
E-Mail karger@karger.com

 Neuro-Update: Multiple Sclerosis 

 Eur Neurol 2015;73:238–246 
 DOI: 10.1159/000377675 

 Update on the Autoimmune Pathology 
of Multiple Sclerosis: B-Cells as 
Disease-Drivers and Therapeutic Targets 

 H.-Christian von Büdingen    Arumugam Palanichamy    Klaus Lehmann-Horn    
Brady A. Michel    Scott S. Zamvil  

 Department of Neurology, University of California San Francisco,  San Francisco, Calif. , USA
 

research efforts focusing on the immunopathological rele-
vance of B-cells has gained significant momentum and giv-
en  rise to a constellation of promising therapeutic agents 
for  this complex B-cell–driven disease, including novel 
 anti-CD20 antibodies, as well as agents targeting CD19 and 
BAFF-R.  © 2015 S. Karger AG, Basel 

 Multiple Sclerosis – A Brief Overview 

 Multiple sclerosis (MS) is the most common chronic 
neurological disease in young adults, affecting about 2.5 
million people worldwide. In countries populated by 
Northern Europeans and their descendants, the inci-
dence is about 7/100,000, and the prevalence is about 
120/100,000  [1] . The incidence of MS seems to have in-
creased over the last century, particularly in women, lead-
ing to a female:male sex ratio of 3:   1  [2] . The peak age of 
onset is between 20 and 40. At disease onset,  ∼ 80% of 
patients are diagnosed with relapsing-remitting MS 
(RRMS); over time, about 60% of RRMS patients will de-
velop secondary progressive MS. About 25% never expe-
rience sustained neurological disability, whereas a small-
er percentage become severely disabled a short time after 
disease diagnosis. Pathologically, MS is characterized by 
chronic CNS inflammation accompanied by demyelin-
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 Abstract 

  Background:  Collectively, research on the role of B-cells in 
the pathogenesis of multiple sclerosis (MS) illustrates how 
translational medicine has given rise to promising therapeu-
tic approaches for one of the most debilitating chronic neu-
rological diseases in young adults. First described in 1935, 
the experimental autoimmune/allergic encephalomyelitis 
model is a key animal model that has provided the founda-
tion for important developments in targeted therapeutics. 
 Summary:  While additional B-cell therapies for MS are pres-
ently being developed by the pharmaceutical industry, 
much remains to be understood about the role played by 
B-cells in MS. The goal of this review is to summarize how B-
cells may contribute to MS pathogenesis and thereby pro-
vide a basis for understanding why B-cell depletion is so ef-
fective in the treatment of this disease.  Key Messages:  B-
cells are key players in the pathogenesis of MS, and their 
depletion via B-cell–targeted therapy ameliorates disease 
activity.  Clinical Implications:  In 2008, data from the first 
CD20-targeting B-cell depleting therapeutic trials using 
rituximab in MS were published. Since then, there has been 
a large body of evidence demonstrating the effectiveness of 
B-cell depletion mediated via anti-CD20 antibodies. Intense 
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ation, gliosis, and axonal loss. Axonal degeneration is be-
lieved to be ultimately responsible for progressive neuro-
logical dysfunction. The most widely accepted view of MS 
pathogenesis includes autoimmune-mediated myelin in-
jury in a susceptible host. MS behaves as a complex ge-
netic trait  [3] , and exposure to infectious, climatic and 
other environmental variables likely have a considerable 
effect on an individual’s risk for developing MS. Disease-
specific, immune-modulatory therapies became available 
in the mid-to-late 1990s; currently, seven substances are 
approved for the treatment of MS (interferon-β1, glat-
iramer acetate, mitoxantrone, natalizumab, fingolimod, 
dimethyl fumarate, teriflunomide). These compounds 
have been extensively studied and are discussed else-
where in the literature. In this review article, we will focus 
on B-cells, their immunological properties relevant to 
MS, and how these functions are targeted by the B-cell 
depleting therapeutic strategies currently in develop-
ment.

  B-Cells: Drivers of MS 

 B-cells can exert effector functions as antigen-present-
ing cells, by cytokine and antibody production, and they 
participate in the formation of ectopic lymphoid tissues 
( fig. 1 ). The strongest evidence to date for B-cells playing 
a crucial role in MS immune pathology stems from stud-
ies evaluating the effect and efficacy of anti-CD20 B-cell– 
depleting therapies such as rituximab, ocrelizumab, and 
ofatumumab  [4–7] . Interestingly, the initial impetus for 
B-cell depleting therapy was to remove autoantibody-
producing plasma cells after multiple experimental auto-
immune encephalitis (EAE) studies had demonstrated 
the critical roles of antibody responses in the develop-
ment of CNS demyelination  [8–11] . However, since the 
late 1990s, it has become increasingly appreciated that 
 antigen presentation by B-cells is a necessary step for 
 triggering autoimmunity against the CNS myelin oligo-
dendrocyte glycoprotein  [12–14] . B-cells can provide ac-
tivation/effector mechanisms, and can assume proin-
flammatory, anti-inflammatory and/or regulatory roles. 
To date, the exact target antigens of pathogenic B-cell re-
sponses in MS remain unknown, despite our knowledge 
that disease-associated B-cells result from antigen-driven 
affinity maturation. Needless to say, not all B-cells in MS 
patients support detrimental autoimmunity. Therefore, 
being able to clearly differentiate pathologically relevant 
from normal B-cells in the future will pave the way for 
treatments with enhanced therapeutic precision and im-

proved safety profiles, thereby bringing us closer to per-
sonalized therapy.

  In the following paragraphs, we discuss the B-cell 
functions that have been demonstrated to be involved in 
the immune pathogenesis of MS, as well as additional 
functions that may likely be involved in MS immune pa-
thology. We will focus mainly on data from human stud-
ies but will include experimental animal data where ap-
propriate.

  The Peripheral B-Cell Compartment in MS 
 There is ample evidence that peripheral B-cell re-

sponses are closely involved in the immune pathology of 
MS through proinflammatory mechanisms, bystander 
activation, or through regulatory functions. Under nor-
mal circumstances, B-cell tolerance is necessary to con-
trol autoimmunity that can randomly develop during 

  Fig. 1.  B-cell functions. Depicted are the basic immunological 
functions performed by B-cells as relevant to MS immune pathol-
ogy. Autoantigen presentation was shown to be the key B-cell 
function driving experimental CNS autoimmunity in myelin-oli-
godendrocyte-induced EAE. Antibodies have long been hypothe-
sized to play a role in MS; for example, clonal antibodies can be 
found as oligoclonal bands (OCB) in cerebrospinal fluid (CSF). 
Ectopic lymphoid follicles are tertiary lymphoid tissues that be-
come established at sites of inflammation. In MS, lymphoid folli-
cle-like structures have been found associated with meningeal tis-
sues. Cytokine production by B-cells can support regulatory (IL-
10) and proinflammatory T-cell functions (IL-6, LT-α, TNF-α); 
cytokine production by B-cells can occur following recognition of 
specific antigens or in an antigen-independent fashion. See text for 
detailed explanations. 
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early B-cell development  [15]  or even during targeted im-
munity against foreign pathogens  [16] . Central B-cell tol-
erance, which reduces the autoimmune potential of B-
cells developing in the bone marrow, appears to be intact 
in the majority of MS patients; conversely, B-cell toler-
ance mechanisms that regulate the autoimmunity of B-
cells circulating between peripheral lymphoid tissues 
seems to be defective  [17] . Cervical lymph nodes have 
been described as possible sites supporting CNS-directed 
autoimmunity in both humans  [18]  and mice  [19] .

  Memory B-cells serve as highly efficient antigen-spe-
cific antigen-presenting cells (APC)  [20, 21] . In this re-
gard, myelin-reactive memory B-cells can be found in the 
peripheral blood of MS patients  [22] . Memory B-cells ex-
press high levels of CD20; they are effectively depleted 
and repopulate slowly following treatment with anti-
CD20 targeting monoclonal antibodies  [23] , coinciding 
with sustained suppression of MS disease activity  [24] . In 
MS, B-cells were shown to secrete increased levels of IL-6 
compared to healthy controls; this proinflammatory bias 
was not observed in returning B-cells 12 months after B-
cell–depleting therapy  [25] . Given that the repopulating 
B-cell compartment is mainly composed of mature naïve 
and immature B-cells  [26] , it is likely that the increased 
IL-6 production in MS patients is a function associated 
with antigen-experienced memory B-cells. Memory B-
cells are also effective supporters of T-cell immune mech-
anisms; their depletion reduces IL-17 production by pe-
ripheral blood lymphocytes, providing further evidence 
for the role of B-cells in supporting proinflammatory T-
helper 17 cell (Th17) responses  [13, 25] . Furthermore, B-
cells from MS patients were shown to respond to nonspe-
cific activating stimuli such as CpG or IFN-γ with an 
 exaggerated proinflammatory cytokine profile  [27] . Ac-
cordingly, the proinflammatory functions of B-cells in 
MS can also occur in an antigen-independent fashion, by 
way of bystander activation of T-cells, a mechanism that 
explains the association of MS relapses with systemic in-
fections  [28, 29] .

  In humans and mice, IL-10 secreting B-cells (B10 cells) 
exert regulatory roles by suppressing T-helper 1 (Th1) 
differentiation  [30, 31]  and by downregulating TNF-α 
production in monocytes  [32] . Conflicting data exists re-
garding the B-cell subpopulation responsible for IL-10 se-
cretion. One study found IL-10 expressing B-cells among 
activated memory B-cells, suggesting that B10 cells per-
form antigen-specific regulatory functions  [32] ; increased 
numbers of IL-10 producing B-cells were reported in pa-
tients with autoimmune disease although most of the MS 
patients in this study had received treatment with im-

mune-suppressive or immune-modulatory therapies 
 [32] . Conversely, another study reported that IL-10 secre-
tion is mainly a function of naïve B-cells  [21]  and that a 
switch from regulatory B10 cells to proinflammatory B-
cells may occur as B-cells transition from the naïve to the 
memory phenotypes  [21] . In EAE, B10 cells inhibit auto-
immune T-cell responses, an effector function that is de-
pendent on IL-21 and CD40-mediated interaction with 
T-cells  [33] . Interestingly, under certain circumstances, 
therapeutic B-cell depletion in EAE may also eliminate 
regulatory B-cells and result in exacerbation of disease 
activity  [14] . To date, disease worsening as a direct re-
sponse to CD20-targeting B-cell–depleting therapy has 
not been observed in humans; however, an increased pro-
inflammatory monocytic phenotype has been described 
in some MS patients after treatment with rituximab  [34] .

  We recently demonstrated that in MS, clonally related 
B-cells provide an antigen-specific and immunologically 
active link between the periphery and cerebrospinal fluid 
 [35, 36]  and that oligoclonal bands (OCB)-producing B-
cells are present not only in the CNS but also in periph-
eral blood  [37] . Therefore, antigen-stimulated B-cells 
provide an active immune axis bridging the CNS and the 
periphery and they may undergo immune stimulation in 
both compartments  [35–37] , further supporting the im-
portant pathological role of peripheral B-cell immunity 
in MS ( fig. 2 ).

  B-Cells in the CNS 
 A growing body of evidence has not only established 

the CNS as the target tissue of autoimmunity in MS but 
has identified sub-compartments (i.e., brain parenchy-
ma, cerebrospinal fluid, meningeal tissue) that reflect im-
munological activity, supporting B-cell affinity-matura-
tion, proliferation, and terminal differentiation to anti-
body-producing plasma cells. B-cells are commonly 
found in MS lesions, albeit predominantly in active le-
sions and at significantly lower numbers compared to T-
cells  [38] . Lymphoid B-cell follicle-like structures featur-
ing characteristics of germinal centers have been observed 
in the cerebral meninges of secondary progressive MS pa-
tients  [39]  and are associated with cortical neuronal loss 
and demyelination  [40, 41] . While the pathological im-
portance of such ectopic B-cell follicles as drivers of CNS-
targeted autoimmunity remains to be fully understood, 
the presence of CD35+ follicular dendritic cells and pro-
liferating B-cells, together with expression of the B-cell–
attracting chemokine CXCL13 and of the B-cell–activa-
tion factor (BAFF) suggest that active immune responses 
occur in meningeal tertiary lymphoid tissues in second-
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ary progressive MS patients  [39, 42] . Furthermore, 
CXCL13 and BAFF have also been described in MS le-
sions  [43, 44]  where these factors could mediate local B-
cell recruitment and maturation at sites of active demy-
elination. B-cells present in MS CNS and CSF are clon-
ally expanded  [45–47]  and IgG class-switched  [48, 49] , 
and their immunoglobulin genes are somatically hyper-
mutated and appear to be subject to intrathecal affinity-
maturation  [36, 47, 50–52] , which is an additional evi-
dence to support the involvement of active B-cell im-
mune mechanisms. The fact that overlapping B-cell rep-
ertoires expressing related Ig-VH sequences were found 
in MS brain parenchyma, meningeal lymphoid follicles, 
CSF, and the periphery  [35, 36, 53, 54] , suggests an intra-
thecal immunological continuum that may be exposed to 
immune-stimulation on both sides of the blood-brain 
barrier ( fig. 2 ).

  Memory B-cells in the CSF display upregulation of co-
stimulatory molecules  [55]  suggesting active B- and T-cell 
interactions. Different stages of B-cell development are 
present in CSF  [55]  and CSF plasma cells are producers of 

soluble clonal IgG  [56, 57] , further supporting antigen-
driven B-cell immune responses to be active intrathecally. 
It has been repeatedly shown that antigen-experienced B-
cell subsets predominate in the CSF and CNS. Accord-
ingly, >90% of B-cells in the CSF carry the memory B-cell 
marker CD27 and a fraction of CSF B-cells express CD138 
and/or CD38, supporting the presence of mechanisms 
that stimulate the maturation of clonally activated mem-
ory B-cells into antibody-producing plasmablasts and 
plasma cells  [58] ; the levels of CD27-IgD+ naïve B-cells 
are significantly lower in the CSF compared to blood  [59] .

  To date, the pathological relevance of antibodies in MS 
remains unclear despite the intrathecal presence of clon-
al IgG (OCB) and IgM  [60–62]  and significant IgG depos-
its in some demyelinating MS lesions  [63] . The rapid re-
sponse to B-cell depleting therapy, leaving antibody levels 
nearly unchanged  [5, 6] , has led to the speculation that 
antibodies play a less important pathogenic role. How-
ever, CNS-directed autoantibodies require a permissible 
inflammatory environment  [8]  or at the very least a func-
tional complement system to exert their pathogenic func-

  Fig. 2.  B-cells provide an immunologically 
active axis between the periphery and CNS. 
Naïve B-cells emerge from the bone mar-
row ( 1 ) and undergo initial antigen-train-
ing and affinity maturation in peripheral 
germinal centers (GC). Memory B-cells 
arising from GCs can be further stimulated 
in peripheral lymphoid tissues and/or mi-
grate to the CNS compartment ( 2 ) where 
they participate in, and establish immuno-
logically active sites in MS lesions ( A ) and 
pial meningeal tissues ( B ). An immunolog-
ical continuum and ‘circulation’ ( 3 ) of an-
tigen-experienced B-cells also involves the 
cerebrospinal fluid (CSF) compartment 
represented by schematic lateral ventricles 
in blue ( C ). Clonal and clonally related B-
cell receptors suggesting ongoing antigen-
stimulation can be detected in all three 
CNS-sites (i.e., lesions, meninges, CSF) 
and in the periphery, suggesting MS dis-
ease-driving immunity to be active on both 
sides of the blood-brain barrier. The CSF 
( C ) also contains oligoclonal bands (OCB) 
in the majority of MS patients, another sign 
of antigen-driven stimulation of B-cells to 
differentiate into antibody producing plas-
mablasts or plasma cells. B-cells are shown 
in blue, T-cells in green. See text for further 
details. 

Co
lo

r v
er

sio
n 

av
ail

ab
le 

on
lin

e

Intraparenchymal
perivascular
infiltrates

Meningeal
lymphoid
‘Follicle-like’
structures

Cerebrospinal
fluid (CSF)

OCB

BAFF
CXCL13

Lesion

CSF

Meninges

C

B

A

A B

C

Germinal center

Plasma cells

Memory B cells

Lymphoid tissues
pheripheral blood

Naïve B cells

1

2

3



 von Büdingen/Palanichamy/
Lehmann-Horn/Michel/Zamvil 

Eur Neurol 2015;73:238–246
DOI: 10.1159/000377675

242

tion  [64] . Eliminating the T-cell activating, antigen-pre-
senting functions of B-cells by way of B-cell depletion, 
likely reduces intraparenchymal inflammatory effectors 
to a degree that will render autoantibodies ineffective 
promoters of tissue damage. Overall, memory B-cells and 
plasmablasts/plasma cells are the most abundant B-cell 
subsets in the CNS and CSF of MS patients. However, 
these B-cells do not represent a static immune response 
but rather engage in active affinity maturation with help 
from other immune cell types, cytokines, and survival 
factors.

  B-Cell–Depleting Therapy in MS 

 CD20-targeting lymphocyte-depleting therapy was 
shown to effectively suppress MS disease activity mea-
sures, including the development of new enhancing le-
sions and relapse rates  [4–7] . Beginning with the first 
studies that described the successful treatment of MS with 
the anti-CD20 antibody rituximab  [4, 5] , further efforts 
were made to explore B-cell depletion as therapeutic par-
adigm in MS. In the following paragraphs, we briefly dis-
cuss emerging therapies that were developed to directly 
target B-cells: anti-CD19, anti-CD20, and anti-BAFF-R 

( table 1 ). All are IgG1 antibodies and can mediate com-
plement-dependent (CDC) and antibody-dependent cell-
mediated (ADCC) cytotoxic effects on their target cells.

  Anti-CD20 Therapy 
 Three monoclonal anti-CD20 antibodies have been or 

are currently being studied for the treatment of MS: ritux-
imab (chimeric human/mouse IgG1), ocrelizumab (hu-
manized IgG1), and ofatumumab (fully human IgG1); 
they differ in their recognition of CD20 epitopes and in 
the intensity of CDC or ADCC elicited, but all mediate 
near-complete depletion of CD20+ B-cells in peripheral 
blood (reviewed in  [65] ). Very low numbers of B-cells re-
main in the circulation following CD20-targeted deple-
tion  [66] , and certain B-cell populations resident in lym-
phoid tissues may also display resistance to B- cell deplet-
ing therapies  [67] . CD20 is expressed on a wide range of 
B-cell subsets starting at the pre-B-cell stage and extend-
ing through to memory B-cells ( fig. 3 ). Accordingly, pro-
B-cells and antibody-producing plasmablasts/plasma 
cells are not primarily affected by anti-CD20 therapy; lev-
els of soluble immunoglobulins in serum  [5, 6]  remain 
mostly unchanged, at least in the short-term. Rituximab 
was shown to reduce CSF B-cell counts, but at 6 months 
the OCB and CSF IgG-Index remained unchanged  [68] . 

Table 1.  Biologics targeting B-cells or B-cell–activating factors

Biologic Molecular characteristics Targets Effects in MS

Rituximab murine/human chimeric monoclonal 
IgG1

CD20
B cells: see fig. 3
CD20+ T cells

reduced MRI measures of disease activity [4, 5]
reduced relapse rate [4, 5]
reduced intrathecal B-cells

Ocrelizumab humanized (90%) monoclonal IgG1 CD20
B cells: see fig. 3
Effect on CD20+ T cells 
not yet known

reduced MRI measures of disease activity [6]
reduced relapse rate [6] 

Ofatumumab fully human monoclonal IgG1 CD20
B cells: see fig. 3
Effect on CD20+ T cells 
not yet known

reduced MRI measures of disease activity [7] 

MEDI-551 humanized monoclonal IgG1 CD19
B cells: see fig. 3

unknown

VAY736 fully human monoclonal IgG1 BAFF-R
B cells: see fig. 3
BAFF-R+ T cells?

unknown

Atacicept recombinant fusion protein with 
 extracellular domain of TACI receptor 
and Fc domain of human Ig

BAFF
APRIL

unexpected inflammatory effects [81] 
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Anti-CD20-mediated B-cell depletion using rituximab 
represents the first effort at directly targeting B-cells in 
MS  [4, 5] . In the 48-week phase II trial  [5] , patients who 
received rituximab had a highly significant >90% reduc-
tion in total gadolinium-enhancing lesions on brain MRI 
over the course of the study, beginning at week 12; clini-
cally, a significant relapse-rate reduction of about 50% 
was observed at 24 and 48 weeks  [5] . At 48 weeks, 24.1% 
of patients tested for the presence of human anti-chimeric 
antibodies (HACA, i.e., antibodies against rituximab) 
had developed HACA without apparent association with 
efficacy measures. The phase II trials with ocrelizumab 
and ofatumumab cite similar highly statistically signifi-
cant reduction in the numbers of new and total gadolini-
um-enhancing lesions  [6, 7] ; ocrelizumab resulted in re-
lapse rate reductions between 73 and 80%  [6] . Ocrelizum-
ab is currently in phase III clinical development for RRMS 
and primary progressive MS (ClinicalTrials.gov Identifi-
ers: NCT01247324, NCT01412333, and NCT01194570). 
As detailed earlier in this article, multiple functions of 
B-cells can be affected by anti-CD20-mediated B-cell de-
pletion. The long-term effects of anti-CD20 therapy in 
MS have yet to be fully understood, both in terms of ef-
ficacy and safety. Ocrelizumab was reported to result in 
sustained suppression of clinical MRI disease-activity 72 
weeks after the last of 4 dosages applied at 24-week inter-
vals  [24] . Over the short-term, anti-CD20 therapy can re-
sult in mostly mildly reduced serum immunoglobulin 
levels; however, prolonged exposure to anti-CD20 anti-
bodies may induce delayed depletion of the plasma cell 
population and reduction of soluble immunoglobulins 
due to reduced memory B-cell formation and terminal 

differentiation into antibody-producing subsets  [69] . 
Taken together, the clinical evidence demonstrates that 
CD20-targeting therapy is highly effective in reducing 
MRI disease-activity outcome measures and phase III 
clinical trials are expected to fully reveal the therapeutic 
potential of this approach. 

  Interestingly, CD20 was also reported to be expressed 
at low levels in a small subset of T-cells  [66, 70]  in healthy 
donors and patients with rheumatoid arthritis (RA); 
rituximab effectively depletes these T-cells from the pe-
ripheral blood of RA patients  [71] . CD20-expressing T-
cells are likely functionally diverse but harbor proinflam-
matory Th17 properties in RA  [72] . Our own work con-
firms the depletion of CD3 + CD20 dim  T-cells from the 
peripheral blood of MS patients treated with rituximab 
 [66] . Clearly, further work is necessary to determine 
whether CD20-expressing T-cells contribute to MS im-
mune pathology.

  Anti-CD19 Therapy 
 More recently, a humanized anti-CD19 IgG1 antibody 

 [73]  MEDI-551, entered phase II clinical development for 
the treatment of MS (ClinicalTrials.gov Identifier: 
NCT01585766). At this point, no data for MEDI-551 in 
MS have been reported. CD19 is expressed on B-cells 
starting with pro-B-cells through the antibody-produc-
ing plasmablast stage ( fig. 3 ), and is gradually lost during 
terminal differentiation to plasma cells  [74] . In an animal 
model with humanized CD19 and CD20, MEDI-551 in-
duced longer-lasting B-cell depletion compared to ritux-
imab due to significant effects on early B-cells (pro-B-
cells) in the bone marrow  [73] . Also in animals, it was 

  Fig. 3.  B-cell development and expression of surface markers tar-
geted by emerging MS therapeutics. CD19 is a pan-B-cell marker 
expressed on nearly the entire B-cell lineage starting from early 
pro-B-cells and disappearing on long-lived plasma cells; MEDI-
551 (anti-CD19 antibody) currently in clinical development for 
MS therapy cuts deeply into the B-cell compartment. CD20 is ex-

pressed on the majority of B-cells; it appears on pre-B-cells and 
becomes downregulated during terminal differentiation to plas-
mablasts/plasma cells. Interestingly, CD20 is also expressed by a 
small subset of T-cells, which become depleted by rituximab. 
BAFF-R has a similar expression pattern as CD20; VAY736 is also 
being studied now as a therapy for MS.               
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shown that anti-CD19 therapy reduces levels of serum 
immunoglobulins including autoantibodies due to plas-
mablast/plasma cell depletion  [75] . It is unclear whether 
autoantibodies play a significant role in MS immune pa-
thology and whether the enhanced antibody-reducing 
functionality of MEDI-551 will provide increased efficacy 
and/or risk of infection compared to anti-CD20 therapy. 
Aside from the effect on plasmablasts and plasma cells 
and slower B-cell repopulation after treatment, MEDI-
551 is expected to affect the same B-cell functions as 
CD20-targeting strategies. Anti-CD19 therapy will not 
deplete CD3+CD20 dim  T-cells; however, a small number 
of reports describe CD19-expressing dendritic cells  [74, 
76] , but their existence in humans has not been diligently 
studied and the potential effect of anti-CD19 therapy on 
dendritic cells is merely speculative at this point.

  Anti-BAFF-R Therapy 
 The most recent addition to the armamentarium of 

biologics directly targeting B-cells is VAY736, a fully hu-
man IgG1 antibody against the B-cell activating factor-
receptor (BAFF-R)  , currently in phase II clinical develop-
ment for MS (ClinicalTrials.gov Identifier: NCT02038049). 
In healthy humans, BAFF-R is expressed on naïve B-cells 
and can be found through post-germinal center memory 
B-cell and plasma blast stages ( fig. 3 )  [77] . Low levels of 
BAFF-R have also been described in human central and 
effector T-cells  [78] . BAFF-R is the receptor for BAFF 
(also known as BLyS, B lymphocyte stimulator); BAFF 
promotes B-cell survival at numerous stages throughout 
B-cell development. In MS, BAFF was found to be elevat-
ed in demyelinating lesions  [44] , and has also been sug-
gested to be involved in the formation of lymphoid folli-
cle-like meningeal structures  [42] . Interestingly, thera-
peutic targeting and neutralization of soluble BAFF and 
APRIL (A Proliferation-Inducing Ligand), which is an-
other B-cell stimulator, by atacicept lead to increased in-
flammatory activity in MS  [79] . No data has been report-
ed regarding the biological effects of VAY736 in humans. 
However, given the fact that its IgG1 isotype can induce 
CDC and ADCC, and that BAFF-R is expressed on a wide 
range of B-cell subsets, VAY736 may likely show similar 
effects on the B-cell compartment as anti-CD20 antibod-
ies but may also lead to reduced serum immunoglobulin 
levels. Like anti-CD20 antibodies, VAY736 may induce 
depletion of a small portion of T-cells, which may or may 
not be of therapeutic relevance. Theoretically, VAY736 
could exert additional effects by blocking BAFF binding 
to BAFF-R on B-cells that escape depletion in peripheral 
blood and lymphoid tissues, and may therefore interfere 

with a similar immunological pathway as atacicept, that 
is, BAFF/BAFF-R interaction. However, atacicept was de-
signed to target and neutralize soluble B-cell activation 
factors, while VAY736 appears to have been developed to 
primarily target B-cells for depletion, illustrating a differ-
ent mode of action. In this context, it is interesting to note 
that BAFF-R-deficient mice have fewer mature B-cells 
 [80]  and develop increased EAE severity  [81] , a scenario 
that probably mirrors the effects of atacicept in humans. 

  Summary 

 B-cells play important roles in the initiation and per-
petuation of CNS-targeting inflammation in MS. There 
are overlapping B-cell repertoires on both sides of the 
blood-brain barrier, suggesting that disease-driving im-
munological stimuli are active not only in the CNS but 
also in the periphery. Multiple B-cell mediated mecha-
nisms are likely involved in MS immune pathology, with 
antigen-presentation by B-cells occupying a central role. 
B-cell depletion is a highly effective and promising thera-
peutic approach for MS. Four different biologic agents 
that directly target B-cells for depletion are currently in 
clinical development, two targeting CD20, one targeting 
CD19, and one targeting the BAFF-R. The common de-
nominator for each of these therapeutic approaches is the 
depletion of the B-cell compartment (although this re-
mains to be formally demonstrated for the anti-BAFF-R). 
However, each strategy also has its unique features, which 
may or may not contribute to differences in therapeutic 
efficacy and/or safety profiles. Additional work is re-
quired to further delineate the features of pathologically 
relevant B-cells and their target antigens in MS.
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