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Stenotrophomonas maltophilia is a Gram-negative, biofilm-forming bacterium. Although

generally regarded as an organism of low virulence, S. maltophilia is an emerging

multi-drug resistant opportunistic pathogen in hospital and community settings,

especially among immunocompromised hosts. Risk factors associated with S.

maltophilia infection include underlying malignancy, cystic fibrosis, corticosteroid or

immunosuppressant therapy, the presence of an indwelling central venous catheter

and exposure to broad spectrum antibiotics. In this review, we provide a synthesis of

information on current global trends in S. maltophilia pathogenicity as well as updated

information on the molecular mechanisms contributing to its resistance to an array of

antimicrobial agents. The prevalence of S. maltophilia infection in the general population

increased from 0.8–1.4% during 1997–2003 to 1.3–1.68% during 2007–2012. The

most important molecular mechanisms contributing to its resistance to antibiotics

include β-lactamase production, the expression of Qnr genes, and the presence of

class 1 integrons and efflux pumps. Trimethoprim/sulfamethoxazole (TMP/SMX) is the

antimicrobial drug of choice. Although a few studies have reported increased resistance

to TMP/SMX, the majority of studies worldwide show that S. maltophilia continues

to be highly susceptible. Drugs with historically good susceptibility results include

ceftazidime, ticarcillin-clavulanate, and fluoroquinolones; however, a number of studies

show an alarming trend in resistance to those agents. Tetracyclines such as tigecycline,

minocycline, and doxycycline are also effective agents and consistently display good

activity against S. maltophilia in various geographic regions and across different time

periods. Combination therapies, novel agents, and aerosolized forms of antimicrobial

drugs are currently being tested for their ability to treat infections caused by this

multi-drug resistant organism.
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Stenotrophomonas maltophilia is a Gram-negative, aerobic,
glucose non-fermenting, motile bacillus. S. maltophilia was first
isolated from pleural effusion in 1943 and initially named
Bacterium bookeri. The organism was reclassified as a member
of the genus Pseudomonas in 1961, Xanthomonas in 1983,
and then Stenotrophomonas in 1993 (Al-Anazi and Al-Jasser,
2014). It survives on almost any humid surface and has
been isolated from a wide variety of aquatic sources, such as
suction tubing, nebulizers, endoscopes, hemodialysis dialysate
samples, plant rhizosphere, faucets, sink drains, and shower
heads (Brooke, 2012). S. maltophilia is characterized by its
ability to form biofilms on various abiotic and biotic surfaces,
including lung cells (de Oliveira-Garcia et al., 2003; Pompilio
et al., 2010), and by its resistance to a broad array of
antimicrobial agents. The World Health Organization recently
classified S. maltophilia as one of the leading multidrug
resistant organisms (MDROs) in hospital settings (Brooke,
2014).

S. maltophilia is generally regarded as an organism of low
virulence and therefore an opportunistic pathogen, especially
in immunocompromised hosts. The risk factors associated
with acquiring S. maltophilia infections are well-known
and include underlying malignancy (especially hematologic
malignancy), organ transplantation, human immunodeficiency
virus (HIV) infection, cystic fibrosis, prolonged hospitalization,
intensive care unit (ICU) admission, mechanical ventilation,
indwelling catheters (vascular, urinary, biliary), corticosteroid or
immunosuppressant therapy, and recent antibiotics treatment
(Al-Anazi and Al-Jasser, 2014). These risk factors reflect
specific features of S. maltophilia, such as its ability to survive
on almost any humid surface, its propensity to form biofilm
and colonize humid surfaces, and its employment of several
mechanisms that confer resistance to a number of antimicrobial
agents.

S. maltophilia causes a wide range of infections including
respiratory tract infections (RTI), blood stream infections
(BSI) and, less commonly, skin and soft tissue infections
(SSTI), bone and joint infections, biliary tract infections,
urinary tract infections, endophthalmitis, endocarditis, and
meningitis (Falagas et al., 2009a; Looney et al., 2009). The
correlations between S. maltophilia infection and structural
abnormalities with or without obstruction or procedural
manipulation are well documented. Biliary tract infections
caused by obstruction due to hepatobiliary neoplasms (Papadakis
et al., 1995; Chang et al., 2014) or post-operative anastomotic
strictures of the gastrointestinal tract (Perez et al., 2014) have
been reported in patients with biliary S. maltophilia sepsis.
Pleural infections caused by post-surgical/tube thoracostomy
or fistula (broncho-/esophageal-/bilio-) (Lee et al., 2014), post-
neurosurgical meningitis (Sood et al., 2013; Lai et al., 2014b),
complicated urinary tract infections (Vartivarian et al., 1996),
and obstructive lung cancer (Fujita et al., 1996; Vartivarian
et al., 2000) have all been reported to create a milieu for S.
maltophilia infection. In addition, although commonly perceived
as nosocomial pathogens, community-acquired infections appear
to be on the rise (Falagas et al., 2009a; Chang et al.,
2014).

Prevalence

There were few data before 1970 regarding the prevalence or
clinical characteristics of S. maltophilia (previously Pseudomonas
maltophilia or Xanthomonas maltophilia) because of its rarity
and relative clinical insignificance. It was in the 1980s when S.
maltophilia became more frequently reported as an emerging
nosocomial pathogen (Jang et al., 1992; Victor et al., 1994),
especially in patients with post-chemotherapy neutropenia (Kerr
et al., 1990; Labarca et al., 2000) and in those with indwelling
central venous catheters (CVC) (Victor et al., 1994; Lai et al.,
2006; Chen et al., 2014). Beginning in the late 1990s worldwide
surveillance programs and multi-center studies began to provide
more comprehensive information about the pathogenicity of S.
maltophilia. Of the global surveillance programs, the SENTRY
Antimicrobial Surveillance Program initiated in 1997 and the
Study forMonitoring Antimicrobial Resistance Trends (SMART)
initiated in 2002 are the most well-known (Jean et al., 2015). A
number of nationwide and antimicrobial agent-targeted projects
were also launched during the late 1990s, including the Canadian
Ward Surveillance Study (CANWARD), the Surveillance and
Control of Pathogens of Epidemiologic Importance (SCOPE)
study, the British Society for Antimicrobial Chemotherapy
(BSAC) Resistance Surveillance Project, the Taiwan Surveillance
of Antimicrobial Resistance (TSAR) study, and the Tigecycline
Evaluation Surveillance Trial (TEST).

Despite the massive scale of these surveillance studies,
there are still limited integrated data on the prevalence and
susceptibility patterns of S. maltophilia. The heterogeneity
among the studies stems from the diverse patient demographics,
geographic differences, and the ratio of the isolates collected from
different sources, making inter-literature comparison difficult.
To add to the complexity, there are no worldwide guidelines
on susceptibility testing methodology and breakpoints for S.
maltophilia (Nicodemo et al., 2004; Hombach et al., 2012), which
results in different or absence of susceptibility breakpoints for
some antibiotics. The lack of universal references for evaluating
resistance of S. maltophilia to antimicrobial agents leads to
confusion and complications when interpreting clinical data.

Table 1 shows the prevalence rates of infection due to S.
maltophilia, categorized by sources of infection, reported by
worldwide and nationwide surveillance projects as well as multi-
center studies. Specific patient groups such as the critically ill
in intensive care units (ICUs) and the pediatric population are
presented separately in Table 1. By comparing data gathered by
large surveillance studies over time we can estimate longitudinal
change in prevalence of S. maltophilia infection in the general
population. The frequency of occurrence among isolates from
all sources ranged from 0.8 to 1.4% in five SENTRY studies
during 1997∼2003 (Fluit et al., 2001a; Gales et al., 2001a; Sader
et al., 2004; Sader and Jones, 2005; Fedler et al., 2006b). During
2007–2012, the CANWARD surveillance study (Zhanel et al.,
2011, 2013; Walkty et al., 2014) and the SENTRY antimicrobial
surveillance program (Farrell et al., 2010b; Sader et al., 2013)
reported prevalence rates ranging from 1.3 to 1.68%. These data
indicate that there is an increasing trend in infections due to S.
maltophilia in the general population.
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TABLE 1 | Prevalence of S. maltophilia in worldwide surveillance and multicenter studies.

Countrya Studyb Year Number of isolates Prevalence and/or ranking References

All regionsc SENTRY 1997–1999 Total isolates:70067

SMd isolates: 842

Among:

all pathogens: 1.2%

Gales et al., 2001a

EU SENTRY 1997–1998 Total/SM isolates in:

BSIe: 9194/82

RTI: 2052/54

SSTI: 2320/13

UTI: 2138/3

Among:

all pathogens: 1.0%

BSI: 0.89%, ranking: 19th

RTI: 2.63%, ranking: 9th

SSTI: 0.56%, ranking: 19th

UTI: 0.14%, ranking: 25th

Fluit et al., 2001a

LA SENTRY 1997–2001 Total isolates: 19547

SM isolates: 166

Among:

all pathogens: 0.8%

Sader et al., 2004

All regions SENTRY 1997–2001 NFGNBf isolates: 18569

SM isolates: 1488

Among:

NFGNB: 8%

Jones et al., 2003

All regions SENTRY 1997–2003 Total isolates: 221084

NFGNBf isolates: 25305

Uncommon NFGNBg: 3509

SM isolates: 2076

Among:

all pathogens: 0.94%

NFGNB: 8.20%

Uncommon NFGNB: 59.16%

Sader and Jones, 2005

All regions SENTRY 2001–2004 GNB isolates: 54731

NFGNB isolates: 13808

SM isolates: 1256

Among:

GNB: 2.29%

NFGNB: 9.10%

Gales et al., 2006

Canada CANWARD 2007–2009 Total isolates: 18538

GNB isolates: 8949h

SM isolates: 245

Among:

all pathogens: 1.3%, ranking: 17th

GNB: 2.7%

Zhanel et al., 2011

AP SENTRY 2008 Total isolates: 5759

SM isolates: 97

Among:

all pathogens: 1.68%

Farrell et al., 2010b

Canada CANWARD 2008 Total isolates: 5282

SM isolates: 57

Among:

all pathogens: 1.1%, ranking: 17th

Zhanel et al., 2010

France MTC 2008–2009 Total isolates: 46400

Uncommon NFGNB

isolates: 158

SM isolates: 61

Among:

all pathogens: 0.13%

Uncommon NFGNB: 39%

Fihman et al., 2012

Canada CANWARD 2007–2011 Total isolates: 27123

SM isolates: 378

Among:

all pathogens: 1.4%, ranking 16th

Zhanel et al., 2013

All regions SENTRY 2011 Total isolates: 22005

SM isolates: 362

Among: all pathogens: 1.6% Sader et al., 2013

Canada CANWARD 2011–2012 Total isolates: 6593

SM isolates: 104

Among:

all pathogens: 1.6%

Walkty et al., 2014

BSI

USA SCOPE 1995–1996 NFGNB isolates: 270

SM isolates: 18

Among:

NFGNB: 6.7%

Jones et al., 1997

USA, Canada SENTRY 1997 Total isolates:5058

SM isolates: 40

Among:

all pathogens: 0.8%, ranking: 15th

In USA: 0.7%, in Canada: 1.1%

Pfaller et al., 1998

NA, LA SENTRY 1997 Total isolates: 9519

GNB isolates: 4267

SM isolates: 69

Among:

all pathogens: 0.7%

GNB: 1.6%

Diekema et al., 1999

(Continued)
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TABLE 1 | Continued

Countrya Studyb Year Number of isolates Prevalence and/or ranking References

EU SENTRY 1997–1998 Total isolates: 9194

SM isolates: 82

Among:

all pathogens: 0.89%, ranking: 19th

Fluit et al., 2001a

All regions SENTRY 1997–1999 Among all pathogens in:

AP: 0.9%, Canada: 0.6%

EU: 0.9%, LA: 0.8%, USA: 0.7%

Gales et al., 2001a

LA SENTRY 1997–2000 NA Among:

all pathogens: 0.7%

1997: 0.9%, 1998: 0.8%, 1999:

0.6%, 2000: 0.3%

LA SENTRY 1997–2001 Total isolates: 9058

SM isolates: 86

Among:

all pathogens: 0.95%

Sader et al., 2004

Worldwide MTC 2000–2004 All isolates: 26474

SM isolates: 203

Among:

all pathogens: 0.8%

Sader et al., 2005b

RTI

NA SENTRY 1997 Total isolates: 2757

SM isolates: 99

Among:

all pathogens: 3.6%, ranking: 8th

In USA: 3.5%, in Canada: 3.7%

Jones et al., 2000

LA SENTRY 1997 Total isolates: 556

SM isolates: 13

Among:

all pathogens: 2.3%, ranking: 8th

Sader et al., 1998

NA SENTRY 1998 Total isolates: 2773

SM isolates: 114

Among:

all pathogens: 4.1%, ranking: 8th

In USA: 3.7%, in Canada: 5.9%

Mathai et al., 2001

EU SENTRY 1997–1998 Total isolates: 2052

SM isolates: 54

Among:

all pathogens: 2.63%, ranking: 9th

Fluit et al., 2001a

All regions SENTRY 1997–1999 Among all pathogens in:

AP: 2.8%, Canada: 5.2%

EU: 3.2%, LA: 1.8%, USA: 3.3%

Gales et al., 2001a

LA SENTRY 1997–2000 Total isolates: 2505

SM isolates: 41

Among:

all pathogens: 1.6%

Gales et al., 2002

LA SENTRY 1997–2001 Total isolates: 3346

SM isolates: 60

Among:

all pathogens: 1.8%

Sader et al., 2004

NA SENTRY 2000 SM isolates: 94 Among:

all pathogens: 3.5%

Hoban et al., 2003

NA, LA, EU SENTRY 2004–2008 Isolates from HABP and

VABPi

Total cases: 31436

Regional incidence:

all regions: 3.1%

USA: 3.3%, LA: 2.3%, EU: 3.2%

Jones, 2010

Canada CANWARD 2008 Total isolates: 1612

SM isolates: 42

Among:

all pathogens: 2.6%, ranking: 9th

Zhanel et al., 2010

USA and EU SENTRY 2009–2012 Total isolates: 12851

GNB isolates: 8201

Among all pathogens in:

USA: 4.4%, ranking: 6th

EU: 3.2%, ranking:9th

GNB: 6.02%

Sader et al., 2014a

USA and EU MTC 2012 Total isolates: 2968

SM isolates: 186

Among:

all pathogens:6.3%

Farrell et al., 2014

UTI

NA SENTRY 1997 Total isolates: 1698

GNB isolates: 80%

SM isolates: 6

Among:

all pathogens: 0.35%

GNB: 0.44%

Jones et al., 1999b

(Continued)
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TABLE 1 | Continued

Countrya Studyb Year Number of isolates Prevalence and/or ranking References

EU SENTRY 1997–1998 Total isolates: 138

SM isolates: 3

Among:

all pathogens: 0.14%, ranking: 25th

Fluit et al., 2001a

All regions SENTRY 1997–1999 Among all pathogens in:

AP: 0.2%, Canada: 0.0%

EU: 0.2%, LA: 0.0%, USA: 0.3%

Gales et al., 2001a

LA SENTRY 1997–2001 Total isolates: 1961

SM isolates: 0

Among:

all pathogens: 0%

Sader et al., 2004

AP region SMARTj 2009–2010 Total GNB isolates: 1762 Among all GNB in:

China: 1.3%, Thailand: 3.3%

Lu et al., 2012

USA SMART 2009–2011 Total GNB isolates: 2135

SM isolates: 6

Among:

all GNB: 0.28%

Bouchillon et al., 2013

IAI

China SMART 2002–2009 Total GNB isolates: 3420

SM isolates: 50

Among:

all GNB: 1.5%

NFGNB: ranking: 3rd

Yang et al., 2010

AP region SMART 2003–2010 Total GNB isolates: 20710

NFGNB isolates: 2252

SM isolates: 204

Among:

all GNB: 1.0%

NFGNB: 9.1%

Liu et al., 2012

Taiwan SMART 2006–2010 Total GNB isolates: 2417

SM isolates: 28

Among:

all GNB: 1.2%

Lee et al., 2012

Africa and middle

east

TEST 2007–2012 Total isolates of cSSSI14

and IAI from TEST: 1990

and 255

GNB isolates from IAI: 225

SM isolates rom IAI: 16

Among:

all pathogens in IAI: 6.3%

GNB in IAI: 7.3%

Renteria et al., 2014

SSTI

NA SENTRY 1997 Total isolates: 1562

SM isolates: 15

Among:

all pathogens: 0.96%

Doern et al., 1999

EU SENTRY 1997–1998 Total isolates: 2320

SM isolates: 13

Among:

all pathogens: 0.56%, ranking: 19th

Fluit et al., 2001a

All regions SENTRY 1997–1999 Among all pathogens in:

USA: 1.0%, Canada: 1.1%

AP: 0.1%, EU: 0.6%, LA: 0.4%,

Gales et al., 2001a

LA SENTRY 1997–2001 Total isolates: 1780

SM isolates: 7

Among:

all pathogens: 0.39%

Sader et al., 2004

ICU

EU SENTRY 1997–1998 Total isolates from ICU:

3981

Among:

all pathogens: 1.6%, ranking: 14th

BSI: 1.1%, ranking: 15th

RTI: 3.0%, ranking: 8th

UTI: 0.0%

Fluit et al., 2001b

LA SENTRY 1997–2001 Total isolates: 19547

SM isolates: 166

Among all pathogens in:

ICU: 2.77%

Sader et al., 2004

NA SENTRY 2001 Total isolates from ICU:

1321

SM isolates: 40

Respiratory source: 89.0%

Among:

all pathogens: 3.0%, ranking: 10th

Streit et al., 2004

NA, LA, EU,

Asia-Australia area

MTC 2000–2004 Isolates from ICU patients

Total isolates: 9093

SM isolates: 131

Among:

all pathogens: 1.4%

Sader et al., 2005a

(Continued)
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TABLE 1 | Continued

Countrya Studyb Year Number of isolates Prevalence and/or ranking References

German SARI 2003–2004 Isolates collected from 39

German ICUs

Total isolates:28266

GNB isolates: 12234

Among all pathogens:

Median percentage: 1.7%

Meyer et al., 2006

Canada CAN-ICU 2005–2006 Isolates from ICU patients

Total isolates:4180

SM isolates: 108

Among:

all pathogens: 2.6%

Zhanel et al., 2008

Korea MTC 2008–2009 Respiratory tract isolates

from patient with HABP in

ICUs

Total isolates: 372

CRGNB isolates: 82

SM isolates: 10

Among:

all pathogens: 2.7%

CRGNBk: 11.6%

Kim et al., 2014

EU MTC(27)

9 countries

Published in 2011 Respiratory tract isolates

from patient with HABP in

ICUs

Total isolates: 495

SM isolates: 13

Among:

all pathogens: 2.6%

Magret et al., 2011

PEDIATRIC POPULATION

NA SENTRY 1998–2003 Total isolates: 59826

Total isolates from pediatric

patients <7 years: 4641

SM isolates: 166

Among:

all pathogens in:

all ages: 1.4%, pediatric: 1.2%, both

ranking: 10th

Fedler et al., 2006b

NA, LA, EU SENTRY 2004 Total isolates from pediatric

patients ≤18 years: 3537

SM isolates: 53

Among:

all pathogens: 1.5%, ranking: 15th all

regions combined

Fedler et al., 2006a

COMMUNITY-ACQUIRED

USA, Canada, LA SENTRY 1997 BSI

SM isolates: 69

CAl/N/unknown: 23/28/18

CA: 33.3%

Diekema et al., 1999

UK and Ireland BSAC 2001–2006 BSI

SM isolates: 165

C/N: 31/66

CA: 33%

Livermore et al., 2008

AP region SMART 2003–2010 IAI

SM isolates: 204

CA/N: 26/125

CA: 17.2%

Liu et al., 2012

France MTC 2008–2009 All sources

SM isolates: 61

CA/N: 9/29

CA: 23.7%

Fihman et al., 2012

Taiwan SMART 2006–2010 IAI

SM isolates: 28

CA/Ni: 3/18

CA: 14.3%

Lee et al., 2012

aNA, North America; LA, Latin America; EU, Europe; USA, the United States of America; UK, United Kingdom; AP, Asia-Pacific.
bSENTRY, The SENTRY Antimicrobial Surveillance Program; SMART, Study for Monitoring Antimicrobial Resistance Trends; CAN-ICU, The Canadian Intensive Care Unit Surveillance

Study; CANWARD, The Canadian Ward Surveillance Study; SARI, Surveillance of Antibiotic Use and Bacterial Resistance in ICUs(German); BSAC, The British Society for Antimicrobial

Chemotherapy Resistance Surveillance Project; TEST, Tigecycline Evaluation Surveillance Trial; TIST, Tigecycline In Vitro Surveillance in Taiwan; TSAR, Taiwan Surveillance of Antimicrobial

Resistance; SCOPE, Surveillance and Control of Pathogens of Epidemiologic Importance (USA); MTC, multicenter studies.
cThe SENTRY Antimicrobial Surveillance Program has monitored the predominant pathogens and antimicrobial resistance in 5 geographic regions: Asia-Pacific, Europe, Latin America,

Canada, and the United States (Gales et al., 2001a).
dSM, Stenotrophomonans maltophilia.
eBSI, bloodstream infection; RTI, respiratory tract infection; IAI, intra-abdominal infection; UTI, urinary tract infection; SSTI, skin and soft tissue infection.
fNFGNB, non-fermentative Gram-negative bacilli
gUncommon NFGNB, Acinetobacter spp. and Pseudomonas aeruginosa excluded.
hOf the 18538 organisms collected, the 20 most common represented 16780 (90.5%) of the isolates and underwent susceptibility testing, which included 8949 (53.3%) Gram-negative

bacilli.
iHABP, hospital-acquired bacterial pneumonia; VABP, ventilator-associated bacterial pneumonia.
jSMART is a global surveillance program that has monitored the in vitro susceptibility patterns of clinical Gram-negative bacilli to antimicrobial agents collected worldwide from intra-

abdominal infections since 2002 and urinary tract infections since 2009 (Morrissey et al., 2013).
kCRGNB, carbapenem-resistant Gram-negative bacteria.
lC, community-acquired (collected within 48 h of hospitalization); N, nosocomial (collected more than 48 h after hospitalization).
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It has been observed in the general population (Gales et al.,
2001a) and in ICUs (Fluit et al., 2001b) alike that S. maltophilia
is most frequently associated with respiratory tract infections
(RTIs), followed by bloodstream infections (BSIs), and, rarely,
skin and soft tissue infections (SSTIs) and urinary tract infections
(UTI) (Gales et al., 2001a). The prevalence of RTIs due to S.
maltophilia is generally higher than that of other infections
caused by that pathogen, but varies widely among countries and
continents, ranging from 1.6 to 6.3% during the period 1997–
2012 (Sader et al., 1998, 2004, 2014a; Jones et al., 2000; Fluit et al.,
2001a; Gales et al., 2001a, 2002; Mathai et al., 2001; Hoban et al.,
2003; Jones, 2010; Zhanel et al., 2010; Farrell et al., 2014). The
United States has the most consecutive records regarding RTI
isolates collected by the SENTRY program. Based on data from
four SENTRY studies (Gales et al., 2001a; Hoban et al., 2003;
Jones, 2010; Sader et al., 2014a), the prevalence rates increased
from 3.3–3.5% during 1997–2004 to 4.4% during 2009–2012.
During that 15-year period, S. maltophilia went from being the
eighth to the sixth most common cause of RTI. In a large study
on 2968 RTI isolates collected from 59 medical centers in the
USA and 15 centers in European countries in 2012, 6.3% of
the pathogens were S. maltophilia (Farrell et al., 2014). These
observations suggest an increasing frequency of occurrence of
respiratory tract infections due to S. maltophilia.

S. maltophilia is less frequently isolated from patients with
BSIs, UTIs, or SSTIs than from patients with RTIs, with reported
isolation rates ranging from 0.7 to 1.1% for BSIs (Jones et al.,
1997; Pfaller et al., 1998; Diekema et al., 1999; Fluit et al.,
2001a; Gales et al., 2001a; Sader et al., 2004, 2005b), 0–0.3%
for UTIs (Pfaller et al., 1998; Jones et al., 1999b; Fluit et al.,
2001a; Gales et al., 2001a; Sader et al., 2004, 2005b), and 0.39–
0.96% for SSTIs (Diekema et al., 1999; Fluit et al., 2001a; Gales
et al., 2001a; Sader et al., 2004). SMART studies have also shown
that isolation of S. maltophilia from intra-abdominal infections
(IAIs) is also fairly uncommon, with rates ranging from 1 to
1.7% (2002–2010) (Guembe et al., 2008; Yang et al., 2010; Lee
et al., 2012; Liu et al., 2012). However, data from African and
Middle Eastern countries collected as part of the Tigecycline
Evaluation Surveillance Trial during 2007–2012 (Renteria et al.,
2014) revealed an uncommonly high rate of isolation (6.3%) of
S. maltophilia from patients with IAIs. In addition, the results
from a SMART study surveying UTIs in the Asian-Pacific region
during 2009–2010 disclosed higher rates of S. maltophilia isolated
from patients with UTIs in China (1.3%) and Thailand (3.3%)
than in other countries (Lu et al., 2012), although the rates were
not as high as those in certain countries in Africa and the Middle
East.

Gram-negative Bacilli (GNB) and
Non-fermenting Gram-negative Bacilli
(NFGNB)

The worldwide rate of isolation of S. maltophilia among GNB
pathogens ranges from 2.29 to 2.7% according to a SENTRY
study (2001–2004) (Gales et al., 2006) and a CANWARD
surveillance study (2007–2009) (Zhanel et al., 2011). In the US

state of Texas, however, a study at the M. D. Anderson Cancer
Center revealed an increasing trend in the ratio of S. maltophilia
among GNB isolates obtained from cancer patients during 1986–
2002 (from 2% in 1986 to 7% in 2002) (Safdar and Rolston,
2007).

Among NFGNB, S. maltophilia has been reported to be
the third most commonly isolated pathogen after Pseudomonas
aeruginosa and Acinetobacter baumannii. In a large survey
conducted as a part of the SENTRY program, 221,084 GNB
isolates were collected worldwide, including 25,305 (11.5%)
NFGNB isolates, of which Acinetobacter spp. and P. aeruginosa
accounted for the vast majority (87.7%). The remaining 3509
isolates were deemed unusual NFGNB species. Of them, S.
maltophilia was the most frequently isolated (n = 2076, 59.16%)
(Sader and Jones, 2005). A similar finding was reported in a
prospective multi-center study involving nine teaching hospitals
in France, in which S. maltophilia was the most commonly
isolated NFGNB among all unusual NFGNB species (39%)
(Fihman et al., 2012). Other surveillance studies, namely SCOPE
(Jones et al., 1997), SENTRY (Jones et al., 2003; Gales et al.,
2006), and SMART (Liu et al., 2012) showed a steady increase in
isolation of S. maltophilia among all NFGNB pathogens during
the period 1995–2010 (6.7% in 1995–1996, 8.0% in 1997–2001,
and 9.1% in 2001–2010). These findings show that S. maltophilia
is not an insignificant pathogen among disease-causing GNB and
NFGNB species.

Intensive Care Units, Pediatric Population,
and Community-acquired Infections

As expected, the prevalence of infections due to S. maltophilia
is higher in intensive care units (1.4–3.0%) than in the general
population (Fluit et al., 2001b; Sader et al., 2004; Streit et al., 2004;
Sader et al., 2005a; Meyer et al., 2006; Zhanel et al., 2008; Magret
et al., 2011; Kim et al., 2014).

There is limited information on the worldwide prevalence
of S. maltophilia infections in the general pediatric population.
SENTRY studies conducted during 1998–2003 (Fedler et al.,
2006b) and in 2004 (Fedler et al., 2006a) showed that the
prevalence of infections due to S. maltophilia was 1.2% among
children ≤ 7 years and 1.4% among children ≤ 18 years
old. The rates are similar to those in the adult population.
A comparison of two single-center studies in China and the
USA revealed markedly different incidence rates of ventilator-
associated pneumonia due to S. maltophilia among pediatric
patients in ICUs. Ning et al. reported a rate of 20.3% among
patients aged 2 months to 16 years in a pediatric ICU in China
(Ning et al., 2013) whereas Arthur et al. found that the rate of
infection due to S. maltophilia among infants aged 0–6 months
in a cardiac ICU in the USA was only 0.8% (Arthur et al., 2015).

Several recent studies have shown that S. maltophilia is also
an emerging opportunistic pathogen in community settings
(Falagas et al., 2009a; Chang et al., 2014). Results of a worldwide
SENTRY study in 1997 (Diekema et al., 1999) and the British
Society for Antimicrobial Chemotherapy Resistance surveillance
project conducted during 2001–2006 (Livermore et al., 2008)
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showed that 33.3 and 32%, respectively, of S. maltophilia
isolates were collected within 48 h after admission (defined
as community-acquired in these studies) from patients with
bloodstream infections. The results from two recent SMART
studies revealed that 14.3–17.2% of isolates from patients with
community-acquired IAI (also defined by a 48-h time frame
within admission) during 2003–2010 were S. maltophilia (Lee
et al., 2012; Liu et al., 2012). Another recent study on the
prevalence of community-acquired S. maltophilia BSI in Taiwan,
which specifically divided the patients into three categories
based on whether they had community-acquired (excluding
patients hospitalized within 90 days before admission, cared
in a nursing facility, etc.), healthcare-associated or hospital-
acquired infections, reported that 17.6% of all community-
acquired bloodstream infections were due to S. maltophilia
(Chang et al., 2014). A similar study in France revealed that
23.7% of all community-acquired BSIs were due to S. maltophilia
(Fihman et al., 2012). These studies show that community-
acquired S. maltophilia infections are far less rare than previously
thought.

Risk Factors of Mortalty

A number of risk factors for death due to S. maltophilia
infections have been reported. Paez et al. (Paez and Costa,
2008) reviewed the literature from 1985 to 2008 and found
that BSI and pneumonia, shock, thrombocytopenia, and
Acute Physiological Assessment and Chronic Health Evaluation
(APACHE) score >15 are independent risk factors associated
with outcome. In addition, underlying hematological malignancy
and admission to ICU are independent risk factors for cancer
patients. The impact of appropriate antimicrobial treatment and
removal of CVC on mortality were concluded to require further
clinical studies (Paez and Costa, 2008). The conclusion of the
review corresponds to the aforementioned studies. Falagas et al.
analyzed 15 articles for attributable mortality of S. maltophilia
infections. Only four studies provided relevant data regarding
inappropriate antibiotic treatment, and three out of the four
studies found significantly higher mortality when compared with
initial appropriate therapy (Falagas et al., 2009b).

Antimicrobial Susceptibility

There are limited antimicrobial options for infections
due to S. maltophilia because of its extensive resistance
to most antibiotics, including β-lactam antibiotics,
cephalosporins, macrolides, aminoglycosides, and carbapenems.
Interpretive breakpoints for susceptibility are available
only for ticarcillin/clavulanate, ceftazidime, minocycline,
levofloxacin, trimethoprim/sulfamethoxazole (TMP/SMX),
and chloramphenicol (CLSI, 2015). Table 2 shows the rates of
susceptibility of S. maltophilia to antimicrobial agents reported
in the studies presented in Table 1. TMP/SMX is recognized
as the drug of choice (Wang et al., 2014a). Resistance rates
vary geographically but are generally less than 10% (Chung
et al., 2013). However, high and various rates of resistance
to TMP/SMX have been reported in patients with cancer

(Vartivarian et al., 1994; Micozzi et al., 2000), cystic fibrosis
(Saiman et al., 2002; Cantón et al., 2003; San Gabriel et al., 2004;
Valenza et al., 2008), and in several countries, including Taiwan,
Japan, Korea, Thailand, Spain, Mexico, Saudi Arabia, Turkey,
and Canada (16–78.8%) (Valdezate et al., 2001; del Toro et al.,
2002; Lai et al., 2004; Gülmez and Hasçelik, 2005; Memish et al.,
2012; Wu et al., 2012; Rattanaumpawan et al., 2013; Rhee et al.,
2013; Zhanel et al., 2013; Flores-Treviño et al., 2014; Hotta
et al., 2014; Walkty et al., 2014; Wang et al., 2014a). In the
present review, global surveillance data for the period 1997–2012
show that S. maltophilia continues to be highly susceptible to
TMP/SMX (Table 2). Over that 15-year period, the susceptibility
rates reported in worldwide SENRTY studies (Gales et al., 2001a;
Jones et al., 2003; Gales et al., 2006; Sader et al., 2013, 2014a),
a BSAC surveillance study (Livermore et al., 2008), and three
large-scale multi-national studies (Sader et al., 2005b; Farrell
et al., 2010a, 2014) ranged from 90 to 100%.

Ceftazidime and ticarcillin/clavulanate used to be the most
effective among β-lactam drugs against S. maltophilia. However,
recent studies have demonstrated resistance rates of more than
30% and a trend in decreasing susceptibility with ceftazidime
(47–75% during 1997–1999 to 30.5–36.8% during 2009–2012)
(Table 2) (Gales et al., 2001a; Farrell et al., 2010a; Sader et al.,
2014b). The same is true for ticarcillin/clavulanate. During
1997–1998, the rates of susceptibility of S. maltophilia to that
combination ranged from 71–90% but dropped to 27–46.1%
during 2003–2008.

New fluoroquinolones exhibit better potency against S.
maltophilia than ceftazidime or ticarcillin/clavulanate and have
become reasonable alternatives. Nonetheless, a comparison of
data from worldwide SENTRY studies reveals a decrease in
sensitivity of S. maltophilia to levofloxacin, from 83.4% during
the period 2003–2008 (Farrell et al., 2010a) to 77.3% in 2011
(Sader et al., 2013). Low susceptibility rates ranging from 64–
69.6% have also been reported in Canada (Zhanel et al., 2013),
China (Yang et al., 2010; Tan et al., 2014), and Korea (Chung
et al., 2013). Few multi-center studies have investigated the
efficacy of fluoroquinolones against S. maltophilia in patients
with UTIs. In a SMART study conducted in the Asia-Pacific
region, isolates of S. maltophilia from patients with UTIs showed
exceptionally high rates of resistance to levofloxacin (33.3%) (Lu
et al., 2012). Two recent reports showed low MIC50 (minimum
inhibitory concentration)values (0.5 mg/L and 0.5 mg/L) and
low MIC90 values (8 and 4 mg/L) for moxifloxacin against S.
maltophilia (Zhanel et al., 2008; Chung et al., 2013), indicating
that moxifloxacin could be considered an effective alternative.
Data from a number of studies demonstrate that ciprofloxacin
has poor activity against S. maltophilia, with susceptibility rates
averaging lower than 50% (Table 2).

Minocycline, doxycycline, and tigecycline have consistently
displayed good potency against S. maltophilia in studies with
various time periods, sources of specimens, and geographic
regions (Sader et al., 2005b, 2013, 2014b; Gales et al., 2008;
Chen et al., 2012; Wu et al., 2012; Chung et al., 2013). A TSAR
surveillance study conducted in Taiwan tested 377 isolates of
S. maltophilia obtained over a 10-year period (1998–2008) and
revealed low MIC50 (0.25 mg/L) and MIC90 values (1 mg/L) for
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TABLE 2 | Susceptibility of S. maltophilia to various antimicrobial agents in worldwide surveillance and multicenter studies.

Country Study Year/

subgroups

TMP/SMXd LEVOd CIPd CAZd T/Cd MCNd TGCd TGCMIC50/90 PBd References

NA, LA SENTRY 1997 78.0 20.9 Jones et al., 1999a

All regions SENTRY 1997–1999 Gales et al., 2001a

AP 92 51 47 71

CAN 98 47 60 85

EU 90 79 72 86

LA 98 57 75 87

USA 95 55 67 90

LA SENTRY 1997–2001 Sader et al., 2004

2001 98 98.6 55.7 54.3 45.7 59.2

4 years 97.1 88 43.4 57.8 56 NA

BSI 95.3 88.4 50 73.3 64

RTI 100 90 38.3 46.7 51.7

All regions SENTRY 1997–2001 92 86 32 54 86 Jones et al., 2003

All regions SENTRY 1997–2003 95.3 86.1 30.9 52.9 55.7 67.6 Sader and Jones,

2005

All regions SENTRY 2001–2004 97 86.9 52.4 47.6 72.4 Gales et al., 2006

NA, LA, EU, AP MTC 2003–2008 Farrell et al., 2010a

NA 97.6 82.5 51.0 46.1 94.5a 0.5/2 73.2

EU 98.9 83.7 45.2 42.7 95.3 72.6

AP 90.8 78.0 32.6 27.0 96.1 33.4

LA 95.5 91.3 48.8 36.7 96.5 76.4

ALL 96.0 83.4 44.8 39.1 95.5 64.6

All regions SENTRY 2011 Sader et al., 2013

CLSI 94.5 77.3 36.7 92.3a 0.5/2

EUCAST 95 NA NA 79.8

BSI

NA, LA SENTRY 1997 90.9% 81.8 27.3 27.3 90.9 Diekema et al., 1999

NA SENTRY 1998 73.9 87.0 52.2 65.2 55.7 73.9c Gales et al., 2001b

All regions MTC 2000–2004 98.0 29.6 56.9 93.1a 1/2 84.6 Sader et al., 2005b

UK and Ireland BSAC 2001–2006 100 89b Livermore et al.,

2008

aTigecycline breakpoints of ≤2µg/mL for susceptibility and ≥8 mg/L for resistance were used for comparison purposes only, as defined by the USFDA.
bSusceptibility to tigecycline at the breakpoint of 1 mg/L used for Enterobacteriaceae and Acinetobacter spp.
cResistant strains with colistin and polymyxin B MICs of ≥4 mg/L.
dAntibiotics abbreviations: TMP/SMX, trimethoprim/sulfamethoxazole; LEVO, levofloxacin; CIP, ciprofloxacin; CAZ, ceftazidime; T/C, Ticarcillin/Clavulanate; PB, polymyxin B; TGC,

tigecycline; MCN, minocycline.

tigecycline (Wu et al., 2012). Similar results were demonstrated
in several large-scale worldwide surveillance studies as well. A
recent SENTRY study conducted during 2009–2012 (494 isolates)
(Sader et al., 2014a) revealed a susceptibility of 96% and a

recent TEST study conducted during 2007–2012 (2245 isolates)
(Renteria et al., 2014) demonstrated low MIC50 (0.25 mg/L) and
MIC90 (1 mg/L) values.

Molecular Mechanisms in Antimicrobial
Resistance

S. maltophilia has several molecular mechanisms contributing
to its extensive antimicrobial resistance. The mechanisms are
summarized in Table 3. Detailed descriptions of the major
mechanisms are elaborated as follows.
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TABLE 3 | Molecular mechanisms of antimicrobial resistance in S. maltophilia.

Mechanisms Associated determinants Related antimicrobial resistance

β-lactamases

1. L1, L2 (chromosomally and plasmid encoded)

2. TEM-2 (on a Tn1-like transposon)

ampR-dependent

(involving ampR, ampN-ampG operon, ampDI and mrcA)

β-lactamases

Class 1 integrons and ISCR elements sul1, sul2, dfrA TMP/SMX

Multidrug efflux pump RND family: SmeABC, SmeDEF, SmeGH*, SmeIJK,

SmeMN*, SmeOP, SmeVWX, and SmeYZ

ABC family: SmrA, MacABCsm

MFS family: EmrCABsm

Summarized in Table 4

Qnr Smqnr Quinolones and tetracycline

Antibiotic-modifying enzymes AAC(6′)-Iz, APH(3′)-IIc, AAC(6′)-Iak Aminoglycoside

Lipopolysaccharide (LPS) SpgM (phosphoglucomutase) Aminoglycosides, polymyxin B, ticarcillin/clavulanic acid

and piperacillin/tazobactam

Mutations of bacterial topoisomerase and gyrase genes

Reduction in outer membrane permeability

*not yet characterized.

β-Lactamases
S. maltophilia has two chromosomal-mediated inducible β-
lactamases, namely L1 and L2. L1 is a molecular class B
Zn2+-dependent metallo-β-lactamase and L2 is a molecular
class A clavulanic acid-sensitive cephalosporinase. The L1 and
L2 β-lactamases are simultaneously regulated by AmpR, a
transcriptional regulator in the L2 upstream region (Okazaki
and Avison, 2008). The ampR-L2 module is homologous to
the ampR-ampC systems, which are widely distributed in some
members of the family Enterobacteriaceae and in P. aeruginosa
(Lodge et al., 1990). The regulation of chromosomal ampR-ampC
systems has been well studied in Citrobacter freundii, where
the AmpC β-lactamase induction is linked to peptidoglycan
recycling and involves several regulatory genes, such as as
ampR, ampG, and ampD (Lindberg et al., 1985). A similar
induction mechanism was proposed for the ampR-ampC and
the ampR-L2 modules (Okazaki and Avison, 2008). But unlike
P. aeruginosa, the permease system in S. maltophilia requires
an intact ampN-ampG operon for the induction of β-lactamase
(Huang et al., 2010). Two ampD homologs, ampDI and
ampDII , were found in S. maltophilia, but only ampDIappears
to be relevant to the regulation of β-lactamase (Yang et al.,
2009).

Penicillin-binding proteins (PBPs) participate in
peptidoglycan biosynthesis and the inactivation of PBP4 in
P. aeruginosa has been shown to confer AmpC overexpression
and β-lactam resistance (Moya et al., 2009). The inactivation
of a putative PBP1a gene, mrcA, recently was found to
cause basal-level L1/L2 β-lactamase hyperproduction in S.
maltophilia KJ. The inactivation of mrcA only affects basal
L1/L2 production β-lactamase, which is ampR- and ampN-
ampG-dependent, and does not augment their induction (Lin
et al., 2011). The universality of disruption of ampDI or mrcA

in β-lactamase-hyperproducing S. maltophilia mutants and
clinical isolates has been proved by the existence of wild-type
ampDI and mrcA genes. The result implicates mutation of
at least one additional gene in this phenotype (Talfan et al.,
2013).

Efflux Pumps
Efflux pumps in microorganisms mediate the extrusion of drugs
and are classified into five families, namely the resistance-
nodulation-cell-division (RND) family, the major facilitator
superfamily (MFS), the small multidrug resistance (SMR) family,
the ATP binding cassette (ABC) family, and the multidrug
and toxic compound extrusion (MATE) family (Putman et al.,
2000). Two ABC-type (SmrA, MacABCsm), one MFS-type
(EmrCABsm), a fusaric acid extrusion efflux pump (FuaABC),
and six out of the eight postulated RND-type efflux systems
have been characterized in S. maltophilia (Alonso and Martinez,
2000; Li et al., 2002; Crossman et al., 2008; Al-Hamad et al.,
2009; Chen et al., 2011; Hu et al., 2012; Gould et al., 2013;
Huang et al., 2013a; Lin et al., 2014a,b). The six characterized
RND-type efflux pumps in the S. maltophilia genome are
SmeABC, SmeEF, SmeIJK, SmeOP, SmeVWX, and SmeYZ
(including SmeGH and SmeMN). Table 4 provides a summary
of antimicrobial resistance associated with the abovementioned
efflux pumps.

SmeABC
The overexpression of smeABC genes confers resistance to
aminoglycosides, β-lactams, and fluoroquinolones. SmeC was
identified to function independently of SmeAB, while deletions
in smeC but not smeB compromised the antimicrobial resistance
(Li et al., 2002).
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TABLE 4 | Genetic determinants of efflux pumps.

Efflux pumps Associated antibiotic resistance

RND FAMILY

SmeABC Quinolones, ß-lactams and aminoglycosides

SmeDEF Quinolones, tetracyclines, macrolides, chloramphenicol,

novobiocin and trimethoprim/sulfamethoxazole

SmeIJK Ciproxin, levofloxacin, tetracycline and minocycline

SmeOP-TolCsm Trimethoprim/sulfamethoxazole, aminoglycosides,

macrolides, doxycycline, chloramphenicol, and nalidixic

acid

SmeVWX Quinolones, chloramphenicol and tetracyclines

SmeYZ Trimethoprim/sulfamethoxazole and aminoglycosides

ABC FAMILY

SmrA Fluoroquinolones and tetracycline

MacABCsm Aminoglycosides, macrolides and polymyxins

MFS FAMILY

EmrCABsm Nalidixic acid and erythromycin

FUSARIC ACID TRIPARTITE EFFLUX PUMP

FuaABC fusaric acid

SmeDEF
SmeDEF is a complex formed by an efflux pump located on the
inner membrane (SmeE), an outer membrane protein (SmeF)
and a periplasmic membrane fusion protein (SmeD). It is
involved in resistance to quinolones, tetracyclines, macrolides,
chloramphenicol and novobiocin (Alonso and Martinez, 2000).
Expression of the smeDEF operon is regulated by the SmeT
repressor (Hernandez et al., 2009). A recent study showed
that the SmeDEF efflux pump is associated with plant root
colonization by S. maltophilia, and that deletion of the smeE gene
impairs this function (García-León et al., 2014a).

SmeVWX
The SmeVWX pump, encoded by a five-gene operon
(smeU1, smeV, smeW, smeU2, and smeX), was identified and
characterized in a multidrug-resistant mutant of S. maltophilia
KJ. Overexpression of the SmeVWX pump resulted in increased
resistance to chloramphenicol, quinolones, and tetracyclines but
increased aminoglycoside susceptibility (Chen et al., 2011).

SmeYZ and SmeJK
The smeZ, smeJ, and smeK genes were identified in S.
maltophiliaKM5, a selectedmutant derivative. SmeZ contributes
to elevated aminoglycoside MICs. SmeJ and SmeK jointly
elevate tetracycline, minocycline, and ciprofloxacin MICs and
confer resistance to levofloxacin (Gould et al., 2013). In
addition to drug extrusion, the SmeIJK pump has been
reported to play a physiologic role in the maintenance of
cell membrane integrity (Huang et al., 2014). A recent study
further elucidated the physiologic significance of the SmeYZ
pump and demonstrated its correlation with virulence-related

functions, including swimming, flagella formation, oxidative
stress susceptibility, biofilm formation, and protease secretion
(Lin et al., 2015).

SmeOP
A pcm-tolCsm operon was recently verified in S. maltophilia
KJ2. The tolCsm gene is involved in the resistance of several
antimicrobial agents, including aminoglycosides, macrolides,
β-lactams, chloramphenicol, nalidixic acid, doxycycline and
TMP/SMX. The deletion of pcmwas shown to result in decreased
expression of tolCsm, which compromised the pathogen’s
resistance to amikacin and gentamicin (Huang et al., 2013b). A
very recent study characterized a five-gene cluster efflux pump
(tolCSm-pcm-smeRo-smeO-smeP) in S. maltophilia. The study
showed that SmeOP requires TolCSm for efflux pump function
and suggested that TolCSm is the cognate outer membrane
protein (OMP) for the SmeOP pump. The SmeOP-TolCSm
efflux pump was shown to be associated with resistance to
nalidixic acid, doxycycline, amikacin, gentamicin, erythromycin,
and leucomycin (Lin et al., 2014a).

ABC Family: SmrA and MacABCsm
SmrA, the first ABC-type efflux pump identified in S. maltophilia,
has been shown to confer resistance to fluoroquinolones and
tetracycline (Al-Hamad et al., 2009). The MacABCsm efflux
pump in S. maltophilia was recently shown to confer intrinsic
resistance to antimicrobials (aminoglycosides, macrolides, and
polymyxins) and to play an important role in regulating oxidative
and envelope stress tolerance and biofilm formation (Lin et al.,
2014b).

MFS Family: EmrCABsm
Only one MFS-type efflux pump, EmrCABsm, has been
characterized so far. It is involved in the extrusion of
hydrophobic compounds, including the antibiotics nalidixic acid
and erythromycin (Huang et al., 2013a).

Fusaric Acid Tripartite Efflux Pump
A novel tripartite fusaric acid efflux pump was found in S.
maltophilia, namely FuaABC, which may constitute a new
subfamily of the tripartite efflux pump. The fuaABC operon was
demonstrated to be induced by fusaric acid and to contribute to
fusaric acid resistance when overexpressed (Hu et al., 2012).

Trimethoprim/Sulfamethoxazole (TMP/SMX)
Resistance Mechanisms
The sul1 gene carried by class 1 integrons and the sul2
gene, which is linked to insertion sequence common region
(ISCR) elements, are known to be responsible for resistance to
TMP/SMX in S. maltophilia (Barbolla et al., 2004; Toleman et al.,
2007; Chung et al., 2015). The dfrA gene cassettes, which are
located in class 1 integrons and encode for the dihydrofolate
reductase enzyme, have also been reported to confer high-level
resistance to TMP/SMX (Hu et al., 2011). Moreover, SmeDEF,
TolCsm, and SmeYZ efflux pumps have recently been reported
to be associated with TMP/SMX resistance (Huang et al., 2013b;
Lin et al., 2015; Sánchez and Martínez, 2015).
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Quinolones Resistance Mechanisms
Two mechanisms are associated with resistance of S. maltophilia
to quinolones: efflux pumps and a chromosomally encoded qnr
gene (Smqnr) that protects both gyrase and topoisomerase IV
from quinolones (Sanchez et al., 2009). Unlike other bacteria,
clinical isolates of quinolone-resistant S. maltophilia do not
present mutations in topoisomerases (Valdezate et al., 2005). To
date, the characterized genetic determinants involving resistance
to quinolones are smeDEF, smeIJK, smeABC, smeVWX, and
Smqnr genes, among which smeDEF and Smqnr are the
best-described. Smqnr belongs to the qnr family. It confers
low-level resistance and contributes to intrinsic resistance to
quinolones in S. maltophilia (Sánchez et al., 2008; Shimizu et al.,
2008; Sánchez and Martínez, 2010). García-León et al. further
elucidated the interplay between intrinsic and acquired resistance
to quinolones in S. maltophilia. Their study demonstrated that
the capacity to develop mutation-driven antibiotic resistance
is highly dependent on the intrinsic resistome. Their findings
indicate that the most prevalent cause of acquired quinolone
resistance in S. maltophilia is the overproduction of multidrug
efflux pumps, among which SmeDEF efflux pump plays the
most important role (García-León et al., 2014b). In addition,
a more recent report by García-León et al. confirmed that
overexpression of smeVWX in clinical isolates of S. maltophilia
is associated with high-level quinolone resistance (García-León
et al., 2015).

Aminoglycosides Resistance Mechanisms
The aminoglycoside-resistant mechanisms in S. maltophilia
primarily involve aminoglycoside-modifying enzymes and efflux
pumps. The reported enzymes to date include AAC(6′)-Iz (an
aminoglycoside acetyltransferase) (Li et al., 2003), APH(3′)-IIc
(an aminoglycoside phosphotransferase) (Okazaki and Avison,
2007) and a novel AAC(6′)-Iak, which was recently identified
in a MDR strain from Nepal (Tada et al., 2014). Efflux pumps
including SmeABC, SmeYZ, SmeOP-TolCsm, and MacABCsm
are associated with resistance as described above.

Antimicrobial Treatment Studies

Trimethoprim/sulfamethoxazole (TMP/SMX) remains the
most effective antimicrobial agent against S. maltophilia,
with an overall susceptibility rate higher than 90%
(Falagas et al., 2008). A recent study investigated the
efficacy of sulfametrole/trimethoprim, an alternative
sulphonamide/trimethoprim combination available in several
Europe countries against non-fermenters (40 S. maltophilia
included) and found that the activity of the alternative
combination was similar to that of TMP/SMX (Livermore
et al., 2014). Other common options include ceftazidime,
ticarcillin-clavulanate, fluoroquinolones, and tetracyclines such
as tigecycline, minocycline, and doxycyclines. As previously
mentioned, resistance rates to ceftazidime and ticarcillin-
clavulanate are high and rising and are, therefore, unreliable
choices. Fluoroquinolones are now popular alternatives because
of their less prominent side effects compared to TMP/SMX and
their greater potency compared to β-lactams.

Fluoroquinolones
Fluoroquinolones (FQs) are commonly used to treat infections
due to S. maltophilia (Nicodemo and Paez, 2007). However, their
overuse worldwide has resulted in higher resistance rates inmany
kinds of pathogenic bacteria, including S. maltophilia (Chang
et al., 2014; Pien et al., 2015).

To evaluate the effectiveness of FQs in this era of high FQ
resistance, a retrospective study published in 2014 compared the
outcomes of patients with S. maltophilia infections treated with
TMP/SMX and those of patients treated with FQs monotherapy
(Wang et al., 2014b). A total of 38 adults received TMP/SMX and
63 adults received FQs (levofloxacin n = 48 and ciprofloxacin
n = 15). The overall microbiological cure rate was 63% (65%
in the TMP/SMX group and 62% in the FQ group), and the
overall clinical success rate was 55% (61% in the TMP/SXT
group and 52% in the FQ group). The antibiotic regimens were
equally effective in both groups. Another retrospective study
compared the effectiveness of TMP/SMX (n = 51) with that
of levofloxacin (n = 35) in treating S. maltophilia bacteremia
and revealed no significant differences in treatment outcome
between the two groups, including 30-day mortality, length
of hospital day, and antibiotic withdrawal (Cho et al., 2014).
However, the rate of adverse events was significantly lower in
the levofloxacin group (0%) than in the TMP/SXT group (23.5%,
p = 0.001).

Several new quinolones have been developed and some
of them have recently been approved for clinical application,
including nemonoxacin (Huang et al., 2015) and delafloxacin
(Bassetti et al., 2015). Oral nemonoxacin, a novel nonfluorinated
quinolone antibiotic, has been shown to have good activity
against Gram-positive bacilli, such as methicillin-resistant
Staphylococcus aureus (Huang et al., 2015). However, in vitro
susceptibility assays on 32 clinical isolates of S. maltophilia
revealed high MIC90 (32 mg/L) and MIC50 (8 mg/L) values (Lai
et al., 2014a). Regarding delafloxacin, a phase II study published
in 2009 that compared two doses of delafloxacin to tigecycline
in adults with complicated skin and skin structure infections
found that only one patient was infected with S. maltophilia
and was treated successfully with delafloxacin (O’Riordan et al.,
2015). More in vivo studies are needed to better understand the
effectiveness of these new quinolones in treating S. maltophilia
infections.

Tetracyclines
Tetracyclines such as tigecycline, minocycline, and doxycycline
are some of the most active antimicrobial agents against S.
maltophilia other than TMP/SMX, even in the cystic fibrosis
population (Cantón et al., 2003; San Gabriel et al., 2004; Gülmez
et al., 2010; Milne and Gould, 2012; Castanheira et al., 2014).
The results agree with our aforementioned observation that
these antibiotics consistently exhibited good activity against S.
maltophilia in global surveillance studies (Table 2).

Tigecycline, a derivative of minocycline, has broad-spectrum
antimicrobial activity (Stein and Babinchak, 2013) and is an
alternative agent against S. maltophilia infections. A recent
study from Brazil showed that the MIC50 and MIC90 values of
tigecyline for S. maltophilia isolates, including isolates resistant
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to levofloxacin and/or TMP/SMX harboring sul-1, sul-2, and
qnrMR, were 1 and 4µg/ml, respectively (Rizek et al., 2015).
However, tigecycline has great bio-distribution after intravenous
injection, which leads to lower serum drug levels. So, there are
concerns about its efficacy for the treatment of bacteremia due to
S. maltophilia (Stein and Babinchak, 2013). In a recent study, a
high dose of tigecycline was effective at treating S. maltophilia
bacteremia (Wu and Shao, 2014), although in another study,
high-dose tigecycline treatment was associated with significant
adverse effects (Falagas et al., 2014). In addition, a 3-year clinical
therapeutic study that compared the effectiveness of TMP/SMX
and tigecycline in treating nosocomial S. maltophilia infections
revealed no significant differences in mortality or clinical
response rates between the two regimens. Clinical improvement
rates on the 14th day were 69.2% in the TMP/SMX group and
68.4% in the tigecycline group (P = 0.954) and mortality rates
on the 30th day were 30.8% in the TMP/SMX group and 21.1% in
the tigecycline group (P = 0.517) (Tekce et al., 2012). Therefore,
tigecycline might be an alternative for patients who are unable to
tolerate TMP/SMX. In addition to monotherapy, a combination
regimen with tigecycline might be a better option for severe
infections, especially for nosocomial infections (Samonis et al.,
2012).

In a recent large collection of resistant organisms from
the SENTRY program during 2007–2011 (1706 S. maltophilia
included), minocycline was shown to be significantly more
active than other tetracyclines against S. maltophilia. The rate
of susceptibility of S. maltophilia to minocycline exceeded 97%
across all geographic regions, and the potency was 2-fold higher
than doxycycline (MIC50/90: 0.5/2µg/mL) (Castanheira et al.,
2014). A study evaluated 53 multidrug resistant isolates of S.
maltophilia, including 48 that were resistant to levofloxacin
and/or TMP/SMX, and found that minocycline exhibited
excellent activity against S. maltophilia. However, the clinical
experience is still anecdotal (Rizek et al., 2015). A patient with
pneumonia was reportedly successfully treated with minocycline
(Irifune et al., 1994), and the combination of minocycline with
TMP and ticarcillin/clavulanate has been suggested to be effective
(Vartivarian et al., 1994).

Polymyxins and Fosfomycin
Polymyxins and fosfomycin are being reconsidered as
alternatives or “last-resort” options because of the increasing
emergence of multidrug-resistant organisms. Unfortunately,
interpreting the susceptibility rates of S. maltophilia to
polymyxins is problematic because of the discordance between
different testing methods (Nicodemo et al., 2004; Gülmez et al.,
2010; Moskowitz et al., 2010; Betts et al., 2014). A SENTRY
surveillance program study conducted during 2001–2004
assessed the antimicrobial activity of polymyxin B among
54731 isolates of GNB and 1256 isolates of S. maltophilia and
found that 72.4% of the S. maltophilia isolates were susceptible
to polymyxin B (MIC50 and MIC90 values, 1 and 8 mg/L,
respectively) (Gales et al., 2006). Colistin (polymyxin E) appears
to have a considerable in vitro activity against S. maltophilia
(83–88%) (Falagas and Kasiakou, 2005). In addition, synergy
with rifampin, TMP/SMX, and doxycycline has been shown

(Giamarellos-Bourboulis et al., 2002; Gülmez et al., 2010). Two
studies by the SENTRY program in the year 2011 (globally) and
during 2009–2012 (USA and Europe) that collected 362 and 494
isolates of S. maltophilia, respectively, reported very different
rates of susceptibility to colistin (98.5%, Sader et al., 2013 and
38.7–49.7%, Sader et al., 2014a). In a recent study that collected
641 isolates of S. maltophilia in a university hospital in Argentina
(Rodríguez et al., 2014), Rodríguez et al. showed that colistin
resistance increased from 8% in 1996 to 45% in 2013 and found
that the increase correlated with a marked increase (11.4-fold) in
colistin consumption during the study period. Fosfomycin has
been shown in several reports to be an inappropriate treatment
option because of its poor activity and high MICs against S.
maltophilia (Macleod et al., 2009; Khan et al., 2014; Rizek et al.,
2015).

Combination Therapy
Owing to the impressive array of antimicrobial resistance
mechanisms of S. maltophilia, various combinations of
antimicrobial agents have been surveyed in order to overcome
resistance or to attain synergism (Table 5). Combinations
of two or three agents with good susceptibility results
such as TMP/SMX, ceftazidime, ticarcillin/clavulanate, and
aminoglycosides have demonstrated synergistic effects to
different degrees in prior studies. In more recent studies,
combinations of TMP/SMX or β-lactam/β-lactam inhibitors
with new or old antibiotics such as tigecycline, fluoroquinolones,
televancin (Hornsey et al., 2012), rifampin (Betts et al.,
2014), and aerosolized colistin have been investigated; they
demonstrated various extents of synergism and the ability to
maintain effectivity in biofilm. TMP/SMX plus ceftazidime
plus levofloxacin has been shown to be effective in treatment
of meningitis (Correia et al., 2014) and intrabiliary infusion of
colistin plus parenteral fosfomycin with tigecycline was reported
to be effective at treating complicated biliary tract infection
(Perez et al., 2014). Several combinations of novel agents are
currently under investigation, including a β-lactam and dual
β-lactamase inhibitor combination (Page et al., 2011) and MD3
(a novel synthetic inhibitor of peptidases) plus colistin (Personne
et al., 2014). It is important to mention that in vitro synergy
attained by combination should be further correlated with
clinical outcomes.

Nebulized Antimicrobial Agents
Nebulization of antimicrobials results in high concentrations in
the respiratory tract and is associated with low toxicity because
this method of delivery results in limited systemic absorption
(Table 5). These characteristics are especially important for
patients with cystic fibrosis, who are prone to frequent infection
and colonization of multidrug resistant pathogens including S.
maltophilia. Wood et al. reported a case of recurrent ventilator-
associated pneumonia successfully treated with aerosolized
colistin and doxycycline (Wood et al., 2010). King et al. surveyed
the in vitro pharmacodynamics of aerosolized levofloxacin and
suggested that the high concentrations of levofloxacin achieved
in the lung by aerosol delivery may be useful for the treatment
of patients with cystic fibrosis (King et al., 2010). When S.
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TABLE 5 | Combinations of antibiotics that demonstrate synergism and

nebulized antimicrobial agents.

Year Combinations References

COMBINATIONS

1974 TMP/SMX + colistin Nord et al., 1974

1979 TMP/SMX + carbenicillin Felegie et al., 1979

1980 Gentamicin + carbenicillin + rifampin

TMP/SMX + carbenicillin + rifampin

Yu et al., 1980

1983 Gentamicin + carbenicillin + rifampicin

TMP/SMX + carbenicillin + rifampicin

Berenbaum et al., 1983

1988 Ciprofloxacin + ceftazidime Chow et al., 1988

1995 Ticarcillin/clavulanate + TMP/SMX

Ticarcillin/clavulanate + ciprofloxacin

Poulos et al., 1995

1998 Levofloxacin + various beta-lactams Visalli et al., 1998

2001 Ticarcillin/clavulanate + aztreonam Krueger et al., 2001

2002 Azithromycin + TMP/SMX Saiman et al., 2002

2009 Tigecycline + amikacin

Tigecycline + TMP/SMX

Entenza and Moreillon,

2009

2010 TMP/SMX + ticarcillin/clavulanate

TMP/SMX + ceftazidime

Gülmez et al., 2010

2012 Ticarcillin/clavulanate + aztreonam: most

synergic combination

Ticarcillin/clavulanate + colistin

Ticarcillin/clavulanate + levofloxacin

Milne and Gould, 2012

2012 Telavancin + colistin: marked synergy Hornsey et al., 2012

2013 Tigecycline + colistin: best result Church et al., 2013

2013a Ceftazidime + colistin200

Levofloxacin100 + ticarcillin/clavulanate

Colistin200 + TMP/SMX

Wu et al., 2013

2013 TMP/SMX + ticarcillin/clavulanate: most

synergistic combination

Chung et al., 2013

2014 Ceftazidime + TMP/SMX

Ceftazidime + levofloxacin

More effective than the combination of

TMP/SMX + levofloxacin

Hu et al., 2014

2014 Colistin + rifampin: reliably bactericidal

Colistin + tigecycline

Betts et al., 2014

NOVEL COMBINATIONS

2011 BAL30376: β-lactam and dual

β-lactamase inhibitor combination

Page et al., 2011

2014 MD3 + colistin

MD3: a novel synthetic inhibitor of SPases

(bacterial type I signal peptidases)

Personne et al., 2014

(Continued)

TABLE 5 | Continued

Year Combinations References

NEBULIZED ANTIMICROBIAL AGENTS

2010 Doxycycline + aerosolized colistin Wood et al., 2010;

Harthan and Heger, 2013

2010 Levofloxacin King et al., 2010

2015 Tobramycin inhalation powder Ratjen et al., 2015

TMP/SMX, trimethoprim/sulfamethoxazole.
aThe Top 3 effective combinations when S. maltophilia isolates grown as a biofilm. Colistin

and levofloxacin were tested at high concentrations (200 and 100mg/L, respectively),

corresponding to the level achievable in sputum by aerosolization.

maltophilia isolates were grown as a biofilm, the top 3 most
effective antibiotic combinations included high-dose levofloxacin
or colistin delivered at doses achievable by aerosolization plus
a β-lactam or TMP/SMX (Table 5) (Wu et al., 2013). The
potentials of other antibiotics to be nebulized to achieve high
drug levels in airway have been investigated in order to overcome
the high MICs that cannot be conquered when the agents
are administered systemically. A device (Podhaler device) that
delivers new inhalational tobramycin (tobramycin inhalation
powder, TIP) and attains high drug levels to the lung may be
able to exceed current high MICs of tobramycin in S. maltophilia
(Ratjen et al., 2015). Waters suggested a potential role of inhaled
aztreonam lysine in the treatment of S. maltophilia pulmonary
infection because of its resistance to the L1 β-lactamase
produced by S. maltophilia and the ability to achieve high drug
levels in respiratory secretions (approximately 1000-fold higher
than the corresponding plasma concentration) (Waters, 2012).
The antibacterial activity of a novel inhaled combination of
fosfomycin and tobramycin (FTI) was investigated in patients
with bronchiectasis. However, FTI demonstrated relatively poor
activity against S. maltophilia (Macleod et al., 2009).

Conclusions

Worldwide, multi-institutional studies confirm that S.
maltophilia is an emerging multi-drug resistant opportunistic
pathogen in hospital and community settings, especially among
immunocompromised hosts. TMP/SMX remains the most
effective antimicrobial agent in the general population. Drugs
with historically good susceptibility results include ceftazidime,
ticarcillin-clavulanate, and fluoroquinolones; however, a number
of studies show an alarming trend in resistance to those agents.
Tetracyclines such as tigecycline, minocycline, and doxycycline
are also effective agents and consistently display good activity
against S. maltophilia in various geographic regions and across
different time periods. Combination therapies, novel agents, and
aerosolized forms of antimicrobial drugs are currently being
tested for their ability to treat infections caused by thismulti-drug
resistant organism. In addition, recent advances in molecular
methods have identified various newmechanisms contributing to
drug resistance, which hopefully will lead to future breakthroughs
in the treatment of infections due to S. maltophilia.
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