hormones produced
in adipocytes. A recent example of the importance of
adipocyte function to have profound systemic effects is
provided by the report that mice specifically lacking
insulin signaling in adipocytes (FIRKO mouse) are not
only lean, leptin sensitive, and obesity resistant (1), but
live almost 20% longer than wild-type control animals (2).
Adipocytes produce a number of hormones that have
wide-ranging effects on energy intake, energy expenditure,
and carbohydrate and lipid metabolism, including nutrient
partitioning and fuel selection. Work in our laboratory has
primarily focused on the biology and regulation of three
key adipocyte hormones: leptin, acylation-stimulating pro-
tein, and adiponectin. A review examining the role of these
three hormones in regulating energy homeostasis and
insulin action was published in early 2002. The purpose of
the present review is to summarize the most important
aspects of the biology, actions, and regulation of these
hormones and to serve as an update of new information
published during the past �18 months.

LEPTIN

Because the biology of leptin, including its role in energy
balance and the regulation of its production, has been
reviewed in detail (3,4), this section will primarily concen-
trate on more recent findings not covered in previous
reviews. Importantly, recent data indicate that the effects
of leptin to inhibit food intake are mediated by signaling
through phosphatidylinositol 3-kinase (5), which is shared
by the insulin signal transduction pathway. This pathway
is therefore likely to mediate common actions of insulin
and leptin as peripheral signals to the central nervous
system (CNS) in the hypothalamic regulation in eating
behavior and metabolic homeostasis (3,6,7). Another study
implicated inhibition of liver steroyl CoA desaturase as a
mechanism mediating some of the metabolic effects of leptin,
particularly with regard to hepatic lipid metabolism (8).
Leptin deficiency and leptin treatment. It is now
apparent that the primary importance of leptin in the
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regulation of energy homeostasis is for reduced leptin
production to function as a signal of negative energy
balance and low energy reserves, rather than as an indi-
cator of positive energy balance and increased energy
reserves in the prevention of obesity. Accordingly, the
physiological effects of decreased leptin concentrations
are notably more pronounced than when leptin levels are
increased above the normal physiological range. Thus, the
dose response to increasing leptin concentrations appears
to be near maximal at physiological levels. As in rodents,
genetic mutations in the leptin gene (9,10) or defects in the
leptin receptor (11) in humans result in extreme hyperpha-
gia and obesity. Treatment with recombinant leptin re-
duces the marked hyperphagia and produces weight loss
in leptin-deficient subjects (12). Leptin administration cor-
rects many of the neuroendocrine, reproductive, meta-
bolic, and immune system deficits associated with leptin
deficiency (13) (Fig. 1). Heterozygous mutations of the
leptin gene result in a partial deficiency syndrome charac-
terized by increased body adiposity (14). Physiological
leptin replacement prevents the onset of hyperphagia in
untreated insulin-deficient diabetes (15) and the increase

of food-seeking behavior in energy-restricted rats (16).
Increased sensations of hunger during dieting are related
to the magnitude of decreases of leptin (17), and in one
study, reduced appetite was reported in humans treated
with leptin (18). In addition, it was recently demonstrated
that the normal compensatory decreases of energy expen-
diture and thyroid axis function in response to consuming
an energy-restricted diet in humans were prevented by
low-dose leptin replacement (19). Together, these data
suggest that decreases of leptin during weight loss could
contribute to hunger, a lowered metabolic rate, and weight
regain. New studies are needed to determine whether
leptin replacement, or the use of strategies to increase
endogenous leptin production to prevent the fall of leptin
during dieting and weight loss, will help prevent weight
regain in weight-reduced subjects.

The marked insulin resistance and hyperlipidemia in
leptin-deficient rodent models of lipoatrophy is largely
reversed by leptin administration (20,21). Low-dose leptin
treatment has dramatic effects to ameliorate insulin resis-
tance and hyperlipidemia in patients with low leptin levels
resulting from congenital or acquired lipodystrophy (22).

FIG. 1. Leptin acts within the CNS to inhibit food intake and increase energy expenditure, perhaps via its effects to activate the sympathetic
nervous system. Leptin also influences reproductive and neuroendocrine function. Leptin can increase insulin sensitivity, and this action appears
to be mediated by direct and indirect (CNS) effects to activate AMP kinase (AMP-K) and increase muscle fatty acid oxidation (FAOx), leading
to decreased intramyocellular lipid (IMCL) content. In addition to the CNS, leptin receptors are also found in numerous peripheral tissues where
the hormone exerts diverse effects. Leptin secretion is primarily mediated by changes of adipocyte glucose metabolism driven by increases or
decreases of meal-induced insulin secretion. Catecholamines and TZDs have been reported to inhibit leptin production; however, the
physiological role of these mechanisms has not been definitively established. ASP has anabolic effects to increase triglyceride (TG) synthesis by
increasing adipocyte glucose uptake, activating DGAT, and inhibiting hormone-sensitive lipase (HSL). ASP has recently been shown to stimulate
insulin secretion. ASP deficiency results in obesity resistance and increased insulin sensitivity. ASP production is stimulated by insulin and by
the presence of chylomicrons/VLDL after meals. Adiponectin increases insulin sensitivity, decreases hepatic glucose production (HGP), and
lowers glucose plasma levels. The insulin-sensitizing effects of adiponectin appear to be mediated by activation of AMP-K, resulting in increased
FAOx, and a lowering of hepatic triglyceride and IMCL content. TZD agonists of via peroxisome proliferator-activated receptor-� may increase
insulin sensitivity by stimulating adiponectin production. Adiponectin expression and secretion are inhibited by catecholamines, glucocorticoids,
TNF-�, interleukin-6 (IL-6), increased adipocyte size, and possibly decreased adipocyte insulin sensitivity. FFA, free fatty acid.
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The beneficial metabolic effects were associated with
reduced triglyceride deposition in liver and intramyocellu-
lar lipid content in skeletal muscle (23,24). Leptin also
improved pituitary, reproductive, and thyroid axis func-
tion in lipoatrophic patients (25). Plasma leptin concentra-
tions are also decreased (along with adiponectin) in some
patients with lipodystrophy associated with human immu-
nodeficiency virus infection and antiretroviral treatment
(26,27). It is possible that leptin replacement therapy
would be beneficial in managing some of the metabolic
abnormalities (hepatic steatosis, hyperlipidemia, and insu-
lin resistance) in those patients with low leptin levels.
Leptin-induced decreases of muscle lipid accumulation
and improvements of insulin resistance appear to be
mediated via direct and indirect neural activation of
skeletal muscle AMP kinase (28,29). Together, the avail-
able data support a critical role for leptin in the regulation
of energy balance in humans (4,30). In addition, a number
of recent studies provide evidence of a role for leptin in
the regulation of insulin action and lipid metabolism (4).
Regulation of leptin production. Insulin responses to
meals are the primary mediator of changes of leptin
production observed during fasting/energy restriction and
refeeding and of the diurnal variation of circulating leptin
levels (3). Data from experiments in isolated adipocytes
(31) and from clinical studies in human subjects (32)
support the idea that insulin increases leptin production
indirectly via its effects to increase glucose utilization and
oxidative glucose metabolism in adipocytes (33) at the
transcriptional level (34) (Fig. 1). The region of the leptin
gene involved in the activation of the leptin promoter by
insulin-mediated glucose metabolism appears to be lo-
cated between �135 and �95 bp (35), a region that
includes the binding site for the transcription factor Sp1
(36). The 24-h diurnal leptin concentrations are reduced
on a day when three high-fat meals are consumed when
compared with high-carbohydrate/low-fat meals, which
induce larger postprandial glucose excursions and greater
insulin secretion (37). In a study comparing the effects of
consuming glucose- and fructose-sweetened beverages
with meals, postprandial insulin responses were markedly
reduced and 24-h circulating leptin concentrations were
reduced by 35% (38). Consumption of high-glucose meals
suppressed plasma levels of the orexigenic gastric hor-
mone ghrelin (39,40), whereas this response was attenu-
ated after high-fructose meals. In addition, fructose
consumption induced a rapid and sustained increase of
postprandial triglyceride levels, consistent with increased
hepatic metabolism of fructose to lipid precursors (41).
The endocrine effects of dietary fat and fructose, resulting
in decreased insulin secretion and leptin production, and
reduced postprandial suppression of ghrelin suggest a
mechanism by which consumption of diets high in energy
derived from fat and fructose could lead to overconsump-
tion of calories, weight gain, and obesity.
Leptin and insulin secretion. There is a large body of
evidence demonstrating that leptin has direct effects on
insulin secretion with the large majority of studies report-
ing that leptin inhibits insulin gene transcription (42–44)
and insulin secretion (45,46). Briefly, the long form of the
leptin receptor is expressed in pancreatic �-cells (47).
Leptin can inhibit insulin secretion by activating with

ATP-dependent potassium channels or via interactions
with the cAMP protein kinase A signaling pathway (48),
perhaps by activating phosphodiesterase B3 (49). Physio-
logical levels of leptin have been demonstrated to inhibit
insulin secretion in rats in vivo (50); however, this effect
may be indirectly mediated via actions in the CNS (51).

ACYLATION STIMULATING PROTEIN

The acylation stimulating protein (ASP) is a unique hor-
mone produced from complement factor C via an interac-
tion requiring factor B and adipsin (factor D), resulting in
the formation of the C3 derivative, C3a-des-Arg, which is
also known as ASP. Plasma ASP and C3 levels are highly
correlated in normal subjects and in patients with elevated
ASP levels associated with the nephrotic syndrome (52).
An orphan G protein–coupled receptor (C5L2) that is
coupled with Gi (53) has recently been shown to bind ASP
(54). The receptor is expressed in 3T3-L1 cells, human
fibroblasts, and human adipose tissue and has been pro-
posed to be the receptor responsible for the metabolic
actions of ASP in adipose tissue (54). ASP has a primary
role in the regulation of lipid metabolism in adipocytes.
However, these actions in adipose tissue result in pro-
found effects on whole-body energy homeostasis and
insulin sensitivity.
ASP and lipid metabolism. ASP acts locally in adipose
tissue, where it stimulates glucose uptake, increases the
activity of diacylglycerol acyltransferase (DGAT), and
inhibits hormone-sensitive lipase activity (Fig. 1). These
actions of ASP increase the efficiency of triglyceride
synthesis and storage in adipocytes (55,56). C3 knockout
mice, with an inability to produce ASP, exhibit delayed
postprandial lipid clearance in mice (57). Intraperitoneal
administration of exogenous ASP to mice accelerates the
clearance of free fatty acids and triglycerides from the
circulation after oral fat administration (58,59). Results
from a genetic study demonstrating that plasma ASP levels
are related to genes controlling total cholesterol, LDL, and
triglyceride levels (60) support a role for ASP in the
regulation of lipid metabolism in humans. In addition,
patients with combined familial hyperlipidemia have a
delayed postprandial increase of plasma C3 concentra-
tions, suggesting a potential link between the ASP precur-
sor and impaired free fatty acid clearance and VLDL
overproduction (61). Lastly, a recent study of patients
experiencing marked weight loss after gastric bypass
surgery reported that the decrease of the atherogenic
apolipoprotein (apo)-B is closely related to the decrease of
plasma ASP levels (62).
ASP and energy balance/carbohydrate metabolism.

ASP action is a determinant of energy homeostasis and
insulin action. C3 knockout mice, which are unable to
produce ASP, consume �30% more food than wild-type
mice, yet have reduced adipose mass and are resistant to
weight gain induced by being fed a high-fat diet (63). The
C3/ASP-deficient animals have increased energy expendi-
ture as assessed by 24-h oxygen consumption, which is
elevated both at rest (light cycle) and during the active
phase (dark cycle) (64). Cross-breeding of C3/ASP knock-
out animals with leptin-deficient ob/ob mice results in mice
with reduced adiposity and increased energy expenditure
(65). ASP/C3 knockout animals also have reduced fasting
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insulin levels and improved glucose clearance after intra-
peritoneal glucose administration (58,63). It is of interest
that mice with genetic knockout of the DGAT enzyme,
which is regulated by ASP, exhibit a similar lean insulin-
sensitive obesity-resistant phenotype as C3/ASP knockout
animals, as well as increased sensitivity to the effects of
leptin to suppress food intake (66,67).

In addition to its known anabolic paracrine actions in
adipocytes, direct effects of ASP on insulin secretion have
recently been reported. ASP directly stimulated insulin
secretion by INS-1 cells and isolated mouse islets. The
stimulatory action appears to depend on glucose phos-
phorylation, calcium influx, and protein kinase C. Further-
more, ASP administration acutely increased first-phase
glucose-stimulated insulin secretion in mice in vivo, result-
ing in enhanced glucose disposal (68).
Regulation of ASP production. Adiposity is an impor-
tant determinant of circulating ASP levels, which are
elevated in obese subjects in proportion to body adiposity
(69,70). Plasma ASP concentrations decrease during fast-
ing and after weight loss (71), including after marked
weight loss resulting from gastric bypass surgery (62). In
humans, plasma ASP concentrations do not increase in
response fat ingestion (72). ASP release into venous
plasma from subcutaneous adipose tissue can be mea-
sured 4–5 h after meals (73). ASP secretion by adipocytes
in vitro is increased by insulin (74), suggesting that insulin
could mediate the decrease of ASP production during
energy restriction and the increase of ASP production
after meals. However, circulating lipids are also likely to
stimulate ASP production after fat ingestion because chy-
lomicrons potently increase ASP secretion from cultured
human adipocytes in vitro (74,75) (Fig. 1). Clearly, addi-
tional experiments are required to better understand the
nutritional regulation of ASP production. However, be-
cause ASP enhances triglyceride storage, whereas inter-
fering with ASP production reduces body fat and protects
against diet-induced obesity and insulin resistance, reduc-
ing the production of ASP and ASP receptor antagonists
represents potential approaches for treating obesity and
type 2 diabetes.

ADIPONECTIN

Adiponectin—also known as complement-related protein
30 (ACRP30), adipose most abundant gene transcript
(apM1), adiponectin, and adipoQ—was identified in by
several laboratories (76–78). Adiponectin is a large (30-
kDa) protein produced by adipocytes. It has been reported
that adiponectin is present in the circulation as a dimer-
trimer and as larger higher-order complexes and that the
state of these oligomers influences the biological activity
of the protein (79). Identification of the receptor(s) medi-
ating the biological actions of adiponectin in liver and skel-
etal muscle has not yet been reported. Low circulating levels
of adiponectin have been linked to several components of the
metabolic (insulin resistance) syndrome, including intra-
abdominal body fat distribution, hyperlipidemia, low HDL
levels, and insulin resistance/type 2 diabetes.
Adiponectin and lipid metabolism. There is a growing
body of evidence that adiponectin is involved in the
regulation of both lipid and carbohydrate metabolism.
Adiponectin also appears to have direct and indirect
actions that would be considered to protect against car-

diovascular disease (4,80). It has been hypothesized that
reduced adiponectin concentrations observed in obese
subjects (81) are involved in the development of athero-
sclerosis and cardiovascular disease (82,83). Decreased
adiponectin levels have been linked to small dense LDL
and high apoB and triglyceride levels (84). Several studies
have shown that adiponectin has direct actions on vascu-
lar endothelium that would protect against cardiovascular
disease (85,86). Recent reports that adiponectin knockout
mice exhibit an increase in inflammatory response to
vascular injury (87) and that adiponectin administration
prevents atherosclerosis in apoE-deficient mice (88,89)
provide further support to the idea that adiponectin pro-
tects against cardiovascular disease. With respect to cir-
culating lipids, several genes linked to circulating
adiponectin levels have pleiotropic genetic effects on
serum HDL and triglyceride levels (60). In addition, data
from two large cross-sectional studies indicate that after
adjusting for both sex and body adiposity, circulating
adiponectin concentrations are negatively correlated with
triglyceride levels and strongly positively correlated with
plasma HDL concentrations (90,91).
Adiponectin and insulin action/carbohydrate metab-

olism. Adiponectin administration enhances insulin action
in animals (4) and low levels of adiponectin have been
proposed to contribute to insulin resistance associated
with obesity (92). Adiponectin gene expression (93) and
circulating adiponectin levels (94) are lower in patients
with type 2 diabetes than in nondiabetic individuals.
Independent of body adiposity, circulating adiponectin
levels are positively correlated with insulin sensitivity as
assessed by fasting insulin levels, homeostasis analysis,
hyperinsulinemic-euglycemic clamp, or frequently sam-
pled intravenous glucose tolerance test (90,91,95,96). Cir-
culating adiponectin levels are decreased in aging obese
rhesus monkeys at the time the animals begin to exhibit
insulin resistance and develop type 2 diabetes (97). De-
creased tyrosine phosphorylation of muscle insulin recep-
tors is related to lower plasma adiponectin
concentrations, and the low levels are predictive of the
subsequent development of diabetes (98), although not of
future weight gain (99) in Pima Indians. Markers of insulin
resistance are linked to a quantitative trait locus on
chromosome 3 in the region containing the adiponectin
gene (100). Further evidence that adiponectin production
is required for normal insulin action is provided by reports
that heterozygous and homozygous adiponectin knockout
mice are insulin resistant with a gene dose effect (87) or
develop diet-induced insulin resistance (101). However, it
is possible that insulin resistance resulting from adiponec-
tin deficiency may be compensated by genetic background
(i.e., differences in mouse strain), because other investiga-
tors have reported normal insulin action in an adiponectin
knockout mouse model (102).

Administration of adiponectin lowers circulating glu-
cose levels without stimulating insulin secretion in both
normal mice and in mouse models of diabetes (103).
Adiponectin may act directly on the liver because adi-
ponectin lowers hepatic glucose production in mice (104)
and enhances the effects of insulin to decrease glucose
production by isolated hepatocytes (105). Adiponectin
administration also reduces insulin resistance and im-
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proves glucose tolerance in mice with low adiponectin
levels resulting from lipoatrophy- or obesity-induced insu-
lin resistance (105). In these studies, plasma glucose levels
in mice with lipoatrophic diabetes were normalized when
leptin was co-administered with adiponectin (105). Fur-
thermore, the amelioration of insulin resistance was asso-
ciated with decreased triglyceride deposition in liver and
in skeletal muscle, the expression of genes involved in
lipid transport and use, and increased fat oxidation in
muscle (105). Circulating adiponectin levels are also de-
creased in patients with congenital (106) or human immu-
nodeficiency virus–associated lipodystrophy (107–111).
Therefore, adiponectin treatment may be of benefit in
controlling the multiple metabolic disturbances, including
hepatic steatosis, insulin resistance, and dyslipidemia
present in these patients.

In one study, adiponectin treatment was reported to
induce weight loss without decreasing food intake in mice
consuming a high-fat high-sucrose diet—an effect associ-
ated with increased muscle fat oxidation and lowered
circulating fatty acid concentrations (112). There is evi-
dence that the insulin-sensitizing effects of adiponectin in
muscle, like those of leptin, also involve activation of the
AMP kinase (113,114). Therefore, it appears that adiponec-
tin can increase insulin action via direct effects on hepatic
glucose production and by reducing ectopic fat deposition
in liver and muscle via increases of fat oxidation (115,116)
(Fig. 1). Accordingly, low adiponectin concentrations in
obese adolescent subjects are associated with increased
intramyocellular lipid deposition and impaired insulin
action (117). At this time, there are no published reports of
direct effects of adiponectin on insulin secretion.
Regulation of adiponectin production. Circulating con-
centrations of most hormones produced by adipose tissue,
including leptin, tumor necrosis factor (TNF)-�, plasma
activator inhibitor 1, and ASP, are positively related to
body adiposity. In contrast, circulating adiponectin con-
centrations are reduced in obese animals (105,118) and
humans (82,90,95). In a cross-sectional study including
obese and lean men and women, the negative relationship
between plasma adiponectin and visceral fat (measured by
computed tomography scan) was significantly stronger
than that with subcutaneous fat (119). One explanation is
that adiponectin is primarily produced by visceral adipose
tissue, but that large triglyceride-filled visceral adipocytes
produce less adiponectin. It has been reported that omen-
tal adipocytes secrete more adiponectin than adipocytes
isolated from subcutaneous fat (120). The known insulin-
sensitizing actions of adiponectin suggest that reduced
adiponectin production may contribute to the well-known
relationship between visceral fat deposition and insulin
resistance (121). Like leptin (122,123), plasma adiponectin
levels are increased in women (90). Differences in adipo-
cyte size and body composition could contribute to the sex
difference in adiponectin levels because women with a
gynoid body fat distribution are known to have smaller
and more numerous adipocytes than women with android
fat distribution (124). Circulating adiponectin levels in-
crease after weight loss in humans (94). The low plasma
adiponectin concentrations in morbidly obese subjects are
normalized after weight loss induced by gastric bypass
surgery (62,125,126). Furthermore, in patients with stable

weights, those subjects with the lowest presurgical adi-
ponectin levels lost the most weight after surgery (62) and
the subjects exhibiting the largest increases of plasma
adiponectin were the most insulin sensitive after surgery-
induced weight loss (62,125). Again, a possible explana-
tion for the paradoxical reduction of adiponectin in obese
subjects and the increase after weight loss is that adi-
ponectin may be primarily produced by visceral fat, as
suggested by one study of human adipocytes in vitro (120),
but that large visceral adipocytes with greater triglyceride
stores produce less adiponectin than small adipocytes.
Because large adipocytes are less insulin sensitive, it is
possible that the insulin sensitivity of adipocytes is also a
determinant of adiponectin production, as has been sug-
gested by our unpublished data and that of other investi-
gators (127) (Fig. 1).

Humans with severe insulin-resistant diabetes due to
dominant-negative mutations that inactivate peroxisome
proliferator-activated receptor-� (128) have very low cir-
culating adiponectin levels (129). Thiazolidinedione (TZD)
agonists of peroxisome proliferator-activated receptor-�
increase adiponectin expression and circulating levels in
rodents (105,108,129–131) and plasma adiponectin levels
in nondiabetic subjects (132) and in patients with type 2
diabetes (132–134). In contrast, plasma adiponectin was
unchanged in response to metformin (134). In addition, the
improvement of insulin sensitivity during TZD treatment
was related to the increase of circulating adiponectin
(134). It is possible the effects of TZDs to increase whole-
body insulin sensitivity (135) and to protect against car-
diovascular disease (136) could be mediated by increased
adiponectin production. Adiponectin gene expression is
reduced by TNF-� (130,137–139), interleukin-6 (139,140),
�-adrenergic agonists (141–143), or glucocorticoids
(13,144). Adrenalectomy increases adiponectin gene ex-
pression and circulating adiponectin levels, along with
insulin sensitivity in ob/ob mice (145). The effects of
cytokines, catecholamines, and glucocorticoids to induce
insulin resistance could be mediated, in part, by their
effects to decrease adiponectin production (Fig. 1).

The role of insulin in the regulation of adiponectin
production is not yet clear. There are reports that insulin
can either stimulate (144,146) or inhibit (138) adiponectin
gene expression or secretion in cultured adipocytes. A
modest decrease of plasma adiponectin was observed
during a 5-h hyperinsulinemic-euglycemic clamp (132).
However, plasma adiponectin levels increase in patients
with type 2 diabetes during sulfonylurea treatment, which
stimulates insulin secretion (147). In contrast to the
marked decline of circulating leptin concentrations in
response to acute energy restriction (148), the increase of
adiponectin during acute energy restriction in humans,
with little change in body fat, is relatively small and
depends on sex (149). Circulating adiponectin concentra-
tions are increased by exercise training when body fat
content is reduced (150,151), but they do not change if
body composition is unaltered (152). A recent study re-
ported a diurnal pattern of circulating adiponectin concen-
trations in six normal-weight male subjects, with a
nocturnal decrease of �20% below 24-h mean levels (153).
However, this diurnal pattern of adiponectin concentra-
tions was not apparent over a 24-h period in six female
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subjects consuming three high-carbohydrate meals that
induce large postprandial insulin responses, suggesting
another potential sex difference (K. Teff, P.J.H., unpub-
lished data). Available data suggest that infusion of fatty
acids (Intralipid) (154), insulin and glucose administration
(132), insulin responses to meals, and acute energy restric-
tion (149) have, at most, modest effects on plasma adi-
ponectin concentrations.

CONCLUSIONS

A large number of proteins produced by adipose tissue,
both intracellular and secreted, function, in concert with
the CNS, liver, and muscle, in the coordination of energy
homeostasis and fuel metabolism. Among these proteins,
alterations in the production of the hormones, leptin, ASP,
and adiponectin appear to have substantial effects on body
adiposity and insulin sensitivity. The processes involved in
regulating energy homeostasis and intermediary lipid and
carbohydrate metabolism are inextricably linked by com-
mon neuroendocrine mediators, including, leptin, ASP,
and adiponectin. The production of all three adipocyte
hormones appears to be regulated by nutritional status,
i.e., feeding, fasting, and/or weight loss. A more complete
understanding of the molecular and biochemical pathways
regulating the biosynthesis of these hormones and their
precise mechanisms of action is likely to lead to new
approaches for managing obesity, dyslipidemia, and insu-
lin resistance/type 2 diabetes (4).
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