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Abstract Invasive fungal infections remain a major source of

global morbidity and mortality, especially among patients

with underlying immune suppression. Successful patient man-

agement requires antifungal therapy. Yet, treatment choices

are restricted due to limited classes of antifungal agents and

the emergence of antifungal drug resistance. In some settings,

the evolution of multidrug-resistant strains insensitive to sev-

eral classes of antifungal agents is a major concern. The resis-

tance mechanisms responsible for acquired resistance are well

characterized and include changes in drug target affinity and

abundance, and reduction in the intracellular level of drug by

biofilms and efflux pumps. The development of high-level

and multidrug resistance occurs through a stepwise evolution

of diverse mechanisms. The genetic factors that influence

these mechanisms are emerging and they form a complex

symphony of cellular interactions that enable the cell to

adapt and/or overcome drug-induced stress. Drivers of resis-

tance involve a complex blend of host and microbial factors.

Understanding these mechanisms will facilitate development

of better diagnostics and therapeutic strategies to overcome

and prevent antifungal resistance.

Keywords Antifungal resistance . Acquired resistance .

Candidaalbicans .Candidaglabrata .Aspergillusfumigatus .

Azoles . Echinocandins . Polyenes

Introduction

Serious fungal infections afflict millions of patients annually

resulting in more than 1,350,000 deaths [1]. The most serious

fungal infections occur as a consequence of other serious

health problems such as asthma, AIDS, cancer, and organ

transplantation, and they all require antifungal therapy for a

successful outcome. Failure to treat effectively either because

of diagnostic delays or missed diagnosis often leads to death

or serious illness. This recognition has resulted in a significant

increase in antifungal agents use for the treatment and preven-

tion of fungal infections. Yet, therapeutic options are limited,

as the most widely used antifungal drugs comprise only a

few chemical classes including azoles (fluconazole,

voriconazole, posaconazole, and isavuconazole) and poly-

enes (amphotericin B), which modify the cell membrane,

nucleic acids and protein flucytosine (5-fluorocytosine), and

the cell wall echinocandins (caspofungin, anidulafungin, and

micafungin). Predictably, resistant strains emerge during ther-

apy, and it is a confounding factor for successful clinical out-

come as it eliminates important antifungal classes leaving re-

stricted treatment options. Resistance may result from selec-

tion of inherently less susceptible strains or from emergence of

acquired drug resistance during therapy in otherwise suscep-

tible strains. It is the latter that is the principal subject of

this review, although many acquired mechanisms also ac-

count for naturally occurring reduced susceptibility of some

species. A greater understanding of factors promoting

mechanism-specific resistance is important to help over-

come resistance emergence.

Epidemiology and Emergence of Multidrug

Resistance

Inherent Resistance Selection

Resistance to antifungal agents remains relatively uncommon,

as the vast majority of fungi retain susceptibility to commonly

This article is part of the Topical Collection on Mycology

* David S. Perlin

perlinds@njms.rutgers.edu

Erika Shor

es783@njms.rutgers.edu

Yanan Zhao

zhaoy1@njms.rutgers.edu

1 Public Health Research Institute, Rutgers Biomedical and Health

Sciences, New Jersey Medical School, 185 S Orange Ave,

Newark, NJ 07103, USA

Curr Clin Micro Rpt (2015) 2:84–95

DOI 10.1007/s40588-015-0015-1



used antifungal agents. In some cases, prominent resistance

results from selection of less susceptible species. The azole

antifungal agents are the most prominent example of drug

selection for less susceptible species [2]. Numerous global

epidemiological studies have documented the impact of wide-

spread triazole use on the distribution and shift of Candida

species toward less susceptible strains like Candida glabrata

and Candida krusei. In many regions where azole use (e.g.,

fluconazole) is prevalent, there has been a shift away from

Candida albicans as the predominant cause of invasive infec-

tions toward less susceptible non-C. albicans species [3].

C. glabrata has inherent reduced susceptibility to fluconazole

and it is the species whose incidence has increased the most to

account for a decrease in the prevalence of C. albicans [3, 4].

Similarly, fluconazole use is linked to emergence of the highly

resistant C. krusei [5] and Candida guilliermondii [6]. In

many cases, inherent resistance in Candida species to flucon-

azole also carries with resistance to more highly active

triazoles like voriconazole. This is not true for Aspergillus

and other molds that are resistant to fluconazole but suscepti-

ble to more highly active triazoles. Yet, breakthrough infec-

tions against highly active triazole drugs have been reported

for Aspergillus ustus [7] and Aspergillus fumigatus-like

species Aspergillus lentulus, which show pleiotropic resis-

tance to multiple antifungal drugs [8, 9]. Sometimes, a

susceptible species develops a prevalent variant that is

the source of resistant infections. In the bacterial world,

the regional and global spread of drug-resistant strains

from a common progenitor is commonly observed. Such

transmission is not typically observed for fungal drug re-

sistance. A notable exception occurred with the recent

emergence of a multidrug-resistant variant of A. fumigatus in

the Netherlands [10, 11]. This highly azole-resistant strain

variant was selected in the environment as a consequence of

the prevalent use of agricultural azoles. The resistance mech-

anism unique to these isolates will be discussed later, but such

resistant strains are spreading through Europe and into parts of

Asia [12].

Acquired Resistance

BAcquired^ refers to acquisition (or latent induction) of a re-

sistance mechanism during therapy. It is less common but not

an inconsequential event. Growing concerns have been raised

about acquired antifungal drug resistance involving azole re-

sistance in A. fumigatus and echinocandin resistance in

Candida [13–15]. Azole resistance in A. fumigatus is wide-

spread globally with high geographic variance since the first

report of itraconazole resistance in 1997 [16]. In the

Netherlands, the prevalence of resistance increased from 2 %

in 2000 to 8 % in 2009 predominated by TR34/L98H, a resis-

tance mechanism which has been considered as environmen-

tally acquired and associated with the use of agricultural

fungicides [17]. While TR34/L98H along with the newly

emerged TR46/Y121F/T289A are spreading and widely re-

ported in many other countries [18–23], epidemiological data

in the UK demonstrated a more drastic increase of resistance

from 5% in 2004 to 14% in 2008 and 20% in 2009withmore

versatile (CYP51A and non-CYP51A mediated) underlying

mechanisms, which were mainly induced by long-term azole

therapy in chronic infection patients [24, 25]. Unlike azole

resistance, the frequency of echinocandin resistance remains

relatively low (<2–3 %) with C. albicans and most other

Candida species [26–29]. However, a notable exception is

C. glabrata, where an alarming trend of rising echinocandin

resistance poses a serious clinical challenge since many iso-

lates display azole cross-resistance [30••, 31, 32]. A recent

study of C. glabrata bloodstream isolates documented the

rising rate of echinocandin resistance from 4.9 to 12.3 % in

2001–2010 [30••]. Of note, resistance rates in C. glabrata

varies range from ~3 % to over 10 % in recent surveillance

studies, depending on the geographic region, subpopulation,

and data collecting method of the study [14, 30••, 31–33]

(Fig. 1). Nevertheless, rapid acquisition of resistance during

therapy for C. glabrata infection with subsequent unfavorable

outcome is worrisome.

Mechanisms of Resistance

Prominent antifungal resistance mechanisms have been

detailed in recent years. The mechanisms generally involve

reduced drug uptake, modification of the drug target, and/or

a reduction in the cellular level of drug due to upregulation of

drug efflux transporters (pumps) and biofilms, which restrict

drug entry (Fig. 2). Fungi have evolved a number of genetic

regulatory features that induce or promote specific resistance

mechanisms.

Biofilms

Yeasts and molds readily form biofilms [34, 35], which dis-

play an organized three-dimensional structure comprised of a

dense network of cells in an exopolymeric matrix of carbohy-

drates, proteins, and nucleic acids. Drug sequestration within

the extracellular matrix is the largest determinant of the mul-

tidrug resistance phenotype of biofilms [36]. Biofilms restrict

access to echinocandin drugs and they are intrinsically resis-

tant to azoles. Themechanisms include drug sequestration and

expression of drug efflux transporters [34, 35, 37–39]. Matrix

production is highly regulated and is a key resistance factor for

Candida species [40]. Biosynthesis ofβ-1,3-glucan by glucan

synthase is critical to the biofilm resistance properties.

Downstream components of the yeast PKC pathway, includ-

ing SMI1, RLM1, RHO1, and FKS1, regulate β-1,3-glucan

biosynthesis and biofilm matrix production [36, 41–43], as
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well as other cellular components such as alcohol dehydroge-

nases Adh5, Csh1, and Ifd6 [44].

Drug Target Modification

Genetic modification of the drug target resulting in reduced

affinity for drug is one of the most prominent mechanisms for

antifungal resistance. For echinocandin drugs, target site mod-

ification is sufficient to confer resistance, as other mechanisms

(e.g., drug pumps) are not associated with clinical resistance

[45]. Echinocandins inhibit glucan synthase, which blocks the

biosynthesis of the critical cell wall polymer (1,3)-β-D-glucan.

A limited number of mutations in two highly conserved hot-

spot regions of the FKS genes encoding glucan synthase con-

fer resistance (Table 1). The most prominent mutations in

C. albicans associated with clinical failures encode amino

acid substitutions at Fks1 positions Phe641 and Ser645 [46].

These target site modifications decrease the sensitivity of en-

zyme for drug by as much as several thousand fold [47•, 48,

49] resulting in strains that respond poorly in pharmacody-

namic models [50, 51]. Related FKS1 mutations have been

found in other Candida species. Only in C. glabrata, con-

served hot-spot mutations are found in both FKS1 (Phe625,

Ser629) and FKS2 (Phe659, Ser663) with the latter occurring

with twice the frequency [48].

Azoles inhibit lanosterol 14α-demethylase, which is

encoded by ERG11 (CYP51A in Aspergillus). Triazole anti-

fungal agents differ in affinities for their drug target, which in

turn influences their spectrum of activity. Fluconazole shows

the weakest interaction and displays the narrowest spectrum,

as it is active against yeasts but not molds. As such, it pro-

motes the broadest resistance. In a recent study of 63

fluconazole-resistant clinical isolates, 55 isolates carried at

least one mutation in ERG11, representing 26 distinct amino

acid substitutions [52]. In contrast, highly active triazoles

(e.g., voriconazole, posaconazole) interact more strongly with

the drug target, show broader activity against yeasts and

molds, and reveal a narrower spectrum of resistance muta-

tions. To date, more than 70 amino acid substitutions have

been described in Erg11 (or Cyp51A) from azole-resistant

clinical isolates of C. albicans [53–58], A. fumigatus [24, 59,

60], and Cryptococcus neoformans [61, 62]. Within the azole

family, chemical diversity around a core unit facilitates differ-

ential susceptibility and also resistance cross-reactivity. For

example, some mutations in ERG11 result in fluconazole re-

sistance only, others confer resistance to voriconazole but not

posaconazole , and some display pan-res is tance.

Computational modeling using high-resolution structures as

a template helps explain the impact of specific amino acid

substitutions on drug-target interactions [63]. Recently, such

modeling studies were greatly enhanced by the elucidation of

a high-resolution Erg11 structure from baker’s yeast [64••].

Drugs like posaconazole fill the structural space occupied by

the substrate lanosterol, where they make a coordination bond

with the heme iron extending from the active site to beyond

the mouth of the entry channel (Fig. 3). A majority of muta-

tions cluster in three main regions [65] with most substitutions

altering the juxtaposition of drug with the heme cofactor. The

structure of the active site and substrate channel helps account

for the susceptibility observed for some prominent resistant

mutants [64••, 66].

Finally, in Aspergillus, mutations in Cyp51A are sufficient

to induce resistance to some or all highly active triazole drugs,

while inC. glabrata, target site mutations in CgERG11 do not

Fig. 1 Echinocandin resistance

in C. glabrata in Europe and

America. Resistance rate varies

among different studies.

The rate reported from

institutional studies is higher than

that from population-based sur-

veys, where only the initial blood

isolate is included to avoid bias-

ing the data set. Adapted from

Arendrup et al. [14]
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contribute to clinical resistance. In some organisms, mutations

in Erg11 are but a first step toward higher-level resistance

involving other resistance mechanisms such as target upregu-

lation or overexpression of drug pumps.

Decreased Intracellular Drug Levels

As drugs need to reach their cellular targets to be effective,

certain antifungals use permeases for cell entry including 5-

fluorocytosine, which uses FCA1, FCY2, FCY22, and FCY23

to enterC. albicans cells [50]. Fluconazole is believed to enter

cells by an uncharacterized energy-independent facilitated dif-

fusion mechanisms [67]. Modification of these uptake sys-

tems would confer drug resistance. Among the most common

mechanisms for reducing cellular drug levels, energy-

dependent drug efflux transporters recognize and extrude di-

verse chemical classes. Two different drug efflux systems

modulate azole resistance, the ATP-binding cassette (ABC)

superfamily and the major facilitator superfamily (MFS).

The ATP-dependent transporters (ABC) are comprised of

two transmembrane and two cytoplasmic nucleotide-binding

domains, which catalyze ATP hydrolysis. Fungal genomes

encode numerous ABC transporters, as they are presumed to

purge the cell of toxic compounds and metabolites.

C. albicans is predicted to contain 28 ABC proteins [68],

C. glabrata has 18, and A. fumigatus and C. neoformans have

many more [69]. Despite their prevalence, only a few contrib-

ute to antifungal resistance. The PDR class comprises the

major transporters involved in azole resistance including

C. albicans CDR1 and CDR2 [70]; CgCdr1, CgCdr2, and

CgSnq2 in C. glabrata; and Afr1 in C. neoformans [71]. In

A. fumigatus, ABC transporter genes are upregulated in re-

sponse to azole exposure (AfuMDR1 (CDR1B), AfuMDR2,

abcA-E) [72, 73] and in resistant clinical isolates [74–76].

MFS transporters have multiple (12 or 14) transmembrane

domains and use proton-motive force to drive drug efflux.

The C. albicans genome predicts 95 MFS transporters in 17

families [77] but only one transporter gene, MDR1, is associ-

ated azole resistance [78–80]. In A. fumigatus, AfuMDR3 is

upregulated in some itraconazole-resistant mutants [75]. It is

unclear in Aspergillus whether induction of an ABC or MFS

transporter is sufficient for resistance.

Regulation of Drug Transporters

Transcriptional regulation of ABC and MFS multidrug trans-

porters is complex, involving cis- and trans-regulatory ele-

ments. Cis-acting elements regulate CDR1, CDR2, and

MDR1 in C. albicans, with the promoters of CDR1 and

CDR2 containing common Drug Responsive Element

(DRE) sequences that are required for transcriptional upregu-

lation [81].MDR1 cis-acting elements have complex arrange-

ments that differ depending on the inducer [82]. In

C. glabrata, pleiotropic DREs are present in CgCDR1,

CgCDR2, and CgSNQ2 [83, 84], and help confer high level

CDR1 expression [85]. The first major trans-acting transcrip-

tion element regulating efflux is C. albicans Transcriptional

Activator of CDR (TAC1), a member of the Zn2Cys6 transcrip-

tion factor family. Gain-of-function (GOF) mutations in TAC1

[86•, 87] are responsible for the upregulation of CDR1 and

CDR2 in azole-resistant isolates [88–90]. Tac1 binds to the

DRE of CDR1 and CDR2, likely via a consensus-binding

Fig. 2 Exposure to azole drugs triggers fungal stress responses that

promote fungal adaptation and drug tolerance and, ultimately,

emergence of stable genetic alterations that confer drug resistance. The

HSP90 protein chaperone and its client, protein phosphatase calcineurin,

are key stress signal transduction molecules that both upregulate

pathways leading to drug tolerance and promote genome instability,

increasing the likelihood of generating drug-resistant strains. Fungal

biofilms, which readily form in vivo, are intrinsically resistant to azoles

due to drug sequestration within the extracellular matrix and expression

of drug efflux transporters
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motif. Similarly, another CDR1 regulator MRR2 is required

for the basal expression of CDR1 [91]. In C. glabrata, drug

pump overexpression is the major mechanism responsible for

azole resistance, and transcriptional activator CgPdr1 reg-

ulates expression of CgCDR1 and CgCDR2 [92]. CgPdr1

binds to the PDRE consensus in CgCDR1 [85] and GOF

mutations hyper-activate CgPdr1 upregulating ABC trans-

porters [92–96]. Nearly 60 GOF mutations have been

identified in CgPDR1 alleles from clinical azole-resistant

isolates [94]. In C. albicans, the Zn2Cys6 transcription

factor Multidrug Resistance Regulator 1 (Mrr1) regulates

MFS transporter gene MDR1 [97] and at least 15 different

MRR1 GOF mutations are known [88, 98] to cause con-

stitutive upregulation of MDR1 [99]. Other positive regu-

lators of MDR in C. albicans include Cap1 [100, 101] and

Mcm1 [102, 103].

Fig. 3 Binding of lanosterol and itraconazole within active site heme

region Erg11 from S. cerevisiae. a Lanosterol binding and coordination

with heme shown with electron density profile. b Itraconazole binding to

same region shown with electron density. c Bound itraconazole and

amino acids commonly mutations to confer resistance. Adapted from

Monk et al. [64••]

Table 1 Overview of Fks hot spot sequences and amino acid sequence positions resulting in echinocandin resistance

First amino acid number is shown for each hot-spot sequence

Amino acids in bold large red letters signify most prominent resistance

Amino acids in red-brown indicate weaker resistance

Amino acid in blue is a naturally occurring polymorphism with weak resistance

Amino acids in bold indicate strong resistance

Amino acids in green indicate silent mutation, acquired or naturally occurring

Amino acids in brown indicate naturally occurring mutation of unknown impact

*Indicates amino acid position based on partial sequence, sequencing of entire gene is required

**denotes separated sequences of HS1 and HS2, thus annotation of HS2 is nonsense
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Chromosomal Anomalies

It is now recognized that azole resistance in C. albicans and

other Candida species is associated with a variety of large-

scale genomic alterations, including loss of heterozygosity

(LOH) involving specific genomic regions, increased chromo-

somal copy number, and aneuploidies. LOH is associated with

resistance factors ERG11, TAC1, and MRR1. It has been

shown that mutations in these genes arise in a heterozygous

state and are converted to homozygous form by LOH [104,

105]. Isochromosome formation is a separate and more pro-

nounced genomic change. It increases gene copy numbers,

and hence gene expression of azole resistance genes and

Erg11, the azole target. Isochromosome formation on the left

arm of chromosome 5i(5L) increases the copy number of

ERG11 and TAC1 [106]. Similarly, the isochromosome variant

3i(3R) on the right arm of chromosome 3 contains CDR1 and

MRR1 [107]. An examination of 57 clinical C. albicans

strains, disomic or monosomic for Ch5, found that the mono-

somy of Ch5 caused elevated levels of cell wall chitin and

repressed levels of 1,3-beta-glucan, as well as diminished

membrane ergosterol. This resulted in decreased susceptibility

to caspofungin and increased susceptibility to fluconazole

and amphotericin B [108]. Chromosomal alterations

resulting in resistance are also observed with C. glabrata

[109]. In C. neoformans, azole resistance is associated

with disomies of chromosomes 1 and 4, which contain

ERG11 and ABC transporter AFR1 [110]. Hetero-resis-

tance, observed in C. albicans [111], relates to sub-

populations within the same clone that vary in resistance

based on the frequent loss and gain of chromosomes in

response to selection in C. neoformans [112]. C. neoformans

is heteroresistant to azoles due to transient duplications of

whole chromosomes that carry the genes for azole resis-

tance [110]. Chromosome 1, which harbors ERG11 and

AFR1, encoding the azole target and an ABC transporter,

respectively, is the first one to be duplicated resulting in

elevated MICs; further increases in MIC result from the

duplication of Chr4.

Stress Responses and Drug Adaptation

Fungi are remarkably adaptive and have numerous genetic

mechanisms that help protect against cellular stresses, such

as those encountered following exposure to an antifungal

agent. These stress adaptation responses frequently result in

elevated in vitro MICs. Typically, the increased MIC is insuf-

ficient to confer clinical resistance resulting in breakthrough

infections. Rather, stress adaptation stabilizes the cell in the

presence of drug and allows it to develop more profound re-

sistance mechanisms over time that are manifested as clinical

resistance (Fig. 2). As first described for azoles, Hsp90 and

calcineurin are two key cellular regulators critical for orches-

trating cellular responses to drug-induced stress [113, 114•].

Hsp90 is a molecular chaperone that regulates the stability and

function of diverse client proteins and controls stress re-

sponses by stabilizing the protein phosphatase calcineurin

[115]. Calcineurin-Crz1 signaling influences a wide range of

cellular response functions including ion homeostasis and cell

wall biogenesis [116]. Compromising the function of Hsp90

or calcineurin can induce fungistatic drugs to become fungi-

cidal enhancing efficacy. Thus, inhibition of Hsp90 or calcine-

urin may present a strategy to enhance the efficacy of azoles

against resistant fungi [117]. Hsp90 and calcineurin-Crz1 sig-

naling also contribute to echinocandin resistance in Candida

species [118, 119]. The cell’s response to echinocandin action

is highly robust, as numerous cellular responses are linked to

maintaining cell wall integrity including PKC, calcineurin/

Crz1, and HOG [120, 121]. Other responses such as modula-

tion of sphingolipid biosynthesis result in a mixed phenotype

involving resistance to caspofungin and hypersensitivity to

micafungin [122]. Echinocandin action also results in pro-

nounced compensatory increases in chitin synthesis, to

help sustain the cell wall. Mutants with increased chitin

content are less susceptible to caspofungin [120, 121, 123]

and increased chitin biosynthesis has been partly invoked

to account for paradoxical growth at high drug levels

[124] [125]. In recent years, whole genome sequencing

of serial isolates has been used to determine genetic sig-

natures related to evolution of resistance. Whole genome

sequencing of C. glabrata isolates before and after

caspofungin treatment and breakthrough identified expect-

ed FKS mutations and HSP90 effects. In addition, it iden-

tified mutations in genes MOH1, GPH1, CDC6, and

TCB1/2; cdc6 mutations were independently shown to

have a role in echinocandin susceptibility [119]. In total,

these responses help confer drug adaption, which predis-

pose cells for higher resistance such as the formation of a

stable FKS mutation.

Genetic Plasticity as a Driver of Resistance

C. albicans can develop azole resistance by acquiring chro-

mosomal disomies or segmental chromosomal duplications

involving the chromosomes carrying azole target ERG11 and

drug efflux genes [106, 126]. Acquisition of multiple chromo-

some disomies upon azole exposure was also observed in

C. neoformans [110]. However, appearance of significant ge-

nomic alterations is not specific to azoles, but also occurs in

the presence of other types of stress. The genetic changes

underlying antifungal drug resistance do not arise in a random

manner, as they are promoted by varying stress inducers in-

cluding antifungal drugs and host immunity. For instance, in

C. albicans, elevated temperature and oxidative stress
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promote aneuploidy and chromosome arm homozygosis

[127]. In Saccharomyces cerevisiae, several different stress-

es, including oxidative, translational, and ER stress, pro-

mote chromosome loss and appearance of marked karyo-

type diversity [128]. Consistent with these observations,

passage of C. albicans through the mouse promotes ge-

nome rearrangements in the fungus even in the absence of

antifungal treatment, suggesting that this genetic instability

is due to conditions encountered within the host [129].

Furthermore, analysis of C. glabrata clinical isolates indi-

cates that this organism undergoes drastic genome rear-

rangements with multiple chromosomal translocations and

appearance of new chromosomes [130]. Clinical isolates of

C. glabrata have highly variable genomes [109, 126] sug-

gesting that this species possesses mechanisms that specif-

ically promote and/or help the cells tolerate extensive ge-

netic changes in response to stress. Several studies suggest

that an increase in the proportion of aneuploid cells hap-

pens early in response to stress [131, 132]. One factor

involved in this process is HSP90, whose inhibition strongly

reduces stress-induced aneuploidy and drug resistance in

C. albicans and S. cerevisiae [115, 128]. Formation of aneu-

ploidy is followed by smaller-scaled genetic changes, such as

insertions, deletions, and point mutations in individual

genes. What drives such changes is not well understood,

although it has been shown that aneuploidy itself can pro-

mote other types of genetic alterations, possibly because it

alters gene dosage of a subset of the genome, thus altering

complexes involved in chromosome maintenance and DNA

repair [133].

Drivers of Resistance

The development of antifungal resistance is a complex process

involving the host, drug, and microbial factors, which collec-

tively contribute to therapeutic failure. Host immune status is

important as the immune system must work in concert with

antifungal drugs to control an infection. Severe immune dys-

function results in patients less responsive to treatment since

microbial burdens are larger and the drug must combat the

infection without immune support. Surgical devices such as

indwelling catheters and artificial heart valves provide sur-

faces for infecting fungi to establish biofilms that restrict drug

access. The site of the infection contributes to clinical resis-

tance, since it may be inaccessible to drugs. Successful thera-

py requires that the drug reach its microbial target with a

suitable potency but this is often unknown. Blood levels of

drugs may not accurately predict whether a drug reaches the

primary site of infection, as it is difficult to deliver drugs at an

adequate concentration to certain infected tissues and organs.

Abdominal candidiasis is a high burden infection in which

drug access is restricted, which leads to breakthrough

infections [134]. In some cases, drugs that are highly serum

protein bound, such as the echinocandins, have altered anti-

fungal properties whereby in vitro fungicidal drugs can act as

fungistatic agents in vivo [135]. In recent years, the role of

environment as a driver for resistance has become prominent.

As described earlier for A. fumigatus, triazole resistance due to

two prominent modifications of Cyp51A, TR34/L98H [10,

136–139], and TR46/Y121F/T289A [23] arose as a conse-

quence of azole use in the agricultural world [11]. As

Aspergillus spores emerge from the environment, this envi-

ronmentally driven resistance is spreading throughout

Europe, India, and Asia [19, 140, 141]. Finally, like all anti-

infectives, patient compliance is critical for effective treat-

ment, as poor adherence to drug regimens reduce drug effec-

tiveness, contributing to resistance. Overall, there remains a

strong relationship between drug exposure and the emergence

of resistance. The development of echinocandin resistance in

Candida species typically requires prolonged drug exposure

[142–145]. But it can also arise rapidly after the start of ther-

apy [146, 147]. Horizontal transmission of resistant strains is

not generally observedmost likely because they carry a fitness

cost. With FKS mutants, decreased glucan synthase activity

results in less robust cells with modified cell walls [148, 49].

These FKSmutant strains are less virulent and compete poorly

with their wild-type counterparts [48, 149, 148]. Lastly, as

total drug exposure is a critical factor influencing resistance

emergence, prophylaxis has emerged as a concern.

Fluconazole and the echinocandins caspofungin and

micafungin are excellent prophylaxis agents against invasive

candidiasis because they have favorable pharmacokinetics

and safety profile. However, the expanding use of antifungal

prophylaxis increases patient exposure to drugs, and it is not

surprising that it promotes the emergence of resistance in cer-

tain clinical settings.

Conclusion

Overall, antifungal drug resistance due to acquired mecha-

nisms is an uncommon event, as most infecting species retain

drug susceptibility. However, acquired drug resistance can be

a critical factor in some settings with critically ill patients, and

the emergence of significant multidrug resistance involving

azoles and echinocandins in organisms such as C. glabrata

is troubling. The mechanisms conferring drug resistance are

now well defined, and ongoing studies are seeking to identify

genetic factors that can influence their emergence. Fungi have

evolved to respond to stress in a highly dynamic manner,

ranging from specific point mutations to major chromosomal

modifications that directly and indirectly influence induction

of specific resistance mechanisms. There is now a strong ap-

preciation that stress responses promote drug adaptation,

which by itself does not lead to clinical failure but can
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ultimately lead to development of higher-level resistance and

diminished clinical response (Fig. 2). Finally, in recent years,

anatomical reservoirs that restrict drug access or promote bio-

film formation have been identified to be important contribu-

tors to resistance emergence in the clinic. As new molecular

tools have emerged, there is now an opportunity to detect drug

resistance earlier and develop therapeutic strategies to avoid or

mitigate resistance.
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