
REPRODUCTIONREVIEW

Update on mammalian sperm capacitation: how much does 
the horse differ from other species?

Bart Leemans1, Tom A E Stout2,3, Catharina De Schauwer1, Sonia Heras1, Hilde Nelis1, 
Maarten Hoogewijs1, Ann Van Soom1 and Bart M Gadella3,4

1Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 
Ghent, Belgium, 2Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht,  
The Netherlands, 3Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University,  
Utrecht, The Netherlands and 4Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine,  
Utrecht University, Utrecht, The Netherlands

Correspondence should be addressed to B Leemans; Email: baleeman.leemans@ugent.be

Abstract

In contrast to various other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. 

In particular, stallion spermatozoa fails to penetrate the zona pellucida, most likely due to incomplete activation of stallion 

spermatozoa (capacitation) under in vitro conditions. In other mammalian species, specific capacitation triggers have been 

described; unfortunately, none of these is able to induce full capacitation in stallion spermatozoa. Nevertheless, knowledge of 

capacitation pathways and their molecular triggers might improve our understanding of capacitation-related events observed in 

stallion sperm. When sperm cells are exposed to appropriate capacitation triggers, several molecular and biochemical changes should 

be induced in the sperm plasma membrane and cytoplasm. At the level of the sperm plasma membrane, (1) an increase in membrane 

fluidity, (2) cholesterol depletion and (3) lipid raft aggregation should occur consecutively; the cytoplasmic changes consist of protein 

tyrosine phosphorylation and elevated pH, cAMP and Ca2+ concentrations. These capacitation-related events enable the switch from 

progressive to hyperactivated motility of the sperm cells, and the induction of the acrosome reaction. These final capacitation triggers 

are indispensable for sperm cells to migrate through the viscous oviductal environment, penetrate the cumulus cells and zona 

pellucida and, finally, fuse with the oolemma. This review will focus on molecular aspects of sperm capacitation and known triggers 

in various mammalian species. Similarities and differences with the horse will be highlighted to improve our understanding of equine 

sperm capacitation/fertilizing events.
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Introduction

Conventional in vitro fertilization (IVF), that is 
co-incubation of mature oocytes with capacitated sperm 
in a petri dish, is a standard procedure for producing 
embryos in vitro in a range of species, including man 
(Steptoe & Edwards 1978), the cow (Perry 2013), the 
pig and various laboratory animals (Galli et  al. 2003, 
Betteridge 2006). By contrast, conventional IVF has to 
date been very poorly successful in the horse. Equine 
IVF is hampered by the inability of stallion spermatozoa 
to penetrate the zona pellucida in vitro (Tremoleda 
et  al. 2003). In theory, this failure could be attributed 
to deficiencies in either in vitro prepared sperm and/
or in vitro matured oocytes. Given that in vitro matured 
oocytes placed in the oviduct can be fertilized in vivo 
(Hinrichs et  al. 2002), while in vivo matured oocytes 
harvested from pre-ovulatory follicles cannot be fertilized 
in vitro (Palmer et al. 1991), the inability of sperm cells 
to penetrate the zona pellucida ex vivo is most likely 

the result of deficient capacitation, that is activation of 
spermatozoa (Tremoleda et al. 2003). Although current 
equine IVF conditions do support the binding of stallion 
sperm to the oocyte’s zona pellucida, this does not 
result in subsequent initiation of the acrosome reaction 
mandatory to penetrate the oocyte (Tremoleda et  al. 
2003). In contrast to sperm cells from other mammalian 
species, stallion sperm incubated under typical IVF 
conditions, that is in medium containing HCO3

−, Ca2+ 
and albumin, also fail to display other capacitation-
related characteristics, such as hyperactivated motility, 
increased plasma membrane fluidity and protein tyrosine 
phosphorylation (Tremoleda et al. 2003) (Fig. 1).

Capacitation is the maturation process that sperm 
cells undergo after ejaculation, during their passage 
through the female genital tract (Suarez 2002). These 
biochemical changes enable the sperm to bind to and 
penetrate the zona pellucida and subsequently fuse 
with the oocyte (Fig. 1) (Yanagimachi 1994). The sperm 
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plasma membrane fuses with the outer acrosomal 
membrane, resulting in the exocytotic event known 
as the acrosome reaction that involves the release 
of lytic enzymes which locally dissolve the zona 
pellucida. The sperm cells also acquire hyperactivated 
motility in order to ‘drill’ through the zona pellucida 
(Yanagimachi 1994). Equids are one of the exceptions, 
in which capacitation does not appear to progress as 
described above. Using an oviduct epithelial explant 
model, we identified physiological triggering of three 
important capacitation parameters, namely increased 
intracellular pH (Leemans et al. 2014), protein tyrosine 
phosphorylation in the sperm tail (Leemans et al. 2014, 
2015b) and hyperactivated motility (Leemans et  al. 
2015b). However, this approach was not sufficient to 
induce the acrosome reaction and fertilization during 
co-incubation with oocytes. Hence, our understanding 
of sperm activation in the oviduct, the ability of these 
spermatozoa to achieve fertilizing competence and, 
in particular, the intracellular pathways involved in 
this process needs to improve. This review focuses on 
what is currently known about capacitation pathways in 
sperm cells of non-equine species, the provision of fuel 
to support the highly energy-dependent capacitation 
events and how much these events differ to capacitation-
related events observed in stallion spermatozoa.

Energy metabolism in stallion spermatozoa to 
support energy-demanding, fertility-related 
processes such as capacitation

Sperm capacitation and other fertility-related pathways 
require large quantities of energy. To fuel these crucial 
capacitation events, individual sperm cells must generate 
relatively large amounts of ATP. In various mammalian 
species including man and the mouse, sperm motility 
and the maintenance of membrane integrity rely 
predominantly on ATP generated by non-aerobic glucose 
metabolism via glycolysis (Mukai & Okuno 2004, Storey 
2008, du Plessis et  al. 2015), as demonstrated by the 
fact that mitochondrial oxidative chain uncouplers did 
not affect sperm motility or membrane integrity in sperm 
suspended in glucose-containing media. By contrast, the 
proportion of membrane intact and motile stallion sperm, 
and the velocity of that motion, in glucose-enriched 
media were all significantly reduced after exposure to 
mitochondrial uncouplers (Gibb et  al. 2014, Davila 
et al. 2016). Inhibiting complex IV or ATP synthase, two 
proteins on the inner mitochondrial membrane critical 
to electron flow during oxidative phosphorylation, had 
similar effects on stallion sperm (Davila et  al. 2016). 
Moreover, subsequent uncoupling of mitochondria or 
inhibition of mitochondrial respiration led to a massive 

Figure 1 Pathways involved in sperm capacitation, with emphasis on the horse. When spermatozoa undergo capacitation, the following changes 
occur: (1) increase in membrane fluidity, (2) cholesterol depletion, (3) aggregation of lipid raft receptors, (4) protein tyrosine phosphorylation,  
(5) hyperactivated motility and (6) the acrosome reaction. PTK, protein tyrosine kinase; ROS, reactive oxygen species; ZP3, ZP protein 3; 
ZP3-receptor, ZP protein 3-receptor; +, activation; −, inhibition.
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drop in cytoplasmic ATP concentrations in stallion 
spermatozoa. Overall, this indicates that maintenance 
of stallion sperm membrane integrity and motility, 
two important requirements for fertility, are highly 
dependent on aerobic production of ATP (Gibb et  al. 
2014, Plaza Davila et al. 2015). As a consequence of the 
requirement for stallion sperm to generate mitochondrial 
ATP aerobically, increased cytoplasmic concentrations 
of reactive oxygen species (ROS), such as superoxide 
anions and their reduced form, hydrogen peroxide, 
are observed during stallion sperm incubation and 
activation. In turn, this cytoplasmic ROS accumulation 
leads to increased production of metabolic by-products, 
and the combination of accumulating ROS and 
cytotoxic lipid aldehydes (acrolein, 4-hydroxynonenal 
and malondialdehyde) ultimately leads to massive lipid 
peroxidation and DNA damage and thereby accelerated 
cell death (Gibb et al. 2016). To counteract the adverse 
effect of endogenous ROS production, and enable 
ROS homeostasis (Jones 2006) or defense against 
oxidative stress, stallion seminal plasma contains 
relatively high concentrations of antioxidants such 
as catalase (Ortega Ferrusola et  al. 2009), superoxide 
dismutase (Ball et  al. 2000, Ortega Ferrusola et  al. 
2009), glutathione (Hemachand & Shaha 2003, Jones 
2006) and ergothioneine (Mann 1975). Moreover, 
mitochondrial aldehyde dehydrogenase 2 has been 
identified in stallion sperm cells and proposed to serve as 
a detoxifier of aldehydes generated either endogenously 
or exogenously (Gibb et  al. 2016). However, ROS 
defense mechanisms will eventually become exhausted 
and are not thus completely protective against sperm 
cell degeneration.

In this aspect, an interesting observation has been made 
with respect to stallion sperm oxidative stress and fertility. 
Spermatozoa from matings that did result in conception 
(and therefore considered ‘more fertile’) had lower 
percentages of membrane intact and higher percentages of 
cells displaying ROS-induced damage than spermatozoa 
from matings that did not result in conception (Gibb et al. 
2014). It has been proposed that this can be explained by 
the fact that fertile stallions produce metabolically more 
active sperm cells that exhibit higher levels of oxidative 
phosphorylation. This will result in higher concentrations 
of ROS, leading to increased lipid peroxidation and, in 
turn, impaired sperm motility and membrane integrity 
in more fertile stallions. This has led to the suggestion 
that spermatozoa from highly fertile stallions ‘live fast 
and die young’. It should also be borne in mind that a 
modest degree of cytoplasmic ROS production plays an 
important physiological role in sperm capacitation. These 
aspects are discussed below.

How to trigger capacitation in vitro?

In vivo, capacitation is initiated when a sperm cell is 
exposed to the environment within the female genital 

tract, that is the uterus and oviduct, close to the time 
of ovulation (reviewed by Leemans et  al. (2016a)); 
capacitation events can be mimicked in vitro by 
incubating sperm cells in medium containing HCO3

−, 
Ca2+ and albumin, after performing density gradient 
centrifugation (e.g. Percoll) to separate the sperm cells 
from the seminal plasma. HCO3

−, Ca2+ and albumin 
are three capacitation factors known to induce 
the sperm changes required for the acquisition of 
fertilizing potential across many species (mice: Visconti 
et  al. 1995a,b; hamster: Visconti et  al. 1999b; man: 
Osheroff et  al. 1999; pig: Flesch & Gadella 2000). In 
addition, species-specific factors have been identified. 
In cattle, for example, heparin-like molecules such as 
glycosaminoglycans are an essential capacitation trigger 
(Parrish et al. 1988). Unfortunately, the species-specific 
capacitation triggers required to establish a repeatable, 
effective equine IVF system have yet to be identified. 
In various studies of stallion sperm capacitation, 
‘capacitating medium’ has included the three general 
capacitation triggers (HCO3

−, Ca2+ and albumin) 
even though it is known that full capacitation is not 
accomplished; non-capacitating medium, lacking these 
three triggers, is used as control medium (McPartlin et al. 
2008, Leemans et al. 2016b). In Table 1, an overview 
of molecules frequently used as capacitation triggers in 
mammals, including the horse, is shown.

Capacitation events

Although capacitation was described for the first time 
in 1951 (Chang 1951, Austin 1952), the process is still 
not completely understood. It is known that capacitation 
involves a series of changes including (1) the removal 
of seminal plasma and surface-adhered decapacitation 
factors from the sperm plasma membrane, (2) 
reorganization of the sperm plasma membrane and (3) 
activation of intracellular pathways (Fig. 1).

After the removal of seminal plasma, a rapid increase 
in membrane fluidity (within 10 min) is induced by 
an increasing intracellular HCO3

− concentration and 
the activation of second messenger systems, including 
soluble adenylyl cyclase and a rise in intracellular 
Ca2+ (pig: Flesch & Gadella 2000, Gadella et al. 2008; 
horse: Rathi et  al. 2003). The activation of soluble 
adenylyl cyclase and the concomitant production 
of cAMP results in depletion of cholesterol from the 
sperm plasma membrane via a cholesterol acceptor 
such as albumin (>1 h), which is followed by a slower 
series of functional membrane changes in which lipid 
ordered microdomains aggregate at the apical ridge of 
the sperm head (>1 h) (pig: van Gestel et  al. 2005a). 
These microdomains contain functional zona pellucida-
binding protein complexes (pig: van Gestel et al. 2007) 
and the soluble N-ethylmaleimide-sensitive factor 
attachment protein receptor (SNARE) proteins, which 
play an important role in the induction of the acrosome 
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reaction (pig: Tsai et  al. 2010, 2012). Simultaneously, 
the production of cAMP enables the activation of protein 
kinase A which is required to phosphorylate the tyrosine 
residues on sperm proteins (Rathi et al. 2003, Ijiri et al. 
2012, Signorelli et  al. 2012). In various species, this 
cAMP-dependent protein tyrosine phosphorylation, 
especially in the sperm tail, has been associated with 
the acquisition of hyperactivated sperm motility and is 
considered a marker for some essential elements of the 
capacitation process (mouse: Visconti et  al. 1995a,b; 
pig: Flesch et al. 1999, Harayama et al. 2012).

Plasma membrane changes

Spermatozoa have a highly polarized morphology with 
a heterogenic surface differentiated into at least four 
surface membrane domains: the apical ridge and the 
pre-equatorial, equatorial and post-equatorial surface 

areas, respectively. Each of these regions plays a specific 
role in fertilization: (1) the apical ridge facilitates zona 
pellucida-binding (rabbit: O’Rand & Fisher 1987), 
(2) the apical ridge, together with the pre-equatorial 
surface area, is involved in the acrosome reaction while 
(3) the equatorial surface area initiates binding to the 
oolemma and the subsequent fertilization fusion. These 
events occur in the region of the sperm head where 
the sperm plasma membrane, including the lipid rafts 
(microdomains), covers the acrosome and plays an 
essential role in the dynamics of sperm capacitation 
(Gadella et al. 2008).

Cholesterol depletion

A redistribution of phospholipids in the surface of the 
sperm head is an essential step in the capacitation 
process. HCO3

−/soluble adenylyl cyclase/cAMP mediate 

Table 1 Overview of capacitation triggers and their in vitro capacitation effect in different mammalian species.

Capacitating trigger Capacitation effect Species Reference

Ca2+ Membrane fluidity Mouse Visconti et al. (1995a,b)
Protein tyrosine phosphorylation Man Osheroff et al. (1999)
Hyperactivated motility Pig Flesch & Gadella (2000)
Acrosome reaction Cow Byrd (1981), Breininger et al. (2010)

Horse McPartlin et al. (2008)
HCO3

− Membrane fluidity Mouse Visconti et al. (1995a,b)
Protein tyrosine phosphorylation Hamster Visconti et al. (1999b)
Hyperactivated motility Man Osheroff et al. (1999)
Acrosome reaction Pig Flesch & Gadella (2000)

Cow Breininger et al. (2010)
Horse Rathi et al. (2003), McPartlin et al. (2008)

Albumin Cholesterol depletion Mouse Visconti et al. (1995a,b)
Pig Flesch & Gadella (2000)
Cow Byrd (1981)
Horse McPartlin et al. (2008)

Methyl β-cyclodextrin Cholesterol extraction Mouse Visconti et al. (1999a)
Pig van Gestel et al. (2005b)
Horse Bromfield et al. (2014)

Heparin Membrane fluidity Cow Parrish et al. (1988), Gualtieri et al. (2005), 
Breininger et al. (2010)Hyperactivated motility

Protein tyrosine phosphorylation
Acrosome reaction

Progesterone Acrosome reaction Horse Cheng et al. (1998a,b)
Hyperactivated motility Man Lishko et al. (2011)

Ca2+ ionophore A23187 Acrosome reaction Mouse Tateno et al. (2013)
Man Bielfeld et al. (1994), Liu et al. (2011)
Pig
Cow Birck et al. (2009)
Horse Fraser et al. (1995)

Hyperactivated motility Mice Balao da Silva et al. (2013), Tateno et al. (2013)
Lysophospha-tidylcholine Acrosome reaction Horse Graham (1996)
c-AMP and caffeine Protein tyrosine phosphorylation Cow Breininger et al. (2010)

Horse Pommer et al. (2003)
Hyperactivated motility Pig Funahashi & Nagai (2001)

ROS Protein tyrosine phosphorylation Cow Breininger et al. (2010)
Horse Baumber et al. (2003)

Alkaline medium pH Protein tyrosine phosphorylation Horse Gonzalez-Fernandez et al. (2012)
Hyperactivated motility Cow Marquez & Suarez (2007)

Procaine Hyperactivated motility Guinea pig Mujica et al. (1994)
Horse McPartlin et al. (2009), Leemans et al. (2015a)
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an increase in membrane fluidity, detected as enhanced 
merocyanine 540 binding (Gadella & Harrison 2000, 
2002), that enables the redistribution of cholesterol from 
the equatorial area to the apical part of the sperm plasma 
membrane, while seminolipids move retrogradely 
(pig: Gadella et  al. 1994, 1995). Both molecules are 
considered to be plasma membrane stabilizers, which 
prevent membrane fusion prior to capacitation. The 
HCO3

−-mediated repacking of the sperm surface lipids 
is also essential in enabling the efflux of cholesterol 
which further increases plasma membrane fluidity by 
allowing the aggregation of lipid rafts, another essential 
step in the reorganization of the plasma membrane.

In vitro, the extraction of cholesterol from the sperm 
plasma membrane can be achieved by the oxidation 
of membrane sterols (Boerke et  al. 2013), or active 
cholesterol transporters that deliver free cholesterol to 
the hydrophobic pocket of albumin (Flesch et al. 2001). 
Brouwers et al. (bull: 2011) showed that the production 
of ROS is an essential step in oxysterol formation. ROS 
production at low levels during sperm capacitation was 
first demonstrated in 1993, and indicates that sperm 
capacitation should be considered an oxidative process 
dependent on the active generation of ROS (man: de 
Lamirande & Gagnon 1993). This process may also 
help to regulate protein tyrosine phosphorylation, 
another important capacitation marker, by increasing 
cAMP production (Aitken et al. 2004, Aitken 2011) and 
suppressing tyrosine phosphatase activity (Takakura 
et  al. 1999). Since oxysterols are more hydrophilic 
than intact cholesterol, they can more easily move 
through the plasma membrane to bind to sterol acceptor 
molecules like albumin. Indeed, the presence of bovine 
serum albumin in capacitating medium is essential 
because of its unique ability to scavenge hydrophilic 
oxidation products and facilitate cholesterol extraction 
(Boerke et al. 2008). An alternative macromolecule not 
of animal origin (important in terms of risk of disease 
transmission) is methyl β-cyclodextrin. Whereas albumin 
extracts only 20% of the cholesterol from the non-raft 
sperm plasma membrane fraction, methyl β-cyclodextrin 
extracts 50% of the cholesterol from the entire sperm 
plasma membrane, including the lipid rafts (pig: van 
Gestel et  al. 2005b). However, methyl β-cyclodextrin 
might have a deteriorative effect on sperm cells, even 
in low concentrations. A deteriorative effect of methyl 
β-cyclodextrin on mouse oocytes has also been reported 
(Buschiazzo et  al. 2013). In stallion sperm, however, 
standard capacitating conditions, that is inclusion of 
Ca2+, HCO3

− and bovine serum albumin (individual or 
in combination), does not facilitate cholesterol removal 
from the sperm plasma membrane. Indeed, while HCO3

− 
induces an increase in ROS, this is abolished by the 
addition of Ca2+ or albumin (Macias Garcia et al. 2015). 
These observations suggest a species-specific difference 
in the regulation of plasma membrane changes during 
stallion sperm capacitation.

Aggregation of lipid rafts

As demonstrated in pig spermatozoa, increased 
membrane fluidity and cholesterol depletion are 
followed by a redistribution of the laterally segregated 
molecules, that is lipid ordered microdomains aggregate 
at the apical ridge area of the sperm head (Boerke et al. 
2008). The proteins and lipids which make up these 
microdomains also show a capacitation-dependent 
change to include higher proportions of cholesterol, 
sphingomyelin, gangliosides and phospholipids with 
saturated long-chain acyl chains and lipid-modified 
proteins such as GPI-anchored proteins (Simons & Toomre 
2000, van Gestel et  al. 2005a). Moreover, caveolin-1 
and flotillin-1 are lipid raft-specific markers (van Gestel 
et  al. 2005a) that accumulate in these microdomains 
along with functional zona pellucida-binding protein 
complexes. In man, angiotensin-converting enzyme 
and protein disulfide isomerase A6 were identified 
in the microdomains as proteins able to interact with 
heat shock protein A2, which plays a pivotal role in the 
remodeling of the sperm surface during capacitation 
and the recognition of human oocytes (Bromfield 
et  al. 2016). In pigs, it has been shown that isoforms 
of AQN-3 (spermadhesin), P47 (porcine homologue of 
SED-1), fertilin β and peroxiredoxin 5 are key proteins 
regulating the primary binding between capacitated 
spermatozoa and the zona pellucida (van Gestel et al. 
2007). However, it is not known whether these proteins 
reside in microdomains.

Hyperactivated motility

General sperm motility

A specific cytoplasmic pH is crucial to allow sperm 
motility. For de-membranated sperm, maximal 
percentages of motile sperm were recorded between pH 
7.0 and 8.1 for bull (Ho et al. 2002), pH 7.8 for human 
(Giroux-Widemann et  al. 1991) and between pH 7.5 
and 8.0 for ram (Ishijima & Witman 1987) spermatozoa. 
For comparison, the maximum percentage of motile 
stallion spermatozoa was observed in medium at pH 
7.0 (Loux et  al. 2014). An appropriate cytoplasmic 
pH enhances symmetrical flagellar, and therefore, 
progressive sperm motility, which requires the activation 
of dynein ATPases on phosphorylated dynein molecules 
and their interaction with Ca2+ which, in turn, results 
in the sliding of the adjacent outer axonemal doublet 
microtubules (Shingyoji et  al. 1977). When the 
doublets slide along one another, the sliding force is 
translated into a bend in the sperm tail (Tash 1989). The 
normal flagellar waveform requires an asynchronous 
phosphorylation and dephosphorylation of the dynein 
arms along the complete axonemal length (Wargo & 
Smith 2003). In mammals, sperm motility is mostly 
initiated and maintained by ATP, Ca2+ and HCO3

−-driven  
cAMP-dependent phosphorylation of flagellar proteins 
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(Tash & Means 1983, White & Aitken 1989, Ho et al. 
2002). Like HCO3

−, Ca2+ also directly regulates soluble 
adenylyl cyclase, which results in cAMP generation and 
activation of protein kinase A (Fig. 1) (Liguori et al. 2004, 
Hess et al. 2005). An important downstream target of cAMP 
in the sperm flagellum is serine/threonine kinase protein 
kinase A (Visconti et  al. 1997). The phosphorylation 
of serine/threonine activates protein kinase A which 
results in the downstream phosphorylation of tyrosine 
kinases whose targets are primarily located in the sperm 
tail (man: Leclerc et al. 1996; mouse: Si & Olds-Clarke 
2000). On the other hand, dynein dephosphorylation 
is evoked by the calmodulin-dependent protein serine/
threonine phosphatase, calcineurin, which is necessary 
to balance the cAMP-driven serine/threonine kinases 
in the sperm tail. The resulting net phosphorylation 
represents the sperm motility status well (Tash & 
Bracho 1994). If serine/threonine phosphatase activity 
is dominant, spermatozoa are mainly immotile whereas 
serine/threonine kinase activity correlates with increased 
motility (man and Rhesus monkey: Smith et  al. 1996; 
bull: Vijayaraghavan et al. 1996).

Relationship between Ca2+, pH and hyperactivated 
sperm motility?

Sperm cells must acquire hyperactivated motility to (1) 
detach from their oviduct epithelial cell binding and 
leave the oviductal reservoir (Suarez & Pacey 2006), 
(2) migrate through the viscous lumen of the oviduct 
(Suarez & Dai 1992) and (3) penetrate the cumulus 
matrix and zona pellucida of the mature oocyte in 
order to fuse with the oolemma (Stauss et al. 1995). In 
many species, hyperactivated motility is characterized 
by a highly asymmetrical and high-amplitude flagellar 
beating pattern that gives rise to a whip-like motion of 
the sperm tail which, in vitro, results in circular, figure 
of eight or zigzag swimming trajectories (Yanagimachi 
1994, Ishijima et al. 2006). The onset and maintenance 
of hyperactivated motility is associated with an influx 
of Ca2+ into the cytosol of the sperm tail (Suarez 
et  al. 1993, Suarez 2008). Ho et  al. (2002) showed 
in de-membranated bull sperm that a symmetrical, 
progressive sperm movement was maintained when 
the intracellular Ca2+ concentration was ~50 nM. When 
hyperactivated motility was initiated, the intracellular 
Ca2+ concentration increased to 400 nM. By contrast, Loux 
et al. (2014) reported that the degree of hyperactivated 
motility was inversely related to the cytoplasmic Ca2+ 
concentration in stallion spermatozoa. Using a similar 
de-membranated sperm model, they demonstrated 
that an increasing Ca2+ concentration did not induce 
hyperactivated motility in stallion spermatozoa at any 
pH. Moreover, cytoplasmic alkalinization induced both 
a hyperactivated motility response and cytoplasmic Ca2+ 
rise in intact sperm cells (Loux et al. 2013). Loux et al. 
(2013) observed an intracellular pH increase from 7.1 

to 7.3–7.4 in hyperactivating conditions. A pH effect on 
the motility of de-membranated stallion spermatozoa 
was not apparent. However, an extremely low Ca2+ 
concentration (27 pM) was sufficient to maintain motility 
in de-membranated stallion sperm at pH 7.4 (Loux et al. 
2014). Moreover, procaine which is considered a potent 
inducer of hyperactivated motility in intact stallion 
spermatozoa, acts independently to extracellular Ca2+ 
influx (Loux et  al. 2013). Overall, a species-specific 
relationship between Ca2+ sensitivity and hyperactivated 
motility is apparent in the horse.

In vitro, Ca2+ ionophores such as A23187 or ionomycin 
can induce and maintain hyperactivated motility in 
mouse spermatozoa for several hours (Suarez et  al. 
1987, Tateno et al. 2013). Besides the reliable induction 
of the acrosome reaction in stallion spermatozoa, Ca2+ 
ionophore A23187 exposure results in a complete loss 
of sperm motility and membrane integrity within 1 h 
(Christensen et al. 1996, Rathi et al. 2001). It is possible 
that these adverse effects of Ca2+ ionophore on sperm 
motility and membrane integrity are related to the 
fact that stallion sperm, in contrast to other mammals, 
are dependent on mitochondrial ATP (as discussed 
above). In this respect, excessive mitochondrial Ca2+ 
concentration can lead to mitochondrial failure and 
initiate cell death (Contreras et  al. 2010). Moreover, 
Ca2+ ionophores uncouple oxidative phosphorylation 
by inhibiting mitochondrial ATPase activity (Humes 
& Weinberg 1980, Krumschnabel et  al. 1999). As 
mentioned above, other inhibitors that uncouple 
oxidative phosphorylation adversely affect stallion 
sperm motility and membrane integrity (Gibb et  al. 
2014, Davila et  al. 2016). This is because production 
of mitochondrial ATP to support stallion sperm motility 
and membrane integrity is severely compromised soon 
after exposure. This is a cause for concern with respect 
to a capacitation induction protocol, because sperm 
viability and motility would need to be conserved over 
a period of hours during in vitro fertilization. Other 
pharmacological agents such as caffeine (Ho & Suarez 
2001b), thimerosal (Ho & Suarez 2001b, Marquez & 
Suarez 2004) and thapsigargin (Ho & Suarez 2001b, 
Ho & Suarez 2003) also trigger an intracellular Ca2+ 
rise and initiate asymmetrical flagellar beating in 
mouse spermatozoa. The effect of these molecules on 
the cytoplasmic Ca2+ concentration and hyperactivated 
motility have yet to be studied in the horse.

In mammals such as man, cattle and mice, CATSPER 
channels present on the principal piece of the sperm 
tail’s need be activated to induce hyperactivated motility. 
There are four CATSPER genes coding for proteins that 
are structurally similar to subunits of conventional 
voltage-gated cation channels. When a mouse single 
CATSPER gene knock-out was created, males were 
infertile because the spermatozoa were not able to 
achieve hyperactivated motility (Carlson et  al. 2005, 
Qi et  al. 2007). The general trigger of these CATSPER 
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channels is alkaline depolarization evoked by a change 
in the oviductal ionic environment, which results in an 
elevated pH of the oviduct fluid (Carlson et  al. 2003, 
Navarro et  al. 2008). Contact between spermatozoa 
and the alkaline oviductal environment increases the 
intracellular pH and activates the CATSPER channels. In 
stallion sperm, CATSPER1 mRNA has been identified, 
and CATSPER1 protein was localized to the principal 
piece of the sperm tail. However, analysis of the equine 
CATSPER1 protein revealed species-specific differences 
in the structure in the pH sensor region (Loux et  al. 
2013). This indicated that, despite the presence of a 
CATSPER channel in stallion sperm, the relationship 
between hyperactivated motility and Ca2+ influx is likely 
to be weak.

A clear increase in oviduct pH and, as a consequence, 
in sperm cytoplasmic pH likely to activate the CATSPER 
channels, was observed in Rhesus monkeys approaching 
ovulation (7.1–7.3 to 7.5–7.8) (Maas et  al. 1977). In 
the mouse, a Na+-dependent Cl−/HCO3

− exchange 
controls the intracellular pH of the sperm (Zeng et al. 
1996), while in man, an outflow of H+ is initiated by 
activating a voltage-gated proton channel (Lishko et al. 
2010). To maximize the subsequent Ca2+ entry through 
the CATSPER channels, both a pH-sensitive efflux of 
K+ by KSPER (Navarro et  al. 2007) and an activation 
of Cl− channels by closing Na+ channels might 
support capacitation-related sperm plasma membrane 
hyperpolarization (mouse: Hernandez-Gonzalez et  al. 
2007). Hyperpolarization also plays a central role 
in the acrosome reaction. In human spermatozoa, it 
has been demonstrated that CATSPER channels can 
be alternatively activated by progesterone and, to 
a lesser extent, prostaglandins (Lishko et  al. 2011). 
Other Ca2+ metabolism-related pathways identified 
in the mammalian sperm tail, include the following: 
(1) a transient receptor potential Ca2+ channel, which 
may affect sperm motility and re-sequestration of Ca2+ 
into sperm stores (Castellano et  al. 2003), (2) cyclic-
nucleotide-gated Ca2+ channels (Wiesner et  al. 1998) 
and (3) voltage-gated Ca2+ channels (Benoff 1998, 
Darszon et al. 2006). However, the role of the various 
Ca2+ regulatory pathways in the physiological activation 
of hyperactivated motility is unclear.

Besides the extracellular Ca2+ influx through the 
CATSPER channels, there are also intracellular Ca2+ 
stores, in the so-called redundant nuclear envelope 
(RNE) located at the base of the sperm tail, which are 
able to provide Ca2+ to the sperm cytoplasm (Ho & 
Suarez 2001b, 2003). Inositol 1,4,5-triphosphate (IP3)-
gated channels on the RNE membranes trigger Ca2+ 
release to the sperm cytoplasm whereas calreticulin, 
a Ca2+ binding protein, sequesters Ca2+ in the RNE 
(bull: Ho & Suarez 2001b, 2003; man: Naaby-Hansen 
et  al. 2001). In the mouse, it has been shown that 
ryanodine receptors on the RNE membrane also play a 
role in intracellular Ca2+ release (Trevino et  al. 1998). 

As such, both Ca2+ sources contribute to initiation and 
maintenance of high Ca2+ concentrations during sperm 
hyperactivation (Ho & Suarez 2001b, 2003). More 
specifically, the Ca2+-induced Ca2+ release from the 
RNE amplifies the intracellular Ca2+ rise resulting from 
CATSPER activation (Costello et  al. 2009, Olson et  al. 
2010). Furthermore, this activation of CATSPER and IP3-
gated channels is clearly involved in induction of the 
acrosome reaction (Quill et al. 2003, Ren et al. 2001). 
So far, a role of intracellular Ca2+ stores in the induction 
of hyperactivated motility in stallion spermatozoa is 
purely theoretical.

Hypermotility is induced by HCO3
− and  

Ca2+-driven pathways

So far, it has not been elucidated how sperm cells 
modify the beat of their tail, at the molecular level. It 
is known that the Ca2+ rise and the subsequent onset 
of hyperactivated motility changes the sliding of the 
microtubules (Lindemann & Lesich 2010). Furthermore, 
it has been demonstrated in primates (Mahony & 
Gwathmey 1999), pigs (Harayama et  al. 2012) and 
rodents (Si & Okuno 1999) that hyperactivated motility 
is associated with a highly increased cAMP-dependent 
tyrosine phosphorylation of the flagellar proteins. The 
generator of tyrosine phosphorylation events, protein 
kinase A, is connected to the fibrous sheath of the sperm 
tail by A-kinase-anchoring proteins, and it has been 
suggested that these proteins play an important role 
in hyperactivated sperm motility (Hamster: Si 1999). 
Moreover, A-kinase-anchoring proteins could attach 
protein kinase A to specific subcellular regions in close 
proximity to motility-related targets in the axoneme 
(Carrera et  al. 1994, Mandal et  al. 1999). A-kinase-
anchoring protein 3 and A-kinase-anchoring protein 4 
play a central role in activating tyrosine kinases to cause 
extensive tyrosine phosphorylation of sperm tail proteins 
(hamster: Si 1999; man: Ficarro et al. 2003). This altered 
tail protein tyrosine phosphorylation status is required 
for the acquisition of hyperactivated sperm motility 
(hamster: Si 1999; man: Leclerc et al. 1996). Changes in 
A-kinase-anchoring protein-mediated protein targeting 
might also play an essential role in this process.

Independent of protein kinase A, Ca2+ is involved in 
pathways regulating sperm motility. Calmodulin, located 
in the principal piece of the sperm tail (Schlingmann 
et  al. 2007), is a Ca2+-binding protein essential to the 
Ca2+-dependent modulation of mammalian sperm 
motility (Ho & Suarez 2001a, Ignotz & Suarez 2005). 
It has been suggested that this pathway progresses 
in parallel with cAMP/protein kinase A activity, 
although the two act independently (Litvin et al. 2003, 
Schlingmann et al. 2007). Binding of Ca2+ to calmodulin 
activates Ca2+/calmodulin-dependent kinases (Marin-
Briggiler et  al. 2005) which phosphorylate a specific  
axonemal protein, resulting in hyperactivated motility 
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(Suarez 2008). Calmodulin kinases present in the 
flagellum of bull (Ignotz & Suarez 2005) and human 
(Marin-Briggiler et al. 2005) sperm were associated with 
hyperactivated motility. On the other hand, phosphatase 
activities are also directly involved in axonemal function 
because they reverse the latter effect by regulating 
dynein ATPase activities (Tash et al. 1988, Carrera et al. 
1996) (Fig. 2).

Is hyperactivated motility linked to protein tyrosine 
phosphorylation during stallion sperm capacitation?

As indicated above, in various mammalian species it has 
been shown that hyperactivated motility is associated 
with a marked increase in cAMP/protein kinase A and 
Ca2+/calmodulin-dependent kinase activity that induces 
tyrosine phosphorylation of the flagellar proteins 
that, in turn, alter the sliding of the microtubules 
within the sperm axoneme (mouse: Visconti et  al. 
1995a,b; pig: Flesch et  al. 1999, Harayama et  al. 
2012). Surprisingly, hyperactivated motility and protein 
tyrosine phosphorylation can also occur independently 
(mouse: Olds-Clarke 1989; cow: Marquez & Suarez 
2004). This latter observation certainly seems to be true 
for stallion sperm. For example, type 10 sAC induced 
protein tyrosine phosphorylation in stallion sperm, 
without initiating hyperactivated motility (McPartlin 
et  al. 2011). An increased PKA activity and protein 
tyrosine phosphorylation without hyperactivation was 
also observed after incubating stallion spermatozoa 
in vitro with membrane-soluble cAMP analogues or a 
phosphodiesterase inhibitor (caffeine) (Pommer et  al. 
2003). ROS (Baumber et  al. 2003) and modified-
Whitten’s capacitating medium with higher alkalinity 

(pH = 7.8–8.0) (Gonzalez-Fernandez et al. 2012, 2013) 
also induce protein tyrosine phosphorylation in the 
absence of, or only a mild, hyperactivated motility 
response. Similarly, binding of stallion sperm to late 
pre-ovulatory stage oviduct epithelium induces protein 
tyrosine phosphorylation without hyperactivated 
motility. This protein tyrosine phosphorylation was 
regulated primarily by a high pH within oviductal 
secretory cells (Leemans et  al. 2014). When stallion 
sperm are incubated in capacitating conditions at 
pH 7.4, a Ca2+-mediated inhibitory effect on protein 
tyrosine phosphorylation occurs due to the formation 
of a Ca2+/calmodulin complex that supports sperm 
phosphatase activity (Gonzalez-Fernandez et al. 2012). 
Under alkaline-capacitating conditions (pH = 7.8–
8.0) however, Ca2+/calmodulin-dependent kinases 
dominate and play a downstream role in protein kinase 
A-dependent protein tyrosine phosphorylation. As such, 
Ca2+-induced protein tyrosine kinases activate protein 
tyrosine phosphorylation in stallion spermatozoa 
downstream of protein kinase A (Gonzalez-Fernandez 
et al. 2013).

Interestingly, after cryopreservation a premature 
induction of protein tyrosine phosphorylation is observed, 
commonly referred to as ‘cryocapacitation’ (Bailey 
et  al. 2000, Watson 2000). The increased osmolality 
associated with cryopreservation may induce a ROS-
dependent increase in protein tyrosine phosphorylation 
in stallion sperm (Aitken et  al. 1983, Burnaugh et  al. 
2010). After cryopreservation, sperm cells display an 
increased intracellular Ca2+ concentration, increased 
ROS generation and a reduced antioxidant capacity. 
Recently, Ortega-Ferrusola et  al. (2017) examined 
the effect of cryopreservation on both apoptosis and 

Figure 2 Schematic representation of signaling 
pathways involved in the regulation of 
mammalian sperm (hyper)motility. Progressive 
motility is regulated by low-level activity of 
the AC/cAMP/PKA pathway, while 
hyperactivated motility is induced when the 
latter pathway is activated to a much higher 
level, in combination with the activation of the 
calmodulin kinase (CaMK) pathway. Image 
modified from Turner (2006).
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premature capacitation-like changes simultaneously, 
to investigate the reduced longevity of frozen/thawed 
stallion sperm. In general, cryopreservation induced 
an increase in caspase 3 activity, translocation of 
phosphatidylserine from the inner to outer layer of 
the plasma membrane lipid bilayer, a reduction in 
mitochondrial membrane potential and an increased 
cytoplasmic Na+ concentration, all of which indicate 
the occurrence of an apoptotic-like process in frozen/
thawed stallion sperm cells. Additionally, a small 
subpopulation of cryopreserved sperm showed 
capacitation-like characteristics after thawing, such 
as increased membrane fluidity and protein tyrosine 
phosphorylation. To avoid the negative effects of 
cooling and cryopreservation on stallion sperm, Gibb 
et al. (2015) recently described a promising approach to 
store stallion spermatozoa at room temperature. Taking 
into account that stallion spermatozoa rely heavily on 
mitochondrial ATP production which generates ROS (as 
discussed previously), combined supplementation of 
sperm storage medium with 10 mM pyruvate and 50 mM 
L-carnitine was found to counteract the adverse effects of 
ROS production during room temperature storage. Much 
improved preservation of sperm total and progressive 
motility after 72 h incubation and significantly higher 
acetyl-L-carnitine concentrations were observed using 
this antioxidant-enriched sperm storage medium.

In contrast to other mammalian species, no 
intracellular Ca2+ rise and activation of hyperactived 
motility is observed when stallion sperm are exposed 
to progesterone or prostaglandin E1 (Loux et al. 2013). 
Other hyperactivation triggers for stallion sperm have 
been described, but do not support protein tyrosine 
phosphorylation in the sperm tail. For example, three 
parameters of progressive motility (straight line velocity, 
straightness and linearity) were decreased when stallion 
sperm was incubated in 10% follicular fluid, indicating 
the acquisition of hyperactivated motility (Lange-
Consiglio & Cremonesi 2012). Similarly, Leemans et al. 
(2015b) demonstrated the induction of hyperactivated 
motility when stallion spermatozoa were exposed to 
an alkaline follicular fluid fraction, while procaine also 
effectively induced hyperactivated motility in stallion 
spermatozoa; however, both did so in the absence of 
protein tyrosine phosphorylation (McPartlin et al. 2009, 
Leemans et al. 2015a).

Acrosome reaction

The Ca2+-dependent release of the acrosomal contents is 
an essential step in mammalian fertilization because it 
facilitates penetration through the acellular glycoprotein 
coat of the oocyte. After traversing the zona pellucida, 
the sperm cell will fuse with the oolemma of the mature 
oocyte (Yanagimachi 1994). In vivo, the acrosome 
reaction takes place in the female genital tract, at the site 
of fertilization. The acrosome reaction is a multipoint 

membrane fusion event between the sperm plasma 
membrane and the outer acrosomal membrane (Vigil 
1989, Tsai et al. 2010), which results in the generation 
of mixed vesicles containing both plasma membrane 
and outer acrosomal membrane material. The remaining 
unfused acrosomal membranes, that is the equatorial 
area of the outer acrosome and the sperm plasma 
membrane connected to the inner acrosomal membrane 
covering the apical part of the nucleus, subsequently 
function as the sperm plasma membrane surface (Kim & 
Gerton 2003, Vjugina & Evans 2008). This re-designed 
outer sperm membrane contains a hairpin structure 
that is able to bind to the oolemma to enable gamete 
fusion and oocyte activation (Yanagimachi 1994). In 
boar sperm, it has been demonstrated that soluble 
N-ethylmaleimide- SNARE protein interactions play 
a fundamental role in the fusion of the sperm plasma 
membrane and the outer acrosomal membrane, because 
a trans ternary-soluble N-ethylmaleimide-sensitive 
factor attachment protein receptor protein complex is 
formed during capacitation. Key factors involved in this 
process are syntaxin 1B and VAMP 3 from the plasma 
membrane, and SNAP 23 from the outer acrosomal 
membrane (Tsai et al. 2010). Additionally, the entry of 
Ca2+ (in vitro by use of Ca2+ ionophores; in vivo after 
ZP binding) is required to facilitate the conversion to 
cis-soluble N-ethylmaleimide-SNARE complexes which 
will result in acrosomal exocytosis and penetration of 
the zona pellucida (Roggero et al. 2007).

In mice, one of the main molecules triggering the 
acrosome reaction in capacitated spermatozoa is zona 
pellucida glycoprotein 3 (ZP3) present on mature 
oocytes (Bleil & Wassarman 1990, Yanagimachi 1994, 
Arnoult et al. 1999). More recently, it has been shown 
that only contact with the intercellular matrix of the 
cumulus cell complex was able to induce the acrosome 
reaction and allow mouse spermatozoa to pass through 
the zona pellucida (Inoue et al. 2011, Jin et al. 2011). 
In many other mammals, including the horse, it has 
been demonstrated that capacitated, acrosome-
intact spermatozoa initiate zona pellucida binding 
(Yanagimachi 1994), although stallion spermatozoa 
showed a low incidence of acrosome reaction after 
1 h of in vitro binding to the zona pellucida (Ellington 
et  al. 1993, Cheng et  al. 1996, Meyers et  al. 1996). 
Progesterone, present in follicular fluid or cumulus cell 
secretions, is another factor that might be responsible for 
inducing the acrosome reaction in horse spermatozoa 
(Saaranen et  al. 1993, Cheng et  al. 1998a, Lange-
Consiglio & Cremonesi 2012) (Fig.  1). Interestingly, 
the progesterone-induced acrosome reaction did not 
proceed in a protein kinase A, but rather in a protein 
kinase C and protein tyrosine kinase-dependent manner 
(Rathi et  al. 2003), which is very similar to the zona 
pellucida-mediated induction of the acrosome reaction. 
Indeed, Breitbart and Naor (1999) showed that zona 
pellucida protein 3 activates a sperm protein tyrosine 
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kinase coupled to phospholipase C (PLC), which in turn 
stimulates protein kinase C by generating diacylglycerol 
(DAG) from phosphatidylinositol-biphosphate (PIP2) 
(Fig. 1). How the generation of diacylglycerol eventually 
results in the onset of the acrosome reaction is not yet 
known. By contrast, when stallion spermatozoa are 
incubated in vitro in HCO3

−-enriched conditions, the 
acrosome reaction is mainly supported by a protein 
kinase A instead of a protein tyrosine kinase and 
protein kinase C-dependent pathway (Rathi et al. 2003) 
(Fig. 1), indicating that progesterone and HCO3

− induce 
the acrosome reaction in different ways. In vitro, the 
acrosome reaction can also be reliably induced by 
non-physiological triggers, such as Ca2+ ionophore in 
combination with HCO3

− (Rathi et al. 2001).
In mice and pigs, it has been demonstrated that several 

neurotransmitter receptor/ion channels are present in 
sperm cell membranes. At least two of these channels, 
the glycine receptor/Cl− channel and a nicotinic 
acetylcholine receptor, are important for the ZP-initiated 
acrosome reaction, but not for the progesterone-initiated 
acrosome reaction (mouse: Meizel 2004; pig: Melendrez 
& Meizel 1995). In general, the glycine receptor/Cl− 
channel is involved in inhibiting neurotransmission 
in the central nervous system, where glycine inhibits 
transmission by increasing Cl− influx through the glycine 
receptor/Cl− channel to induce hyperpolarization 
(Betz & Becker 1988). However, in some neurons, 
neutrophils, and glycerol kinase pseudogene 3 cells, 
glycine appears to cause depolarization by activating the 
glycine receptor/Cl− channel (presumably stimulating 
Cl− efflux), resulting in an increased cytoplasmic 
Ca2+ concentration (Boehm et  al. 1997, Tapia et  al. 
1997, Weaver et  al. 1998). The latter has also been 
demonstrated in sperm cells which came into contact 
with zona pellucida proteins. The depolarizing effect 
was evident as Ca2+ influx through voltage-gated Ca2+ 
channels (Arnoult et al. 1996, Florman et al. 1998). This 
event initiated the onset of the acrosome reaction. In the 
horse, the potential role of a glycine receptor/Cl− channel 
and/or a nicotinic acetylcholine receptor in the onset of 
the acrosome reaction has not been studied. McPartlin 
et  al. (2011) showed that the cAMP-driven activation 
of guanine-nucleotide exchange factors (RAPGEF3/
RAPGEF4) induced a sperm membrane depolarization 
in capacitated stallion spermatozoa. Depolarization-
dependent Ca2+ influx subsequently initiated acrosomal 
exocytosis. However, the activation of these factors did 
not play any role in the activation of protein kinase A or 
in protein tyrosine phosphorylation (Fig. 1).

Equine IVF: an update

Worldwide, only two IVF foals have been born, both 
more than 25  years ago in 1990–1991 (Palmer et  al. 
1991, Bézard et al. 1992). The success of IVF in these 
cases was attributed to in vitro co-incubation of equine 

oocytes with calcium ionophore-treated stallion 
spermatozoa. Unfortunately, neither this nor other 
equine IVF protocols have proven to be reproducible. 
Indeed, subsequent attempts have yielded extremely 
poor equine IVF results, with reported cleavage rates 
varying from 0 to 33% (Zhang et al. 1990, Choi et al. 
1994, Li et al. 1995, Dell’aquila et al. 1996, 1997a,b, 
Alm et al. 2001, Hinrichs et al. 2002, Tremoleda et al. 
2003, Roasa et al. 2007, Mugnier et al. 2009a,b, Lange-
Consiglio & Cremonesi 2012). A detailed overview 
of the published equine IVF studies was produced by 
Leemans et al. (2016a).

During the last decade, the utility of procaine in equine 
IVF media has been a topic of discussion. As mentioned 
previously, procaine is a potent inducer of hyperactivated 
motility in stallion spermatozoa (McPartlin et al. 2009, 
Leemans et  al. 2015a). Indeed, procaine-induced 
hyperactivation of stallion spermatozoa can even be 
induced in non-capacitating medium in the absence 
of external Ca2+ (Loux et  al. 2013), with CATSPER 
channels apparently not participating in procaine-
induced hyperactivation (Loux et  al. 2013). Initial 
reports further suggested that procaine promoted equine 
in vitro fertilization by inducing hyperactivated motility 
while other requisite sperm capacitation events, such 

Figure 3 Methods to distinguish fertilization from parthenogenesis. 
(A) Previously the presence of 2 pronuclei (2 PN), evaluated using 
nuclear stains such as propidium iodide, was considered adequate to 
indicate fertilization of equine oocytes. However, this method cannot 
exclude parthenogenesis. Therefore, the additional presence of the 
sperm tail (ST) and the second extruded polar body (PB) shown by (B) 
MitoTracker Green FM pre-labeling combined with Hoechst 
post-fixation (Leemans et al. 2015a; published with permission from 
Oxford University Press (permission number 4450310125499)); (C) 
lacmoid post-fixation, should be demonstrated; or (D) paternal (pPN) 
and maternal (mPN) pronuclei in equine zygotes should be 
distinguished by different histone 3 methylation (H3K9me3) patterns.
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as protein tyrosine phosphorylation, were proposed to 
have been triggered by other medium constituents or a 
high pH (McPartlin et al. 2009, Ambruosi et al. 2013). 
Cleavage rates exceeding 60% of co-incubated oocytes 
were reported. However, none of these cleaved oocytes 
developed to the blastocyst stage. Leemans et al. (2015a) 
subsequently demonstrated that, although procaine 
did indeed trigger sperm hyperactivation, procaine-
induced oocyte cytoplasmic cleavage also occurred 
in the absence of sperm. Moreover, gamete fusion 
induced oocyte activation, indicated by cytoplasmic 
Ca2+ oscillations, was not observed in the presence 
of procaine. It transpired that procaine acted further 
downstream in the oocyte-activation process, and only 
induced cytokinesis-like events via pH-dependent 
depolymerization of F-actin, whereas nuclear activation 
was not triggered. Moreover, the procaine concentration 
used to induce sperm hyperactivated motility and 
oocyte cytokinesis was DNA toxic (Leemans et  al. 
2015a). Rather than true fertilization, procaine-induced 
DNA fragmentation with degeneration of the cleaving 
blastomeres occurring at the 8–16 cell stage, that is 
stage of genome activation in horse embryos (Brinsko 
et al. 1995).

As a result of the initial misinterpretation, more 
stringent evaluation methods are clearly needed to 
confirm fertilization in horse oocytes. For various 
mammals, the presence of two pronuclei after 20–24 h 
gamete co-incubation, as visualized by nuclear 
chromatin stains such as Hoechst or propidium iodide, 
is considered valid proof of fertilization because of the 
low incidence of parthenogenesis (around 5%) in current 
farm animal IVF systems (Beek et al. 2012, Heras et al. 
2014, 2015). However, the presence of two pronuclei 
is not sufficient to distinguish normal fertilization from 
parthenogenesis in the horse. Using techniques such 
as pre-labeling sperm with MitoTracker Green FM/
Hoechst, and lacmoid post-fixation, Leemans et  al. 
(2015a) were able to differentiate fertilization (two polar 
bodies within the perivitelline space, two pronuclei and 
a sperm tail within the ooplasm) from parthenogenesis 
(one polar body, one or two pronuclei and no sperm tail) 
(Fig. 3). Recently, a staining technique to differentiate the 
paternal from the maternal pronucleus in equine zygotes 
produced by intracytoplasmic sperm injection (ICSI) 
was established (Heras et al. 2015), based on different 
histone 3 methylation (H3K9me3) patterns. This staining 
technique could, however, not be used in the procaine 
experiments because the procaine-exposed oocytes 
did not form normal pronuclei but instead produced 
condensed DNA fragments (Fig. 3).

Conclusion

For more than 25 years, co-incubation of mature oocytes 
with capacitated sperm has been the standard method for 
producing in vitro embryos in several species including 

man, cattle, pigs and many laboratory animals. In the 
horse, however, conventional IVF still does not work. 
Inadequate capacitation of stallion spermatozoa under in 
vitro conditions is probably the major obstacle. It appears 
that several factors required to induce capacitation in 
other mammalian species are not involved in equine 
sperm capacitation. However, biological and chemical 
capacitation triggers have been identified to facilitate 
tail-associated protein tyrosine phosphorylation and 
hyperactivated motility in stallion sperm. However, 
since the acrosome reaction cannot be induced reliably 
using these factors, further research should focus on 
capacitation-related changes that prepare the sperm 
plasma and outer acrosomal membranes for fusion. It 
will be necessary to verify that ‘improved’ capacitation 
conditions support (1) cholesterol depletion from the 
sperm plasma membrane, (2) lateral redistribution of 
lipid rafts in the apical region and ultimately (3) the zona 
pellucida-induced acrosome reaction. It is likely that 
the induction of appropriate sperm plasma membrane 
changes will support the acrosome reaction. Only 
fully capacitated stallion spermatozoa will be able to 
penetrate the cumulus and zona pellucida barriers to 
accomplish fertilization.
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